六辊冷连轧机板形控制模型优化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以涟钢1720mm冷连轧机板形优化和唐钢1800mm冷连轧机工程项目为背景,对六辊冷连轧机板形控制系统进行了深入的研究,针对板形控制系统存在的不足,建立了薄带钢冷连轧板形预设定模型、板形前馈控制模型和基于最优化原理的板形闭环反馈控制模型。工业实验及现场应用结果表明,建立的模型具有良好的板形控制能力和可靠的板形控制稳定性。本文的主要工作包括:
     (1)对涟钢1720mm冷连轧机和唐钢1800mm冷连轧机板形控制系统进行了深入的研究分析,指出了这两套板形控制系统存在的不足。
     (2)分析了薄带钢轧制过程,带钢宽度以外工作辊边部接触对工作辊受力和变形的影响,采用修正的影响函数法建立了六辊轧机辊系弹性变形计算模型;利用实测轧辊温度计算了工作辊热凸度分布,与辊系弹性变形计算模型相耦合,建立了六辊轧机辊系变形整体计算模型。模型的计算结果与实测数据吻合较好,证明了该理论模型是实用可靠的。
     (3)建立了薄带钢冷连轧板形预设定控制模型。分析了带钢宽度、单位宽度轧制力、工作辊直径和工作辊凸度等因素对最佳中间辊横移位置的影响,建立了中间辊横移位置预设定模型;分析了带钢宽度、单位宽度轧制力、中间辊横移位置、带钢入口厚度、带钢凸度、轧辊直径和轧辊凸度等因素对最佳弯辊力的影响,建立了弯辊力预设定模型。
     (4)分析了各种因素对整体补偿板形前馈控制模型补偿系数的影响规律,建立了考虑带钢宽度、中间辊横移位置、轧辊直径和轧辊凸度等因素的补偿系数表格,计算了相应轧制工况下的补偿系数,在实际应用中,根据中间辊横移位置进行线性插值求解。
     (5)建立了采用工作辊弯辊和中间辊弯辊相配合以补偿轧制力变化的最优综合补偿板形前馈控制模型。将实测轧制力变化量转换成带钢宽度方向上轧制压力变化量的分布,根据工作辊弯辊和中间辊弯辊对有载辊缝压力分布的调控效果不同,采用了最优综合控制算法,从而得到了最优的弯辊力前馈修正量。
     (6)建立了基于多变量最优化的板形反馈控制模型和基于二分法的乳化液分段冷却控制模型。将板形误差转换为有载辊缝内压力分布的变化量,充分考虑了各板形调控机构的板形控制能力和相互之间的耦合关系,采用Frank-Wolfe最优化算法求解板形控制目标函数,从而获得了板形调控机构允许控制范围内的最优反馈修正量;基于二分排序法的乳化液分段冷却控制模型,对残余板形误差使用二分法进行降序排列,根据设定的喷嘴开启比例确定每个冷却喷嘴的控制状态。
     (7)进行了工业实验研究,对本文建立的模型板形控制效果进行了验证和分析。工业实验及现场应用结果表明,本文建立的控制模型克服了原模型的不足,提高了板形预设定精度,强化了板形前馈控制作用,改善了板形反馈控制效果,从而获得了良好的带钢板形质量。
     本文的研究内容,针对具体冷连轧机的板形控制模型进行了优化和改进,具有很强的实用性,对于六辊冷连轧机板形控制系统的开发也具有理论指导意义和实际应用价值。
This paper was based on the strip shape optimization project of 1720mm tandem cold rolling mill(TCM) in Lianyuan Iron & Steel Corporation and the 1800mm TCM project of Tangshan Iron & Steel Corporation(TISCO). Flatness control systems of six high TCM have been thoroughly studied. Aiming at the defects of the two flatness control systems, shape preset model of thin strip cold rolling, flatness feedforward control model and flatness feedback control model which base on optimization theory have been built. Good flatness control ability and reliable control stability of these models were proven by industry experiments and online application. The main works are shown as follows:
     (1) Flatness control systems of 1720mm TCM in Lianyuan Iron & Steel Corporation and 1800mm TCM in TISCO have been studied and analyzed. Defects of the two flatness control systems were pointed out.
     (2) Rolls elastic deformation model of six high mill was developed by using modified influence function method. In this model, the effects of work roll edge contact out of the strip width on work roll's load distribution and deformation have been considered in rolling thin strip. Work roll thermal camber has been calculated based on the measured temperature of roll's surface. The total rolls deformation model of six high mill was developed by combining rolls elastic deformation model and work roll thermal camber model. The results of calculated data were in good agreement with the measured value. This verified that the theory model is reliable.
