承载夹层复合材料的轻量化设计方法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产品轻量化技术是轻量化结构、轻量化材料和轻量化制造等的单一技术或集成技术的统称,是工业技术发展的必然趋势和企业追求的目标。承载夹层复合材料是由高强度的面板与轻质芯材组成的一种典型的轻量化结构材料,因其具有质量轻、比刚度与比强度大、抗失稳能力强等优点而得到广泛工程应用。论文以承载夹层复合材料为研究对象,系统研究其轻量化设计方法,并以承载箱式件为实例,研究工程应用技术,以期在重量、性能和成本等多目标中达到最佳结合点,实现轻量化。论文的主要研究工作如下:
     (1)在分析承载夹层复合材料力学特性的基础上,运用复合材料和材料力学理论,推导承载夹层复合材料夹层结构的强度、刚度和重量的计算公式;结合工程实例,提出相应的计算方法。
     (2)分析承载夹层复合材料蜂窝夹芯结构的力学性能,建立蜂窝夹芯结构的力学等效模型,导出蜂窝夹芯结构的等效弹性常数的计算公式;结合工程实例,提出蜂窝夹芯结构力学性能仿真分析方法。
     (3)从结构轻量化设计的角度,分析承载夹层复合材料夹层结构的轻量化设计要求;针对单约束条件下的承载夹层复合材料夹层结构进行轻量化设计,提出单约束承载夹层复合材料夹层结构的轻量化设计方法。
     (4)分析承载夹层复合材料夹层结构的多约束条件,运用多约束优化设计理论,构建承载夹层复合材料夹层结构的多约束优化设计数学模型,提出多约束承载夹层复合材料夹层结构的轻量化设计方法,并通过工程实例进行验证。
     (5)从材料轻量化设计的角度,对承载夹层复合材料进行轻量化设计,建立承载夹层复合材料的轻量化设计过程模型;运用等效板理论,构建承载夹层复合材料夹层结构的力学等效模型,推导等效模型的弹性常数的计算公式;结合具体实例,提出承载夹层复合材料的轻量化设计方法。
     最后,以某型地埋升降式压缩垃圾站箱体为应用对象,对箱体载荷进行分析,建立箱体的压缩垃圾分布载荷模型;采用承载夹层复合材料替代箱体原有的材料,运用承载夹层复合材料的轻量化设计方法,对箱体进行轻量化设计;在此基础上,对轻量化的箱体进行有限元仿真分析,验证轻量化设计方案的正确性和可行性。经工程实践说明本文所提出的方法可用于工程,并能产生良好的效果。
As an inevitable trend of industrial technology's development and a seeking goal of enterprises, lightweight technology of product is the single technology or integration technology of lightweight structural design, lightweight materials and lightweight manufacturing. Loaded sandwich structure composite is a kind of typical lightweight structural material which is composed of high strength faceskins and lightweight core and is increasingly applied to engineering due to its superior properties like lightweight, high strength, high stiffness and good stability and so on. Aiming at loaded sandwich structure composite, this dissertation has a systematic study on the loaded sandwich structure composite's lightweight design method. The lightweight design of loaded box-type components and parts is taken as an example to seek a best joint among the multiple objects of weight, performance and cost in order to eventually realize the box components and parts'lightweight. The main research contents of this dissertation are as follows.
     (1) On the basis of analysis about mechanical properties of loaded sandwich structure composite, the strength, stiffness and weight's formulas of loaded sandwich structure are deduced according to composite material mechanics and mechanics of materials theories and also according to engineering examples, corresponding calculation method is proposed.
     (2) Based on analysis of honeycomb sandwich structure's mechanical properties of loaded sandwich structure composite, the mechanical equivalent model of honeycomb sandwich structure is established, and the equivalent elastic constants' formulas of honeycomb sandwich structure are deduced. At the same time, based on the engineering cases, the simulation analysis method of honeycomb sandwich structure's mechanical properties is proposed.
