铁道客车转向架焊接构架疲劳可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国铁道客车转向架构架均采用钢焊接结构,这样可大大降低车辆结构的白重。但是,运行速度的提高、载荷的增大、频率范围的扩大,尤其是复杂的焊接接头形式使得转向架构架的承载状况变得十分恶劣。由于焊接接头存在的焊接缺欠,如几何不平顺、空洞、夹杂、残余应力及变形、热影响区母体材料性质的变化等,导致焊接接头是结构失效的主要区域。在以往的铁道车辆运行中,焊接构架陆续暴露出许多疲劳可靠性方面的问题,随着列车速度的不断提高,对其安全可靠性提出了更高的要求。本文将以铁道客车转向架焊接构架作为研究对象,对其疲劳可靠性开展较深入的研究,主要开展以下的研究工作:
     (1)从设计-制造一体化的角度,研究构架焊接缺欠的形成机理。采用数值模拟的方法对T型焊接接头的焊接变形进行了热-弹塑性法和固有应变法对比分析,并应用固有应变法对构架焊接变形进行了数值模拟。提出了消除焊接缺欠的工艺措施,以确保构架的疲劳强度可靠性。
     (2)基于多轴疲劳强度的基本理论,对转向架构架在有限元分析中的建模方法和标准载荷下的应力状态进行了分析,基于3种将多轴应力转化为单轴应力的方法(最大主应力法、Mises等效平均应力法和Sines平均主应力法),分别应用ERRI B 12/RP 17和JIS E4207推荐的焊接结构Goodman曲线对构架进行了疲劳强度对比分析。得出结论认为,三种转化方法中,最大主应力方法适合于构架的多轴疲劳强度分析。
     (3)运用多刚-柔耦合系统动力学方法,首先在有限元分析软件中建立了转向架构架的柔性体模型,然后在多体动力学软件中建立完整的车辆系统动力学模型,考虑构架的柔性,其余主要部件如车体、轮对及轴箱等仍作为刚体处理。通过时域积分,计算出构架的振动响应。获得构架载荷谱的基础上,本文探讨了几种应力谱的分析方法,对瞬态动力学分析法和多项式耦合方法进行对比,通过随机抽取的载荷样本历程将载荷谱转换成应力谱,并将转换的应力谱与瞬态计算出来的应力时间历程作对比,分析了其误差。最后采用多项式耦合方法得到了构架疲劳寿命评估的应力历程样本。基于WAFO雨流技术和Miner损伤理论,以及ⅡW推荐的焊接接头的名义应力法S-N曲线和BS7910标准的裂纹扩展率曲线,对构架的疲劳寿命和裂纹扩展寿命进行了分析,其寿命满足设计要求。
     (4)基于结构动态设计的思想,应用模态分析的方法研究由于振动引起的疲劳强度问题是目前广泛采用的研究手段。采用模态叠加法,将构架模态对其疲劳强度的影响进行了分析,在此基础上可以改进构架的动态性能,提高构架的疲劳可靠性。
     (5)铁道车辆转向架构架的可靠性受诸多因素的影响,找到主要因素是保证设计高可靠性构架的前提。本文运用概率分析方法,建立了某转向架构架的参数化有限元模型,选取构架的材料属性、几何参数和载荷等作为随机变量,通过统计分析得到其分布参数;以构架母材和焊缝部位疲劳薄弱环节的最大主应力与其许用疲劳强度建立失效状态函数;基于蒙特卡罗数值模拟方法,计算了转向架构架的可靠性参数灵敏度,为构架的优化设计提供参考。
     (6)提出利用加速寿命试验方法解决高速列车关键部件的可靠性试验成本和时间问题,并用子系统的寿命预测整体系统的寿命,用构架试验验证。通过焊接接头的失效模型估计构架的疲劳寿命,对构架和几个焊接接头进行了疲劳试验,推断了构架疲劳试验的加速系数,计算了试验后的损伤值和寿命。
In order to decrease the weight of railway passenger vehicles, the welded steel structures are used for the bogies in our country. However,with the raising of operation speed,and increasing of loads and frequency ranges, and especially the complicated types of weld joints, the load conditions of railway bogies become even worse. Because of the exsitence of weld imperfections of weld joints, such as geometry irregularity, porosity, welding cracks, residual stress, deformation and the changing of material characteristic in heat affected zones, the weld joints are turned to be the main areas of structure failure. In the previous vehicle operation, the fatigue problems of welded bogies have occurred as the increasing of speed.Therefore, higher safety and reliability of bogies in operation are required. In this paper, the fatigue relability of welded bogies are carefully studied and the work is as follows:
     (1) From the viewpoint of integration of design and manufacture, the formation mechanisms of weld imperfection have been studied. The thermo-elastic-plastic FEM and inherent strain methods have been applied to predict the welding deformation of T-joint, also the comparative analysis between two methods has been carried out. Meanwhile, the bogie welding deformation is simulatied by using the inherent strain method. To assure the bogie fatigue strength and relabiltiy, the measures of eliminating welding imperfection are proposed.