     (3) Flatness control preset model of thin strip was put forward. The relationship between optimum intermediate roll position and strip width, specific rolling force, work roll diameter and work roll crown has been discussed, and the intermediate roll position preset model was set up. The effects of strip width, specific rolling force, intermediate roll position, entry strip thickness, strip crown, roll diameter and roll crown on optimum bending force have been analyzed, and the bending force preset model was built up.
     (4) Effects of main factors on the gains in global flatness feedforward control model were discussed. Multidimensional lookup table that considered strip width, intermediate roll position, roll diameter and roll crown was created after many gain values of difference rolling conditions have been calculated. In practical application, linear interpolation method was employed to give the gain values.
     (5) An optimum flatness feedforward control model was put forward which intergrated work roll bender and intermediate roll bender to eliminate roll load disturbances. The roll load disturbance was transformed to the transverse specific force distribution, different regulate effects on specific force distribution in roll gap of work roll beneder and intermediate roll bender have been considered, and optimum corrections of the bending actuators were calculated by using a global approach.
     (6) A flatness feedback control model base on multivariable optimization theory and an emulsion multizone roll cooling model which using dichotomy method were built up. Flatness error was transformed to the variation of specific force distribution in roll gap, The flatness control cost function was solved by Frank-Wolfe algorithm and then the optimum corrections in flatness control actuators'regulatory range could be got. In this model, the flatness control abilities and effects among the flatness control actuators have been taken into account. In the emulsion multizone roll cooling control model, the cooling sprays control state decided by the sprays open ratio after the residual flatness error has been sorted in descending order by employing dichotomy method.
     (7) Industry experiments were carried out to validate and analyse the flatness control results of these models that have been built up in this paper. The industry experiments and practical application results showed that the precision of shape preset control was enhanced, the flatness control effects of feedforward control and feedback control were improved, and good strip shape was obtained by applying these models.
     The present paper was focused on the optimization of flatness control models for six high TCM. It can provide great help in theory and practical application to the development of flatness control system of six high TCM.
引文
[1]乔军.冷轧带钢的板形控制[J],中国冶金,1997(3):40-43.
    [2]宋加.我国冷轧及涂镀层板带市场及今后建设发展几个问题的探讨[J],上海金属,2007(05):1-9.
    [3]廖砚林.中国冷轧技术的自主创新能力[J],上海金属,2007(05):10-13.
    [4]张树堂,杜梅英,杨启瑞,等.六辊轧机中间辊移动的工艺特性[J],轧钢,1986(06):5-10.
    [5]张树堂,杜梅英,杨启瑞,等.新型六辊冷轧机的设备和工艺特性[J],钢铁,1987(07):23-26.
    [6]于凤仁.六辊轧机结构型式的发展[J],鞍钢技术,1991(2):16-20.
    [7]姜周泰.六辊轧机的特点及其发展动向[J],冶金设备,1988(02):4-11.
    [8]邸洪双,王哲.带有中间辊横移的新型六辊轧机的刚度特性[J],东北大学学报:自然科学版,1999,20(6):637-640.
    [9]Peng Y, Liu H M, Wang D C. Simulation of Type Selection for 6-High Cold Tandem Mill Based on Shape Control Ability[J], Journal of Central South University of Technology (English Edition),2007, 14(2):278-284.
    [10]徐乐江.板带冷轧机板形控制与机型选择[M],北京:冶金工业出版社,2007,209-215.
    [11]林振波.冷带轧机板形判别模型的有限条分析[D],秦皇岛:燕山大学,1993.
    [12]Edwards W J, Spooner P D. Automation of Tandem Mills[M], London:Iron and Steel Institute,1973, 177-212.
    [13]王国栋.板形控制和板形理论[M],北京:冶金工业出版社,1986,225-379.
    [14]Stone M D, Gray R. Theory and Practical Aspects in Crown Control[J], Iron and Steel Engineer,1965, 42(8):73-77.
    [15]王国栋,张树堂.板形方程及其应用[J],钢铁,1981(10):11-17.
    [16]陈杰,钟掘,周鸿章,等.CVC四辊轧机有载辊缝解析模型[J],重型机械,1998(06):42-44.
    [17]陈杰.轧辊弹性变形解析理论研究与应用[D],长沙:中南工业大学,1999.
    [18]Shohet K N, Townsend N A. Roll Bending Methods of Crown Control in Four-high Plate Mills[J], Journal of the Iron and Steel Institue,1968,206(11):1088-1098.