     (3) In terms of structural lightweight design, sandwich structure's lightweight design requirements of loaded sandwich structure composite are analyzed. Aiming at the lightweight design of loaded sandwich structure under single-constraint conditions, the method of the lightweight design is proposed.
     (4) The multi-constraint conditions of loaded sandwich structure are analyzed, and optimal design theory of multi-constraint is used to build the multi-constraint optimization model of loaded sandwich structure; by means of multi-constraint optimal design theory, the lightweight design method of the loaded sandwich structure under multi-constraint condition is proposed and also is verified well according to an engineering example's analysis.
     (5) From the point of material lightweight design, lightweight loaded sandwich structure composite is designed and the model of its design process is built. In accordance with equivalent plate theory, the mechanical equivalent model of loaded sandwich structure is established and elastic constants'formulas of the equivalent model are deduced; According to a specific example, the lightweight design method of loaded sandwich structure composite is proposed.
     Finally, the box of a certain type of underground lifting compression garbage station is taken as an application example. The box's loads are analyzed and the distributed loads model of box is set up. Loaded sandwich structure composite is applied to the box instead of the original material, and the lightweight design of box is realized by means of the lightweight design method of loaded sandwich structure composite. Accordingly, lightweight box's finite element analysis and simulation are carried out to verify the correctness and feasibility of the lightweight design solution. The proposed methods in the dissertation can apply to engineering and have good effects according to engineering practice's results.
引文
[1]高顺德.轻量化技术在工程机械设计中的应用[J].建设机械技术与管理,2010,23(10):66
    [2]徐学光.迎接生态文明—船舶轻量化与节能减排[C].造船企业节能减排工艺技术学术交流会论文集.2009:1-13
    [3]谭惠丰,王超,王长国等.实现结构轻量化的新型平流层飞艇研究进展[J].航空学报,2010,31(2):257-264
    [4]贾维新,郝志勇,徐红梅等.基于结构优化方法的单缸机机体轻量化设计[J].浙江大学学报(工学版),2008,42(2):224-228
    [5]李博.基于HyperWorks的单动液压机工作台轻量化设计[J].机械与电子,2010,(10):77-80
    [6]方明刚,赵韩,曹文钢等.基于ANSYS的液压机工作台的轻量化设计及改进[J].机床与液压,2010,38(6):9-12,15
    [7]陈巍,胡思明.轿车悬架螺旋弹簧轻量化设计[C].第15届全国机械设计年会论文集.2009:256-257,196
    [8]李慧丽,郎利辉,焦伟等.预应力钢丝缠绕缸体结构轻量化关键技术[J].北京航空航天大学学报,2009,35(7):899-903
    [9]朱宏敏.汽车轻量化关键技术的应用及发展[J].应用能源技术,2009,134(2):10-12
    [10]彭禹,郝志勇.基于虚拟样机的动态轻量化设计方法[J].浙江大学学报(工学版)2008,42(6):984-988
    [11]曹德君,田锡天,耿俊浩等.基于轻量化三维产品模型的装配建模技术研究[J].机床与液压,2009,37(11):173-176
    [12]马鸣图,易红亮,路洪洲等.论汽车轻量化[J].中国工程科学,2009,11(9):20-27
    [13]廖君.汽车轻量化技术发展的探讨[J].机械,2009,36(1):4-7
    [14]鲁春艳.汽车轻量化技术的发展现状及其实施途径[J].上海汽车,2007,(6):28-31