     (2) Based on the theory of multi-axial fatigue, the bogie stress states under standard loads are analyzed. Meanwhile, three methods (maximum principal stress, Mises equivalent average stress and Sines average principal stress) are used to transform the multi-axial stress to uniaxial stress. The fatigue strength is evaluated and compared based on the Goodman curves recommended in ERRI B 12/RP 17 and JIS E4207. It is concluded that the method of maximum principal stress is suitable to analyze the multiaxial fatigue strength of bogie frame.
     (3) Rigid-flexible coupling multi-body dynamics has been used to build the bogie frame model of a passenger car. Firstly the flexible model of bogie is built in FEM software, and then the entire vehicle dynamics model is established in multi-body dynamics software. In the rigid-flexible coupling model, the bogie frame is built as flexible body, and other parts are taken as rigid. The dynamical response of bogie is obtained by time integation calculation. Based on the load time history of bogie, several methods which convert the load spectrum to stress spectrum are investigated. Meanwhile, the stress results of transient kinetic analysis and polynomial fitting method are compared, and also their deviation is analzed. At last the polynomial fitting method is selected to calculate the stress spectrum of fatigue life. Based on WAFO rain flow skill, Miner damage theory, nomial stress S-N curve of welding joint recommended by IIW and crack propagation curve of BS7910 standard, the fatigue life and crack propagation life of bogie frame are analyzed. The results show that the life of bogie can satisfy the requirement of design.
     (4) Based on the dynamic design methodology, the modal analysis method is used to research the fatigue strength problems which caused by the vibration of structure. The modal superpostion method is applied to analyze the influence of structure modal on the fatigue life. According to the analysis, the dynamic performance and fatigue relablity of bogie can be improved.
     (5) The reliability of railway vehicle bogie is affected by lots of factors. Therefore, finding out the main factor is very important to assure the reliability of bogie. In this paper, the parametric finite element model of a bogie frame is established by using the probabilistic analysis method.The material properties, geometric parameters and loads of the bogie frames are taken as the random variables and their distributed parameter values are obtained through statistical analysis. The failure state functions of the fatigue strength reliability are established by the allowed fatigue strength value and the maximum principal stress of the parent material or weld in fatigue weak location of welded bogie frame. The reliability and parametic sensitivities of random variables are computed by Monte Carlo method, which provides the reference for the bogie design.
     (6) The accelerated life testing methods are proposed to solve the problems of large cost and long testing period for high-speed train reliability tests. Meanwhile, the whole system life is predicted by sub-system which is verified by bogie frame experiments. In addition, the fatigue life of bogie frame is predicted by failure model of welded joints. Finally the fatigue experiments of bogie and some welded joints are carried out, and the accleration factor of fatigue experiment is calculated.
引文
[1]钱立新.世界高速列车技术的最新进展[J].中国铁道科学,2003,24(04):1-11.
    [2]董锡明.近代高速列车技术进展[J].铁道机车车辆,2006,26(05):1-11.
    [3]孙永福.高速铁路:成功与挑战—记第四届世界高速铁路大会[J].中国铁路,2003.8:11-14
    [4]钱立新.速度350km·h-1等级世界高速列车技术发展综述[J].中国铁道科学,2007,28(04):66-72.
    [5]金学松,温泽峰,张卫华,曾京,周仲荣,刘启跃.世界铁路发展状况及其关键力学问题-全国结构工程学术会议特邀报告[J].工程力学,2004,21(S1)90-104.