    [20]王国栋,张树堂.轧辊弹性变形和板形理论的研究[J],钢铁研究学报,1983(03):461-470.
    [21]王国栋,张树堂.四辊轧机轧辊弹性变形的矩阵计算法[J],重型机械,1982(08):9-18.
    [22]彭艳.基于条元法的HC冷轧机板形预设定控制理论研究及工业应用[D],秦皇岛:燕山大学,2000.
    [23]魏立群,陆济民.板带宽度对板凸度的影响[J],钢铁研究学报,1995,7(6):20-26.
    [24]魏立群,柳谋渊,郁建伟,等.1420HC轧机辊间压力分布的解析[J],钢铁研究学报,2003,15(6): 21-24.
    [25]魏立群,柳谋渊,经晓蓉,等.1420HC轧机中间辊抽动量对板形的影响[J],上海金属,2003,25(6):38-41.
    [26]魏立群,张杏耀,柳谋渊,等.1420HC轧机板形控制的研究[J],钢铁,2003,38(9):30-34.
    [27]白金兰,刘红,李东辉,等.基于影响函数法的冷轧带钢轧制力计算[J],重型机械科技,2004(3):1-4.
    [28]白金兰,王军生,王国栋,等.六辊轧机辊间压力分布解析[J],东北大学学报:自然科学版,2005,26(2):133-136.
    [29]Wang D D, Tieu A K, D A G, et al. Modeling and Optimization of Threading Process for Shape Control in Tandem Cold Rolling[J], Journal of Materials Processing Technology,2003,140(1-3 SPEC):562-568.
    [30]Liu Y, Lee W H. Mathematical Model for the Thin Strip Cold Rolling and Temper Rolling Process with the Influence Function Method[J], ISIJ International,2005,45(8):1173-1178.
    [31]常安,邸洪双,白金兰,等.影响冷轧边部减薄的因素[J],钢铁,2007(10):51-55.
    [32]Chen X L Z J. A Specialized Finite Element Model for Investigating Controlling Affecting Behavior of Rolls and Strip Flatness[C], The Science and Technology of Flat Rolling,4th International Steel Rolling Conference, Deauville,France:1987,1-7.
    [33]时旭,刘相华,王国栋,等.四辊冷轧机轧辊弯曲和压扁变形的有限元分析[J],东北大学学报:自然科学版,2004,25(10):957-960.
    [34]时旭,刘相华,王国栋,等.弯辊力对带钢凸度影响的有限元分析[J],轧钢,2006,23(3):10-13.
    [35]时旭.薄带钢冷轧过程的弹塑性有限元模拟[D],沈阳:东北大学,2005.
    [36]张清东,孙向明,白剑.六辊CVC轧机辊系变形的有限元分析[J],中国机械工程,2007,18(7):789-792.
    [37]魏娟,杨荃,何安瑞.六辊轧机辊系变形的有限元分析[J],冶金设备,2006(4):5-7.
    [38]Okado M, Arimura T, Fujita F, et al. A New Shape Control Technique for Cold Strip Mills[J], Iron and Steel Engineer,1982,59(6):25-29.
    [39]Ginzburg V B. High-Quality Steel Rolling Theory and Practice[M], New York: Marcel Deker Inc., 1993,591-605.
    [40]Furuya T, Kitashima S, Sato H, et al. New Design 6-h Cold Mill(HC Mill) Solves Shape Problems[J], Iron and Steel Engineer,1979,56(8):40-45.
    [41]Nakanishi T, Sugiyama T. Application of HC Mill in Hot Steel Strip Rolling[J], Hitachi Review,1983, 32(2):59-64.
    [42]安田健一,志田茂.HCミルの形状制御特性[J],塑性と加工,1981,22(244):460-466.
    [43]小林一雄,安田健一.UC-MILLによる形状制御技术[J],日立评论,1988,70(6):81-86.
    [44]秦和宣,芳村泰嗣.高精度形状制御压延机UC-MILL[J],日立评论,1985,67(4):19-24.
    [47]Yasuda K, Narita K, Kobayashi K, et al. Shape Controllability in New 6-High Mill (UC-4 Mill) with Small Diameter Work Rolls[J], ISIJ International,1991,31(6):594-598.
    [48]西英俊,芳村泰嗣,吉本健一,ほか.新型压延机UC-MILLの基本特性[J],塑性と加工,1983,24(268):449-455.
    [49]Bald W, Beisemann G, Feldmann H, et al. Continuously Variable Crown (CVC) Rolling[J], Iron and Steel Engineer,1987,64(3):32-41.