    [15]高荣新,王柏龄,韦安杰等.汽车轻量化的现状及展望(续1)[J].汽车工程师,2010,(2):20-23
    [16]高荣新,王柏龄,韦安杰等.汽车轻量化的现状及展望(续2)[J].汽车工程师,2010,(3):20-23
    [17]高荣新,王柏龄,韦安杰等.汽车轻量化的现状及展望(续3)[J].汽车工程师,2010,(4):17-20
    [18]高荣新,王柏龄,韦安杰等.汽车轻量化的现状及展望(续4)[J].汽车工程师,2010,(5):20-23
    [19]李辉.基于车身强度准则法的结构轻量化设计与研究[D].武汉理工大学,2010
    [20]郭乃文.载重80吨自翻车结构分析及轻量化设计的研究[D].北京交通大学,2009
    [21]赵韩,钱德猛.基于ANSYS的汽车结构轻量化设计[J].农业机械学报,2005,36(6):12-15
    [22]殷小霖.基于有限元法的车架轻量化设计[D].武汉理工大学,2007
    [23]蒋成武,谭继锦,孙立君,储昭淼.客车底架有限元分析与轻量化[J].车辆与动力技术,2009,(4):42-44
    [24]杨富强.基于有限元的客车车身轻量化[D].扬州大学,2006
    [25]王兴宇.大吨位自卸车轻量化研究[D].武汉理工大学,2009
    [26]宋发宝.大型天线座车车架轻量化设计研究[D].武汉理工大学,2008
    [27]王皎.重型特种车车架强度分析及其轻量化问题研究[D].武汉理工大学,2005
    [28]代红军,林程.电动客车车身有限元分析及其轻量化设计[J].客车技术与研究,2005,(3):10-11
    [29]徐伟.工程车辆车架的拓扑优化与减重设计[D].南京理工大学,2007
    [30]Travis de Fluiter. Design of Lightweight Electric Vehicles [D]. New Zealand:The University of Waikato,2008
    [31]Ryan Lovatt. The Development of a Lightweight Electric Vehicle Chassis and Investigation into the Suitability of TiAl for Automotive Applications [D]. New Zealand:The University of Waikato,2008
    [32]Wahyu Kuntjoro. Development of a lightweight box structure for static structural experiments. International Journal of Mechanical Engineering Education,2007,35(4) 324-335
    [33]唐靖林,曾大本.面向汽车轻量化材料加工技术的现状及发展[J].金属加工,2009,(11):11-15
    [34]周家付.复合材料车轮结构轻量化的研究[J].现代机械,2009,(4):64-66
    [35]Yan Zhang, Xinmin Lai, Ping Zhu, Wurong Wang. Lightweight design of automobile component using high strength steel based on dent resistance. Materials and Design,2006, (27):64-68
    [36]范军锋.现代轿车轻量化技术研究——新材料技术、轻量化工艺和轻量化结构[J].汽车工艺与材料,2009,(2):10-15
    [37]钟新农.汽车轻量化与高强度钢板的成形性分析[J].机电产品开发与创新,2006,19(3):40-41
    [38]陈绍杰.先进复合材料的近期发展趋势[J].材料工程,2004,(9):9-13,18
    [39]陈绍杰.浅谈复合材料的整体成型技术[J].高科技纤维与应用,2005,30(1):6-9,20
    [40]陈绍杰.大型飞机与复合材料[J].航空制造技术,2008,(15):32-37
    [41]陈绍杰.先进复合材料在汽车领域的应用[J].高科技纤维与应用,2011,36(1):11-17,23
    [42]陈绍杰.复合材料技术与大型飞机[J].航空学报,2008,29(3):605-610
    [43]陈绍杰.浅谈空客A380的复合材料应用[J].高科技纤维与应用,2008,33(4):1-4,24
    [44]贺福,,孙微.碳纤维复合材料在大飞机上的应用[J].高科技纤维与应用,2007,32(06):5-8
    [45]益小苏,张明,安学锋等.先进航空树脂基复合材料研究与应用进展[J].工程塑料应用,2009,37(10):72-76
    [46]常量,张建飞.碳纤维复合材料在航空领域应用初探[A].2010全国机械装备先进制造技术(广州)高峰论坛论文汇编[C],2010
    [47]惠雪梅,宋义斌,王晓洁,尤丽虹.碳纤维增强环氧改性氰酸酯树脂复合材料性能研究[J].工程塑料应用,2007,35(11):52-55
    [48]鸟云其其格,廖子龙,李明.环氧树脂/芳纶布复合材料性能研究与应用[J].工程塑料应用,2006,(04):4143
    [49]廖子龙,乌云其其格.环氧树脂/玻璃纤维复合材料性能研究与应用[J].工程塑料应用,2008,(09):47-50
    [50]张晓虎,孟宇,张炜等.碳纤维增强复合材料技术发展现状及趋势[J].纤维复合材料,2004,21(1):50-53,58
    [51]张建艺.先进纤维及其复合材料在西部开发中的机遇[J].固体火箭发动机复合材料工艺,2000,2:59-63
    [52]赵稼祥.碳纤维复合材料在民用航空上的应用[J].高科技纤维与应用,2003,28(3):1-4,35
    [53]张佳佳,何景武.蜂窝夹层结构中胶粘剂的模拟和研究[J].飞机设计,2008,28(6):27-30
    [54]程改霞,郑晓亚,张铎等.蜂窝夹层结构等效板力学特性研究[J].弹箭与制导学报,2004,24(4):568-573
    [55]GIBSON, L. J. and ASHBY, M. F. (1999). Cellular solids:structure and properties. Cambridge [u.a.]:Cambridge Univ. Press.