    [6]金学松,郭俊,肖新标,温泽峰,周仲荣.高速列车安全运行研究的关键科学问题[J].工程力学,2009,26(S2):8-22.
    [7]Weihua Zhang, Pingbo Wu, Xuejie Wu, Jing Zeng. An Investigation into Structural Failures of Chinese High-Speed Trains [J]. Engineering Failure Analysis,13(2006):427-441.
    [8]陈伯蠡.焊接工程缺欠分析与对策(第2版)[M].北京:机械工业出版社2006.
    [9]T. Warren Liao. Classification of Weld Flaws with Imbalanced Class Data [J]. Expert Systems with Applications,35(2008):1041-1052.
    [10]王建平.基于BS7910标准含缺陷结构评定软件开发[D].天津:天津大学,2006
    [11]BS 7910. Guide on Methods for Assessing the Acceptability of Flaws in Structures[S]. British Standards Institution,1999.
    [12]GB/T 19624-2004.在用含缺陷压力容器安全评定[S].中华人民共和国国家标准,2005.
    [13]田锡唐.焊接结构[M].北京:机械工业出版社,1981.
    [14]鹿安理.焊接过程仿真领域的若干关键技术问题及其初步研究[J].北京:中国机械工程.2000,11(2):201-205
    [15]汪建华.焊接结构三维热变形的有限元模拟[J].上海交通大学学报,1994,28(6):59-65.
    [16]汪建华,戚新海,钟小敏.三维瞬态焊接温度场的有限元模拟[J].上海交通大学学报,1999,30(3):120-125.
    [17]毕艳霞.T型接头焊接温度场与应力场的数值模拟[D].浙江:浙江大学2007.
    [18]S. Brown, H. Song. Implications of Three-Dimensional Numerical Simulation of Welding of Large Structures [J]. Welding Journal,1992,71:55-62.
    [19]汪建华.焊接数值模拟技术及其应用[M].上海:上海交通大学出版社,2003.
    [20]Dean Deng, Hidekazu Murakawa, Wei Liang. Numerical Simulation of Welding Distortion in Large Structures [J]. Computer Methods in Applied Mechanics Engineering,2007,196:4613-4627.
    [21]Dean Deng, Wei Liang, Hidekazu Murakawa. Determination of Welding Deformation in Fillet-Welded Joint by Means of Numerical Simulation and Comparison with Experimental Measurements [J]. Journal of Materials Processing Technology,2007,183:219-225.
    [22]D.拉达伊.焊接热效应-温度场·残余应力·变形[M].能第京等译.北京:机械工业出版社,1997.189-205.
    [23]Dean Deng, Hidekazu Murakawa. FEM prediction of Buckling Distortion Induced by Welding in Thin Plate Panel Structures [J]. Computational Materials Science,2008,43:591-607.
    [24]崔晓芳,马君,兆文忠.高速动力车转向架构架焊接变形的数值分析研究[J].铁道学报,2004,26(3):31-35.
    [25]Yaohui Lu, Pingbo Wu, Jing Zeng, Xingwen Wu. Numerical Simulation of Welding Distortion Using Shrinkage Force Approach and Application [J]. Advanced Materials Research,2010,129-131:867-871.
    [26]A.Bachorski, M.J.Painterl, A.J.Smailes, M.A.Wahab. Finite-element Prediction of Distortion during Gas Metal Arc Welding Using the Shrinkage Volume Approach [J]. Journal of Materials Processing Technology,1999, 92-93:405-409.
    [27]蔡志鹏.大型结构焊接变形数值模拟的研究与应用[D].清华大学,2001
    [28]上田幸雄,村川英一,麻宁绪.焊接变形和残余应力的数值计算方法与程序[M].罗宇,王江超译.成都:四川大学出版社,2008.
    [29]Dean Deng, Hidekazu Murakawa. Prediction of Welding Distortion and Residual Stress in a Thin Plate Butt-Welded Joint [J]. Computational Materials Science,2008,43:353-365.
    [30]Rui Wang, Jianxun Zhang, Hisashi Serizawa, Hidekazu Murakawa. Study of Welding Inherent Deformations in Thin Plates Based on Finite Element Analysis Using Interactive Substructure Method [J]. Materials and Design, 2009,30:3474-3481.