    [50]Bald W, Klamma K. CVC Technology for Cold Rolling Mills-Plant Examples[J], Iron and Steel Engineer,1988,65(5):24-28.
    [51]Klamma K. CVC Technology in Cold Rolling Mills[J], MPT Metallurgical Plant and Technology, 1985,8(3):60-62.
    [52]Anon. UPC Technology Modernises Hot Strip Mills[J], Steel Times International,1989,13(5):34-35.
    [53]Seilinger A, Kainz A. SmartCrown——改善轧机凸度和平直度控制的新系统[J],中国冶金,2003(1):42-44.
    [54]Tsukamoto H, Matsumoto H. Shape and Crown Control Mill-Crossed Roll System.[J], Iron and Steel Engineer,1984,61(10):26-33.
    [55]Nakajima K, Kawamoto T, Hatae S, et al. Basic Characteristics of Pair Cross Mill.[J], Technical Review-Mitsubishi Heavy Industries,1985,22(2):143-148.
    [56]Vazzo N六辊3C技术——冷轧机设计新概念[J],冶金设备,2000(4):42-46.
    [57]Vignolo L, Del Frate G首钢新建达涅利6辊3C轧机冷轧设计创新概念[J],钢铁,2004,39(6):51-54.
    [58]韦富强,李普.首钢6H3C单机架可逆式薄板冷轧机组技术特点[J],首钢科技,2006(1):18-21.
    [59]Bobig P, Fusulan C, Stella F带钢凸度和平直度动态控制的轧辊交叉轧机f2CR[J],钢铁,2007(11):83-86.
    [60]刘玉礼,连家创,段振勇,等.新型四辊DC轧机的研究[J],重型机械,1989(03):51-56.
    [61]Nakajima K, Kikuma T, Matsumoto H, et al. Research on Crown Control for Hot Strip Mills.[J], Nippon Steel Technical Report,1980(15):110-126.
    [62]Kitahama M, Yarita I, Abe H, et al. Profile Control of Hot Rolled Strip by Work Roll Shifting (K-WRS) Mill.[J], Iron and Steel Engineer,1987,64(11):34-43.
    [66]陈先霖.新一代高技术宽带钢轧机的板形控制[J],北京科技大学学报,1997,19(A02):1-5.
    [67]Hara S, Yamada J, Hirooka E, et al. Development of Sumitomo VC Roll System[J], Sumitomo Metals, 1981,33(3):25-42.
    [68]Masui T, Nagai T, Takigawa T, et al. Development of the Sumitomo Variable Crown Roll System with Strip Shape and Profile Control Devices[J], Sumitomo Search,1985(31):21-30.
    [69]Nagai T, Yamada J, Masui T, et al. Strip Shape and Profile Control with Sumitomo Variable Crown Roll System[J], Iron and Steel Engineer,1983,60(1):56-63.
    [70]Yamada J, Ono H, Takigawa T, et al. Development of the Sumitomo VC (Variable Crown) Roll System[J], Iron & Steelmaker,1982,9(6):37-42.
    [71]Holik H, Schultz H J. NIPCO Roll System:Automatic Moisture Profile Control[J], Pulp & Paper Canada,1979,80(4):88-90.
    [72]Lehmann R, Schnyder E, Guettinger H. NIPCO System for the Rolling of Metals[C], Advances in Cold Rolling Technology, Proceedings of the International Conference, Institute of Metals, London, England,1985,122-127.
    [73]Lehmann R, Guettinger H. xperience with NIPCO System in Strip and Foil Rolling[J], Sulzer Technical Review,1987,69(2):38-41.
    [74]Morel M, Bosch M. Shaperoll Actuator—Result of Hot and Cold Mill Applications[J], Iron and Steel Engineer,1992(8):74-77.
    [75]Wang C W, Perret G, Goudet J, et al. Installation of the First DSR for Steel Application at Baosteel. First Results[J], Revue de Metallurgie. Cahiers D'Informations Techniques,1998,95(10):1287-1297.
    [76]尹凤福.铝带箔轧机分段冷却技术及智能化控制模型的研究[D],北京:北京科技大学,2003.
    [77]华建新,金以慧,吴文斌.冷轧板形控制中的精细冷却控制[J],冶金自动化,2002,26(1):41-44.
    [78]孙建林.轧辊的冷却与辊凸度调整初探[J],轻合金加工技术,1994,22(6):20-23.