    [56]Dan Zenkert. (1995). An Introduction to Sandwich Construction, Engineering Materials Advisory Services,
    [57]Vinson, J.R. (1999). The Behaviour of Sandwich Structures of Isotropic and Composite Materials, Technomic Publishing Co. Inc., Lancaster, PA
    [58]赵景丽.蜂窝夹层结构复合材料的性能研究[D].西北工业大学,2001
    [59]张广成,赵景利.蜂窝夹层结构复合材料的力学性能研究[J].机械科学与技术,2003,22(2)_3
    [60]祝涛.蜂窝夹层结构非线性振动研究[D].上海交通大学,2007
    [61]刘均.方形蜂窝夹层结构振动与冲击响应分析[D].华中科技大学,2009
    [62]F Lan, J Chen and J Lin. (2004). Comparative analysis for bus side structures and lightweight optimization. Journal of Automobile Engineering, Vol.218,1067-1075.
    [63]M.M.K. Lee, T. Pine, T.B. Jones. (2000). Automotive box section design under torsion. Journal of Automobile Engineering, Vol.214, pp.347-359.
    [64]M. E. Nemirovskii. (1994). Torsional rigidity of outer sheaths of flexible medical endoscopes, Biomedical Engineering, Vol.28, No.5
    [65]杜龙X-core夹层复合材料力学性能研究[D].西北工业大学,2007.
    [66]谭永刚X-core夹层结构制备工艺及力学性能研究[D].南京航空航天大学,2009
    [67]Whitney, J.M. (1993). Analysis of Anisotropic Laminated Plates Subjected to Torsional Loading, Composites Engineering,3 (6):567-582.
    [68]Whitney, J.M. and Kurtz, R.D. (1993). Analysis of Orthotropic Laminated Plates Subjected to Torsional Loading, Composites Engineering,3 (1):83-97.
    [69]Pizhong Qiao and Mijia Yang. (2007). Impact analysis of fiber reinforced polymer honeycomb composite sandwich beams. Compos Part B:Eng,38:739-750
    [70]Ferhun C. Caner and Zdenek P. Bazant. (2009). Size effect on strength of laminate-foam sandwich plates:Finite element analysis with interface fracture. Compos Part B:Eng, 40:337-348
    [71]Lin Jing, Zhihua Wang, Jianguo Ning and Longmao Zhao. (2011). The dynamic response of sandwich beams with open-cell metal foam cores. Compos Part B:Eng,42:1-10
    [72]Zhi-Min Li and Hui-Shen Shen. (2009). Postbuckling analysis of 3D braided composite cylindrical shells under torsion in thermal environments. Composite Structures,87, 242-256.
    [73]Ferrero, J. F, et al. (2001). Torsion of thin-walled composite beams with midplane symmetry. Composite Structures,54,111-120.
    [74]MIZUKAWA, K., FUJII, T.,ITAMI, K.& OSAKA, K. (1985). Impact strength of thin-walled composite structures under combined bending and torsion. Composite Structures,4,179-192.