    [31]Junmei Chen, Hao Lu, Jianhua Wang, Weixin Chen, Dajun Hao. Prediction of Welding Deformation of Underframe [J]. Journal of Shanghai Jiaotong University (Sicence),2004, E-9(01):10-14.
    [32]汪建华,陆皓,魏良武.固有应变有限元法预测焊接变形理论及其应用[J]. 焊接学报,2002,23(6):36-40.
    [33]徐琳.角焊缝角变形数值预测方法研究[D].武汉:武汉理工大学,2007.
    [34]R.K. Luo, B.L. Gabbitas, B.V. Brickle. Fatigue Life Evaluation of a Railway Vehicle Bogie Using an Integration Dynamic Simulation [J]. Proc Instn Mech Engrs Part F:Journal of Rail and Rapid Transit,1994,208:123-132.
    [35]Stefan Dietz, Helmuth Netter, Delf Sachau. Fatigue Life Prediction of a Railway Bogie under Dynamic Loads through Simulation [J]. Vehicle System Dynamics,1998,29:385-402.
    [36]K. Ramji, V.K.Goel, A.S.O.Rao, K.Naidu. Dynamic Behaviour of Railway Coach and Bogie Frame using Finite Element Analysis [J]. Journal of the Institution of Engineers (India). Mechanical Engineering Division,2007, 87(4):7-17.
    [37]Hiromichi Ishizuka. Strength and Inspection of Bogie Frames and Axles [J]. RTRI REPORT,1999,13(10):7-12.
    [38]You-Min Huang, Tsung-Shou Wang. Two-axle Bogie Design for Electrical Multiple Unit:Part 1:Fininte Element Analysis of Bogie Frame Fatigue Strength [J]. Int. J. of Materials and Product Technology,1999,14(1):74-101.
    [39]You-Min Huang, Tsung-Shou Wang. Two-axle Bogie Design for Electrical Multiple Unit:Part 2:Bogie Frame Fatigue Test [J]. Int. J. of Materials and Product Technology,1999,14(1):102-122.
    [40]Jung-Seok Kim. Fatigue Assessment Of Tilting Bogie Frame for Korean Tilting Train:Analysis and Static Tests [J]. Engineering Failure Analysis, 2006,13(8):1326-1337.
    [41]孟广伟,王成国,刘敬辉,原亮明.用虚拟疲劳样机技术分析转8A型转向架侧架的疲劳寿命[J].中国铁道科学,2002,23(04):8-11.
    [42]卢耀辉,曾京,邬平波.铁道货车转8A侧架可靠性疲劳寿命预测[J].大连交通大学学报2008,29(5):34-39.
    [43]刘志明.随机载荷下焊接构架疲劳寿命及可靠性研究[D].北京:北方交通大学,2001.
    [44]阳光武.机车车辆零部件的疲劳寿命预测仿真[D].成都:西南交通大学,2005.
    [45]缪炳荣.基于多体动力学和有限元法的机车车体结构疲劳仿真研究[D].成都:西南交通大学,2007.
    [46]徐倩,谢基龙,缪龙秀,郑明军,姜岩.基于单轴损伤的货车钩尾框多轴疲劳寿命分析[J].铁道学报,2002,24(01):19-22.
    [47]虞丽娟,李元君,沈钢.机车构件疲劳寿命仿真分析[J].铁道学报1998,20(03):120-126.
    [48]Limin Zhang. An Experimental Study on Bogie Frame of a High Speed Electrical Locomotive [J].Journal of Southwest Jiaotong University,2002, 10(2):167-174.
    [49]D.拉达伊.焊接结构疲劳强度[M].郑朝云,张式程译.北京:机械工业出版社,1994.
    [50]D. Radaj, C.M. Sonsino, W. Fricke. Recent Developments in Local Concepts of Fatigue Assessment of Welded Joints [J]. International Journal of Fatigue, 2009,31(1):2-11.
    [51]A.F. Hobbacher. The New IIW Recommendations for Fatigue Assessment of Welded Joints and Components-A Comprehensive Code Recently Updated [J]. International Journal of Fatigue,2009,31(1):50-58.
    [52]International Institute of Welding. Fatigue Design of Welded Joints and Components (IIW Docs XIII-31539-396/XV-3845-396) [S]. Cambridge: Abington Publishing,1996.