    [79]Henze M. Stressometer Flatness Transducer for Cold Strip Mills[J], ASEA Journal,1970,43(6): 127-9.
    [80]Henze M, Nilsson H. Stressometer Systems with Microcomputer-based Electronics[J], ASEA Journal, 1977,50(5):109-114.
    [81]Montastier J G, Morel M, Brenot M A. CLECIM Shapemeter Roll[J], Iron and Steel Engineer,1983, 60(12):27-29.
    [82]胡国栋,王琦.磁弹变压器差动输出式冷轧带材板形仪[J],钢铁,1994,29(4):56-59.
    [83]梁勋国,矫志杰,王国栋,等.冷轧板形测量技术概论[J],冶金设备,2006(6):36-39.
    [84]On-line Shape Control for Cold-rolled Strip[J], Metals and Materials,1976:26-29.
    [85]Jouet J. Development of a Shape Model and a Shapemeter for Hot Strip Mills[C], The Science and Technology of Flat Rolling,4th International Steel Rolling Conference, Deauville,France,1987,1-7.
    [86]Pirlet R, Luckers J, Boelens J, et al. A New Shape Measuring Device for Hot Strip Mills[J], Proceedings of the Mineral Waste Utilization Symposium,1980,1:391-398.
    [87]Pirlet R, Mulder J, Adriaensen D, et al. Rometer, A Non-Contact System for Measuring Hot Strip Flatness[C], On-line Inspection of Steel Products, Iron & Steel Institute, Brussels, Belg,1983,79-94.
    [88]Garcia D P, Garcia M, Obeso F, et al. Real-time Flatness Inspection System for Steel Strip Production Lines[J], Real-Time Imaging,1999,5(1):35-47.
    [89]Garcia D F, Del R M, Diaz J L, et al. Flatness Defect Measurement System for Steel Industry on a Real-time Linear-image Processor[C], Proceedings of IEEE Systems Man and Cybernetics Conference, Le Touquet, France: IEEE,1993,331-336.
    [90]Matsui K, Tachibana H, Yamamoto A. Shape Meter for Hot Strip Mill[J], Sumitomo Search 1989(38):105-114.
    [91]杨溪林,邱忠义,金国藩.激光板形测量技术现状及发展[J],冶金自动化,1998(01):29-33.
    [92]日本钢铁协会编,王国栋,吴国良译.板带轧制理论与实践[M],北京:中国铁道出版社,1990,346-347.
    [93]秦政.新型冷轧带钢板型仪[J],金属世界,2003(5):13-16.
    [94]丁修堃.轧制过程自动化[M],北京:冶金工业出版社,2005,206-207.
    [95]王国栋.HC轧机——板形技术讲座之五[J],鞍钢技术,1982(09):476-481.
    [96]Kajiw T,沈华枢.UC轧机及轧辊串移技术[J],国外钢铁,1992(2):59-63.
    [97]周晓敏,张清东,王长松,等.UCMW轧机的边缘降控制性能和影响因素分析[J],北京科技大学学报,2007,29(4):417-420.
    [98]邸洪双.UC轧机板形控制特性及控制系统的研究[D],沈阳:东北大学,1996.
    [99]Fujino N, Sugiyama T, Shimizu I. Recent Trends for Rolling Equipment[J], Hitachi Review,1990, 39(4):177-182.
    [100]刘玉礼,王平.400HC轧机板形设定控制数学模型[J],钢铁,1998,33(7):28-32.
    [101]刘刚.四机架六辊HC冷连轧机轧制模型分析[J],轧钢,1997(2):31-35.
    [102]彭艳,刘宏民.基于机理模型的HC冷轧机板形预设定控制模型的工业应用[C],2001中国钢铁年会论文集.北京:冶金工业出版社,96-99.
    [103]胡建平.六辊冷轧机轧辊横移和弯辊力设定策略分析[J],钢铁技术,2006(1):25-28.
    [104]Remn-Min G. Development of A Mathematical Model for Strip Thickness Profile[J], Iron and Steel Engineer,1990(9):32-39.
    [105]张清东,徐乐江.CVC四辊冷轧机板形预设定控制研究[J],钢铁,1997,32(10):29-33.
    [106]顾云舟,张杰.冷连轧机组弯辊力自动设定的实现[J],北京科技大学学报,2000,22(2):174-176.
    [107]白金兰.单机架可逆冷轧机板形控制预设定理论研究[D],沈阳:东北大学,2006.
    [108]常安,邸洪双,佟强,等.BP神经网络的弯辊力预设定优化[J],轧钢,2006,23(5):55-57.