    [75]Davalos JF, Qiao P, et al. (2009). Torsion of honeycomb FRP sandwich beams with a sinusoidal core configuration. Composite Structures,88,97-111.
    [76]Xu XF, Qiao P, Davalos JF. (2001). On the transverse shear stiffness of composite honeycomb core with general configuration. J Eng Mech, ASCE; 127(11):1144-51.
    [77]Hui-Shen Shen and Y. Xiang. (2008). Buckling and postbuckling of anisotropic laminated cylindrical shells under combined axial compression and torsion. Composite Structures,84, 375-386.
    [78]P.Z and Xu X.F. (2005). Refined Analysis of Torsion and In-plane Shear of Honeycomb Sandwich Structures, Journal of Sandwich Structures and Materials,289(7):290-305.
    [79]Cheng, S. (1961). A Formula for Torsional Stiffness of Rectangular Sandwich Plates, Journal of Applied Mechanics,83
    [80]Cheng, S. (1968). Elasticity Solution of Torsion of Sandwich Plates, Journal of the Engineering Mechanics Division,94(EM2):605-620.
    [81]Whitney, J.M. (1991). Stress Analysis of Laminated, Anisotropic Plates Subjected to Torsional Loading, In:Proc.32nd AIAA/ASME/ASCE/AHS/ASC/Structures, Structural Dynamics, and Materials Conf., Part 2, Structures and Design, AIAA Paper No.91-0956, AIAA, Washington, DC, pp.956-962.
    [82]Shi, G. and Tong, P. (1995). Equivalent Transverse Shear Stiffness of Honeycomb Cores, Int. J. Solids Structures,32(10):1383-1393.
    [83]Xu, X.F., Qiao, P.Z. and Davalos, J.F. (2001). On the Transverse Shear Stiffness of Composite Honeycomb Core with General Configuration, Journal of Engineering Mechanics,127(11):1144-1151.
    [84]Seide P. (1956). On the Torsion of Rectangular Sandwich Plates, Journal of Applied Mechanics,3(2):191-194.
    [85]Triantafillou T, Gibson L (1987). Minimum weight design of foam core sandwich panels for a given strength. Mater Sci Eng 95:55-62.
    [86]Bernard Budiansky (2001). On the minimum weights of compression structures, International. Journal of Solids and Structures,36:2566-2697.
    [87]Demsetz, L. A. and L. J. Gibson (1987). Minimum weight design for stiffness in sandwich plates with rigid foam cores. Materials Science and Engineering 85:33-42.
    [88]E. W. Kuenzi, Minimum weight structural sandwich, U.S. For. Serv. Res. Note FPL-086, 1965 (Forest Products Laboratory, Madison, WI).
    [89]Xiang Li, Gangyan Li, Chun H. Wang and Min You. (2011). Minimum-Weight Sandwich Structure Optimum Design Subjected to Torsional Loading, Applied Composite Materials, In Press, Accepted Manuscript
    [90]石琴.基于现代设计理论的车身结构设计方法研究[D].合肥工业大学,2006
    [91]钱令希.工程结构优化设计[M].北京,水利电力出版社,1983
    [92]程耿东.工程结构优化设计基础[M].北京,水利电力出版社,1984
    [93]隋允康,叶红玲,杜家政.结构拓扑优化的发展及其模型转化为独立层次的迫切性[J].工程力学,2005,22:107-118