    [53]BS 7608. Code of Practice for Fatigue Design and Assessment of Steel Structures [S]. British Standards Institution,1993.
    [54]E.J. Niemi, G.B. Marquis. Structural Hot Spot Stress Method for Fatigue Analysis of Welded Components [J]. Metal Structures,2003:39-44.
    [55]Shahid M Malik. Fatigue Life Assessment of Welded Joints Based on the Decomposition of the Structural Hot Spot Stress [D]. Canada, University of Waterloo,2006.
    [56]王忠.基于热点应力法的转向架关键部件疲劳寿命研究[D].成都:西南交通大学,2006
    [57]王斌杰.高速列车结构热点应力疲劳评定方法及应用研究[D].北京:北京交通大学,2008.
    [58]霍立兴.焊接结构的断裂行为及评定[M].北京:机械工业出版社,2000.
    [59]Efren Ayala-Uraga, Torgeir Moan. Fatigue Reliability-Based Assessment of Welded Joints Applying Consistent Fracture Mechanics Formulations [J]. International Journal of Fatigue,2007,29(3):444-456.
    [60]A. Fjeldstad, A. Wormsen, G. Harkegard. Simulation of Fatigue Crack Growth in Components with Random Defects [J]. Engineering Fracture Mechanics,2008,75(5):1184-1203.
    [61]M.K. Chryssanthopoulos, T.D. Righiniotis. Fatigue Reliability of Welded Steel Structures [J]. Journal of Constructional Steel Research,2006,6(11): 1199-1209.
    [62]B. Atzori, P. Lazzarin, G. Meneghetti, M. Ricotta. Fatigue Design of Complex Welded Structures [J]. International Journal of Fatigue,2009, 31(1):59-69.
    [63]Uwe Zerbst, Katrin Madler, Hartmut Hintze. Fracture Mechanics in Railway Applications—an Overview [J]. Engineering Fracture Mechanics,2005, 72(2):163-194.
    [64]C.M. Sonsino. Structural Durability of Cast Aluminium Gearbox Housings of Underground Railway Vehicles under Variable Amplitude Loading [J]. International Journal of Fatigue,2005,27(8):944-953.
    [65]C.M. Sonsino. Fatigue Testing under Variable Amplitude Loading [J]. International Journal of Fatigue,2007,29(6):1080-1089.
    [66]A.E.Nolting, P.R.Underhill, D.L.DuQuesnay. Variable Amplitude Fatigue of Bonded Aluminum Joints [J]. International Journal of Fatigue,2008,30(1): 178-187.
    [67]Jung-Seok Kim, Nam-Po Kim. Evaluation of Structural Safety of a Tilting Bolsters [J]. Engineering Failure Analysis,2007,14(1):63-72.
    [68]Jung-Seok Kim, Jong-Cheol Jeong, Sang-Jin Lee. Numerical and Experimental Studies on the Deformational Behavior a Composite Train Carbody of the Korean Tilting Train [J]. Composite Structures,2007,81(2): 168-175.
    [69]Jung-Seok Kim, Sang-Jin Lee, Kwang-Bok Shin. Manufacturing and Structural Safety Evaluation of a Composite Train Carbody [J]. Composite Structures,2007,78(4):468-476.
    [70]M. Luke, I. Varfolomeev, K. Lutkepohl, A. Esderts. Fracture Mechanics Assessment of Railway Axles:Experimental Characterization and Computation [J]. Engineering Failure Analysis,2010,17(3):617-623.
    [71]L. Molent, R. Jones, S. Barter, S. Pitt. Recent Developments in Fatigue Crack Growth Assessment [J]. International Journal of Fatigue,2006,28(12): 1759-1768.
    [72]郝鲁波.客车模态计算与试验研究[D].大连:大连理工大学,2005.
    [73]姚起杭,姚军.工程结构的振动疲劳问题[J].应用力学学报,2006,23(01):12-17.
    [74]孙伟.结构振动疲劳寿命估算方法研究[D].南京:南京航空航天大学,2005.
    [75]Z. A. Hanna. Vibration Fatigue Assessment Finite Element Analysis and Test Correlation [D]. University of Windsor (Canada),2005.
    [76]姚起杭,姚军.结构振动疲劳问题的特点与分析方法[J].机械科学与技术,2000,19(S1):56-58.