    [109]Kern P, Mehlich F, Schumacher J. Model-Supported Flatness Control Systems for Cold Rolling Mills[J], Iron and Steel Engineer,1999,76(8):38-45.
    [110]Sivilotti O G, Davies W E, Henze M, et al. ASEA-ALCAN AFC(Automatic Flatness Control) System for Cold Rolling Flat Strip[J], Iron and Steel Engineer,1973,50(6):83-90.
    [111]Rosen D,刘贵.热轧带材轧机和冷轧带材轧机的CVC技术——板形控制的方法和模型[J],国外电气自动化,1992,13(4):11-18.
    [112]Egan S J, Fryer C A, Lubomirski M S, et al. Flatness Modeling and Control for a Continuous Tandem Cold Mill[J], Iron and Steel Engineer,1996,73(3):38-41.
    [113]顾云舟.宽带钢热连轧机板形前馈与反馈建模及控制策略的研究[D],北京科技大学,2002.
    [114]钟恬,何安瑞,杨荃,等.热连轧自动板形控制系统的研究与应用[J],冶金自动化,2007,31(4):28-31.
    [115]Nilsson A. Automatic Flatness Control System for Cold Rolling Mills[J], Iron and Steel Engineer, 1979,56(6):55-60.
    [116]Imai I, Hirai S, Furuya T, et al. New 6-High Mill and Automatic Shape Control System in Cold Rolling[C], Proceedings of the Mineral Waste Utilization Symposium, Tokyo, Japan: 1980,807-818.
    [117]Fujita F, Kuwamoto H, Kizaki K, et al. Development of a New Type of Cold Rolling Mill for Sheet Products[J], Iron and Steel Engineer,1985,62(6):41-48.
    [118]华建新,周泽雁.冷轧带钢板形缺陷的多项式回归及数学模型[J],钢铁,1992,27(3):27-31.
    [120]Fukuhara A, Kaji T, Fukuyama G, et al. Development of Shape Control System for Cluster-Type Cold Reduction Mill[J], Iron and Steel Engineer,1991,68(10):34-40.
    [121]Suzuki S, Okura K, Ikemoto Y. Strip Shape Control System of Mitsubishi CR Mill[C], Proceedings of 34th Annual Meeting of the IEEE Industry Applications, Phoenix, AZ, USA:IEEE,1999, 565-570.
    [122]Okamura Y, Ichikawa T. Mathematical Models and Flatness Control of an Aluminum Foil Rolling Mill[C], Proceedings of the 41st SICE Annual Conference, Osaka, Japan: Soc. Instrument & Control Eng. (SICE),2002,2632-2635.
    [123]Saito T, Ohnishi T, Komatsu T, et al. Automatic Flatness Control System in Tandem Cold Rolling Mill for Ultra-Thin Gauge Strip[J], Kawasaki Steel Technical Report,1991(24):41-46.
    [124]邸洪双,张晓峰.冷轧薄带板形检测信号正交多项式分解及数学模型[J],钢铁,1995,30(9):33-36.
    [125]Jung J Y, Im Y T, Leekwang H. Fuzzy Approach to Shape Control in Cold Rolling of Steel Strip[J], Electronics Letters,1994,30(21):1807-1808.
    [126]Jung J Y, Im Y T, Lee-Kwang H. Development of Fuzzy Control Algorithm for Shape Control in Cold Rolling[J], Journal of Materials Processing Technology,1995,48(1-4):187-195.
    [127]Yonegi H, Daekeun R. Application of Fuzzy Logic for Automatic Shape Control in Stainless Steel Rolling Process[C], Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference, Vancouver, BC, Canada: IEEE,2001,251-256.
    [128]王国栋,刘相华.金属轧制过程人工智能优化[M],北京:冶金工业出版社,2000,197-201.
    [129]王哲.UC轧机板形先进控制系统研究[D],沈阳:东北大学,2000.
    [130]杨俊.UC轧机板形控制算法研究与设计[D],沈阳:东北大学,1997.
    [131]Nappez C, Boulot S, Mcdermott R C. Control of Strip Flatness in Cold Rolling:A Global Approach[J], Iron and Steel Engineer,1997,74(4):42-45.
    [132]蔡宣三.最优化与最优控制[M],北京:清华大学出版社,1982,18-21.
    [133]Hasegawa A, Taki F. Development of Fuzzy Set Theory-based Shape Control System for Cold Strip Mill[J], Nippon Steel Technical Report,1991(49):59-62.
    [138]片山恭纪,中岛正明.新しい制御手法こ压延への适用[J],铁と钢,1993,79(3):56-62.