    [94]庄春刚.基于水平集的多材料结构拓扑优化设计方法与应用[D].上海交通大学,2007
    [95]赵慧慧.重型汽车车架的结构有限元分析与轻量化设计研究[D].南京航空航天大学,2007
    [96]慈龙尚.平板车结构分析及轻量化设计研究[D].合肥工业大学,2009
    [97]张德恒,鹿晓阳.结构拓扑优化设计的理论与方法[J].化学工程与装备,2011,(01):155-158
    [98]谢利军.拓扑优化在机载计算机结构设计中的应用[J].航空计算技术,2009,(01):120-122
    [99]王英杰.大型机械系统复杂构件结构优化设计方法研究[D].燕山大学,2002
    [100]叶红玲.连续体结构静力拓扑优化方法与软件开发[D].北京工业大学,2005
    [101]肖剑,王科社.直驱双摆角铣头支架的拓扑优化设计[J].北京信息科技大学学报(自然科学版),2009,(03):50-53
    [102]周祥曼,田启华,杜义贤.基于ANSYS的数控插齿机床身拓扑优化设计[J].煤矿机械,2010,(06):28-30
    [103]Kirsch U, Topping B H V. Minimum Weight Design of Structural Topologies Journal of Structural Engineering, ASCE,1992,118 (7):1770-1785
    [104]黄冀卓,王湛.基于遗传算法的离散型结构拓扑优化设计[J]. 工程力学,2008,(05):32-38
    [105]林本芳,鹿晓阳,王燕,段英锋.基于改进遗传算法的空间网架结构拓扑优化设计[J].重 庆科技学院学报(自然科学版),2010,(05):158-160
    [106]唐文艳.结构优化中的遗传算法研究和应用[D].大连理工大学,2002
    [107]王磊.结构优化中的遗传算法研究和应用[D].河北工业大学,2004
    [108]程耿东.连续体结构优化设计[M].大连,大连理工大学出版社,1989
    [109]王健,程耿东.应力约束下薄板结构的拓扑优化[J].固体力学学报,1997,18(4):317-322
    [110]叶红玲,隋允康.连续体结构静力拓扑优化方法与软件开发[D].北京工业大学,2005
    [111]隋允康,彭细荣.结构拓扑优化ICM方法的改善[J].力学学报,2005,37(2):190-198.
    [112]隋允康,叶红玲,彭细荣.应力约束全局化策略下的连续体结构拓扑优化[J].力学学报,2006,38(3):364-370.
    [113]叶红玲,隋允康.应力约束下连续体结构的拓扑优化[J].北京工业大学学报,2006,32(4):301-305.
    [114]隋允康,彭细荣,叶红玲.应力约束全局化处理的连续体结构ICM拓扑优化方法[J].工程力学,2006,23(7):1-7
    [115]袁振,吴长春.采用非协调元的连续体拓扑优化设计[J].力学学报,2003,35(2):176-180
    [116]袁振,吴长春.复合材料周期性线弹性微结构的拓扑优化设计[J].固体力学学报,2003,24(1):40-45.
    [117]Guan-Chun Lu, Chung-Huei Chue, Multi-modal topological optimization of structure using immune algorithm[J]. In:Comput. Methods Appl. Mech. Engrg.2004,193: 4035-4055.
    [118]龙驭球,龙志飞,岑松.新型有限元[M].北京:清华大学出版社,2003
    [119]王勖成.有限单元法[M].北京:清华大学出版社,2003
    [120]王焕定,吴德伦.有限单元法及计算程序[M].北京:中国建筑工业出版社,2004
    [121]俞铭华,吴剑国,曹骥等.有限元法与面向对象编程[M].北京:科学出版社,2004
    [122]孙海霞,戴京涛,姜伟,唐仁刚.有限元法在机械工程中的应用与发展[J].科技创新导报,2011,(03):84-84
    [123]刘桂芹,江进国,段成龙,曹明,黄亚星.有限元法及其在现代机械工程中的应用[J].机械研究与应用,2005,(02):15-16
    [124]金梅珍.桥式双梁起重机小车车架轻量化研究[J].机械研究与应用,2010,(05):44-46
    [125]裴兴林,刘书岩.基于ANSYS的深沟球轴承接触应力有限元分析[J].新技术新工艺,2010,(08):5-7
    [126]李俊伟,梁庆华,莫锦秋.基于ANSYS软件的大型伸缩回转平台的振动模态分析[J].轻工机械,2010,(05):101-103
    [127]邹伯宏,詹军,王建新ANSYS在专用底盘副车架刚度分析中的应用[J].专用汽车,2010,(09):64-65
    [128]张跃军.轧机试验台机架有限元分析与优化设计[J].机械工程师,2008,(08):30-31
    [129]把婧,崔志远.基于ANSYS的桥式起重机主梁有限元分析平台[J].起重运输机械,2010,(10):34-36
    [130]申卫兵,周静,李永振.基于ANSYS的电磁阀仿真与分析[J].流体传动与控制,2010,(05):4-5
    [131]丘育红,刘炳立.碳/环氧网格面板—铝蜂窝夹层结构板弯曲刚度试验研究[J].航天返回与遥感,2004,25(3):44-48
    [132]麻文焱,倪晗,姚文戈.铝蜂窝地板力学性能试验研究[J].试验技术与试验机.2002,42:3-4
    [133]ALLEN H G. Analysis and Design of Structural Panels [M]. Oxford:Pergamon Press,1969
    [134]中国科学院北京力学研究所.夹层板壳的弯曲、稳定和振动[M].北京:科学出版社,1977.