    [139]Jong-Yeob J, Yong-Taek I, Hyung L K. Fuzzy-control Simulation of Cross-sectional Shape in Six-high Cold-rolling Mills[J], Journal of Materials Processing Technology,1996,62(1-3):61-69.
    [140]Jung J Y, Im Y T. Simulation of Fuzzy Shape Control for Cold-rolled Strip with Randomly Irregular Strip Shape[J], Journal of Materials Processing Technology,1997,63(1-3):248-253.
    [141]张清东,陈先霖,徐金梧.板形缺陷模式识别方法的研究[J],1996(S1).
    [142]Junfei Q, Ge G, Tianyou C, et al. A New Method of Flatness Control in Cold Rolling Process[C], Proceedings of the 1998 American Control Conference (ACC), Philadelphia, PA, USA:American Automatic Control Council,1998,3828-3832.
    [143]贾春玉.高精度宽带钢冷轧机板形模糊神经控制的研究[D],秦皇岛:燕山大学,2006.
    [144]冯晓华,马坚,郑岗.基于模糊距离的RBF神经网络板形模式识别[J],西安工业大学学报,2006(05):427-430.
    [145]郑德忠,王志勇,闫涛.基于混沌优化的板形信号模式识别的研究[J],计量学报,2007(04):375-378.
    [146]小西正躬.塑性加工の知能化技术[J],塑性と加工,1993,34(387):337-342.
    [148]Postlethwaite I, Atack P A, Robinson I S. The Improved Control for an Aluminium Hot Reversing Mill Using the Combination of Adaptive Process Models and an Expert System[J], Journal of Materials Processing Technology,1996,60(1-4):393-398.
    [149]张清东.宽带冷轧机板形自动控制系统的研究[D],北京:北京科技大学,1994.
    [150]乔俊飞.UC轧机板形建模与控制方法的研究[D],沈阳:东北大学,1998.
    [151]张秀玲.冷带轧机板形智能识别与智能控制研究[D],秦皇岛:燕山大学,2002.
    [152]王粉花,孙一康,王新平.基于免疫算法的模糊神经网络在板厚板形控制中的应用[J],信息与控制,2004,33(4):504-507.
    [153]Liu J, Chen Y. The Application of Neural Network Based on Particle Swarm Optimization in Pattern Recognition of Flatness Signal[C], The 6th World Congress on Intelligent Control and Automation, Dalian, China: Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ 08855-1331, United States,2006,6592-6595.
    [154]Raju D V, Iqbal A, Trivedi A K, et al. Prediction of Shape Defects Over Length of Cold Rolled Sheet Using Artificial Neural Networks[J], Ironmaking & amp; Steelmaking,2007,34(2):166-176.
    [155]王哲,张晓峰,等.六辊可逆轧机板形神经网络广义预测控制系统[J],东北大学学报:自然科学版,2001,22(3):331-334.
    [156]Wang Z, Di H. Generalized Predictive Control of Flatness Using BP Neural Network[C], Beijing, IFAC 14th World Congress:1999,469-473.
    [157]Wang Z, Di H. Applications of Self-adaptive Strip Shape Control for UC Mill Based on Neural Network Prediction Model.[C], Proceeding of 7th International Steel Rolling Conference, Chiba, Japan,1998,60-64.
    [158]刘建昌,顾树生.板形最优综合控制算法[J],东北大学学报:自然科学版,1996,17(3):248-251.
    [159]华建新,吴文彬,等.基于动态板形辊的冷轧板形控制新技术[J],钢铁,2001,36(1):33-37.
    [160]梁勋国,徐建忠,王国栋,等.冷轧板形的闭环反馈控制原理及应用效果[J],冶金自动化,2006,30(6):36-39.
    [161]梁勋国,矫志杰,王国栋,等.冷连轧机板形控制原理的研究[J],重型机械,2007(05):22-24.
    [162]徐建忠,张凤琴,龚殿尧,等.四辊轧机轧辊弹性变形解析模块的开发[J],轧钢,2003,20(2):8-11.
    [163]刘相华,胡贤磊,杜林秀.轧制参数计算模型及其应用[M],北京:化学工业出版社,2007,74-76.
    [164]刘宏民.三维轧制理论及其应用——模拟轧制过程的条元法[M],北京:科学出版社,1999,4-11.
    [165]王廷溥,齐克敏.金属塑性加工学——轧制理论与工艺[M],北京:冶金工业出版社,2001,32-33.
    [166]Jiang Z Y, Zhu H T, Wei D B, et al. An Approach to Analyse the Special Rolling of Thin Strip[J], Journal of Materials Processing Technology,2006,177(1-3):130-133.
    [167]Jiang Z Y, Zhu H T, Tieu A K, et al. Modelling of Work Roll Edge Contact in Thin Strip Rolling[J], Journal of Materials Processing Technology,2004,155-156:1280-5.
    [168]Jiang Z Y, Zhu H T, Tieu A K. Mechanics of Roll Edge Contact in Cold Rolling of Thin Strip[J], International Journal of Mechanical Sciences,2006,48(7):697-706.
    [169]Jiang Z Y, Zhu H T, Tieu A K. Effect of Rolling Parameters on Cold Rolling of Thin Strip During Work Roll Edge Contact[J], Journal of Materials Processing Technology,2003,140(1-3 SPEC): 535-541.
    [170]Jiang Z Y, Zhu H T, Tieu A K. Study of Work Roll Edge Contact in Asymmetrical Rolling by Modified Influence Function Method[J], Journal of Materials Processing Technology,2005, 162-163(SPEC ISS):512-518.
    [171]张铁,闫家斌.数值分析[M],北京:冶金工业出版社,2001,89-92.
    [172]Deshpande A S, Murthy K S. Computer Analysis for the Prediction of a Strip Profile in Cold Rolling[J], Journal of Materials Processing Technology,1997,63(1-3):712-717.
    [173]Hiruta T, Nakata N, Kitahama M, et al. Influence of Rolling Mill Type on Rigidity Characteristics in Hot and Cold Strip Rolling[J], Iron and Steel Engineer,1996,73(3):32-37.
    [174]张秀玲,刘宏民.板形模式识别的GA-BP模型和改进的最小二乘法[J],钢铁,2003(10):29-34.
    [175]宋巨龙,钱富才,彭刚.利用平面上的黄金分割法求全局最优解[J],数学的实践与认识,2004,34(11):113-117.
    [176]Haraguchi S, Kajiwara T, Hata K. Shape of Strip Steel in Cold Rolling Process[J], Bull JSME,1971, 14(67):104-112.
    [177]黄敏.小波神经网络及其在板形板厚控制系统中的应用研究[D],东北大学,2004.
    [178]王粉花.二机架可逆冷连轧板厚板形综合控制系统的研究[D],北京科技大学,2003.
    [179]王莉.冷连轧板形板厚智能型自适应解耦控制系统的研究[D],北京科技大学,2002.
    [180]徐建忠,龚殿尧,刘相华,等.单位宽度轧制力对热轧带钢凸度的影响规律[J],东北大学学报:自然科学版,2003,24(3):280-283.
    [181]龚殿尧.带钢凸度影响率模型建立及模拟软件开发[D],沈阳:东北大学,2003.
    [182]茹铮,潘显华,董德元,等.沿板宽方向轧制压力分布规律的实验测定[J],北京科技大学学报,1983(02):182-187.
    [183]白金兰,张睿,刘红,等.冷轧带钢轧制压力分布计算[J],沈阳航空工业学院学报,2004,21(4):26-28.
    [184]Zipf M E, Elwell T G, Godwin C K, et al. A Cost-Effective Automatic Shape/Flatness Control System[J], AISE Steel Technology,2003,80(11-12):48-55.
    [185]黄庆学,梁爱生.高精度轧制技术[M],北京:冶金工业出版社,2004,65-71.
    [186]林振波,连家创.ABB板形测量和控制系统及板形标准曲线[J],轧钢,1994(4):20-24.
    [187]白剑,张清东,常铁柱,等.1420冷连轧机组第1机架板形控制目标曲线研究[J],钢铁,2007,42(10):56-59.
    [188]贾生晖.变凸度冷连轧机辊形及板形的研究[D],北京:北京科技大学,2005.
    [189]盛昭瀚,曹忻.最优化方法基本教程[M],东南大学出版社,1990,237-244.
    [190]薛嘉庆.最优化原理与方法[M],北京:冶金工业出版社,2001,177-213.
    [191]杨景明,连家创,王洪瑞,方一鸣.铝带冷轧机板形冷却控制系统剖析[J],1995.
    [192]华建新,王贞详.全连续式冷连轧机过程控制[M],北京:冶金工业出版社,2000,149-150.
    [193]王国栋.冷轧板形的模糊控制[J],轧钢,1994(05):55-57.
    [194]王军.模糊逻辑在冷轧板形控制中的应用[J],宝钢技术,2002(6):9-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700