    [135]Papka S.Da and Kyriadkides Sa. Experiments and full-scale numerical simulations of in-plane crushing of a honeycomb [J]. Acta Materialia.1998,46(5):2765-2776.
    [136]H.G.Allen. Analysis and design of structural panels. Pergamon Press, Oxford,1969.
    [137]富明慧,尹久仁.蜂窝芯层的等效弹性参数.力学学报[J].1999,31(1):113-118
    [138]王颖坚.蜂窝结构在面内剪切作用下的变形模式.北京大学学报[J].1991,27(4)
    [139]蔡四维.复合材料结构力学[M].北京:人民交通出版社,1987
    [140]Kim, H.S and AL-HASSANI, S.T.S. A morphological elastic model hexagonal columnar structure [J]. International Journal of Mechanical Sciences.2001,43:1027-1060.
    [141]Master I G, Evans K E. Models for the elastic deformation of honeycombs [J], Composite Structures,1996,35:403-422.
    [142]GIBSON, L. J., ASHBY, M. F. and Schajer, G. S. The mechanics of two-dimensional cellular materials [J]. Proceedings the Royal society of London (A).1982,382:25-42.
    [143]Gibson, L.J. Modelling the Mechanical Behaviorof Cellular Material [J]. Master Science and Engineering.1989, A110:1-36.
    [144]梁森,陈花玲,陈天宁.蜂窝夹芯结构面内等效弹性参数的分析研究[J].航空材料学报,2004,24(3):26-31
    [145]夏利娟,金咸定,汪庠宝.卫星结构蜂窝夹层板的等效计算[J].上海交通大学学报,2003,37(7):999-1001
    [146]徐胜今,孔宪仁,王本利等.正交异性蜂窝夹层板动、静力学问题的等效分析方法[J].复合材料学报,2000,17(3):92-95
    [147]赵金森.铝蜂窝夹层板的力学性能等效模型研究[D].南京航空航天大学,2006
    [148]富明慧等.蜂窝夹层板的一种等效单层模型.工程力学,2001,增刊:700-704
    [149]陈树勋,王素暖,白斌,应鸿烈,汤勇.压缩垃圾车结构的载荷描述与优化设计[J].机械工程学报,2008,44(3):213-219
    [150]陈树勋,应鸿烈,汤勇,王素暖,白斌.压缩垃圾车结构载荷的函数表达[J].装备制造技术,2006,(4):61-66
    [151]应鸿烈.拉臂式垃圾车车厢结构有限元分析与优化设计[D].广西大学,2007
    [152]陈树勋,王海波,应鸿烈.拉臂式压缩垃圾车车厢结构的有限元分析与优化设计[J].装备制造技术,2008,(4):47-49
    [153]汤勇.新型后装式垃圾压缩车结构优化设计[D].广西大学,2007
    [154]HexWebTM HONEYCOMB SANDWICH DESIGN TECHNOLOGY. http://www.hexcel.com/Resources/DataSheets/Brochure-Data-Sheets/Honeycomb_Sandwi ch_Design_Technology.pdf
    [155]BITZER, T. Honeycomb Technology. Chapman & Hall, London (1997)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700