    [77]易太连,吴杰长,刁爱民,欧阳光耀.基于有限元和FE-SAFE的柴油机排烟管振动下的疲劳寿命[J].内燃机工程,2008,29(3):76-80.
    [78]朴明伟,方吉,赵钦旭,兆文忠.基于刚柔耦合仿真的集装箱车体振动疲劳分析[J].振动与冲击.2009,28(3):1-5.
    [79]董锡明.铁道机车车辆可靠性工程状况和发展[J].铁道机车车辆, 2001(02):1-6.
    [80]王华胜.基于加权最小二乘法的机车车辆零部件可靠性分析[J].铁道学报,2001,23(06):22-25.
    [81]文礼.动车组可靠性技术与维修[C].铁道科学技术新进展—铁道科学研究院五十五周年论文集,2005:313-323.
    [82]董锡明.我国铁道机车车辆可靠性工程的研究[J].中国铁路,1996,(01):9-12.
    [83]王星明,王月明.浅谈机车车辆与可靠性[J].铁道车辆,2000,38(03):29-31.
    [84]A.H-S. Ang, W. H. Tang. Probability Concepts in Engineering Planning and Design [J].John Wiley&Sons, New York,1984.
    [85]黄克中,毛善培.随机方法与模糊数学应用[M].上海:同济大学出版社1987.
    [86]M.Shinozuka. Basic Analysis of Structural Safety [J].Journal of Engineering Mechanics, ACSE,1983,109(3):721-740.
    [87]A.D.Kiureghian, H.Z. Lin. Second-Order Reliability Approximations [J]. Journal of Engineering Mechanics, ASCE,1987,113(8):1208-1225.
    [88]A.D.Kiureghian, P.L.LIU. Structural Reliability under Incomplete Probability Information [J]. Journal of Engineering Mechanics, ACSE,1986,112(1): 85-104.
    [89]李云贵,赵国藩,张保和.广义随机空间内的-次可靠度分析方法[J].大连理工大学学报,1993,33(S1):1-5.
    [90]李云贵,赵国藩.结构可靠度的四阶矩分析法[J].大连理工大学学报,1992,32(4):455-459.
    [91]Yan-Gang Zhao, Tetsuro Ono. Moment method for structural reliability [J]. Structural Safety,2001,23:47-75.
    [92]胡云昌,郭振邦,余建星,等.正态和非正态下结构系统的可靠性分析[J].固体力学学报,1992,13(1):20-30.
    [93]邓智泉,于国安,彭兆行.三峡升船机卷筒强度可靠性计算的随机有限元法[J].机械强度,1997,19(1):29-32.
    [94]杜小平.机械传动系统可靠性MonteCarlo仿真算法[J].机械传动,1995,19(02):17-20.
    [95]朱位秋,任永坚.随机场的局部平均与随机有限元[J].航空学报,1986,(06):604-611.
    [96]朱位秋,任永坚.基于随机场局部平均的随机有限元法[J].固体力学学报,1988,(04):285-293.
    [97]吴世伟.结构可靠性分析[M].北京:人民交通出版社,1990.
    [98]E.B.豪根.机械概率设计[M].北京:机械工业出版社,1985.
    [99](美)诺瓦克,(美)科林斯.结构可靠度[M].重庆:重庆大学出版社:2005.
    [100]Zhenzhou LU, Shufang SONG, Zhufeng YUE, et al. Reliability Sensitivity Method by Line Sampling [J]. Structural Safety,2008,30:517-532.
    [101]何红妮,吕震宙.线抽样可靠性灵敏度的方差分析[J].中国机械工程,2008,19(10):1153-1156.
    [102]Y.T.Wu, P.H.Wirsching. New Algorithm for Structural Reliability Estimation [J]. Journal of Engineering Mechanics, ASCE,1987,113(9):1319-1336.
    [103]Y.T.Wu, H.R. Millwater, T.A. Cruse. Advanced Probabilistic Structural Analysis Method for Implicit Performance Function [J]. AIAA Journal,1990, 28(9):1663-1669.
    [104]张义民,刘巧伶,闻邦椿.汽车零部件可靠性灵敏度计算和分析[J].中国机械工程,2005,16(1):1026-1029.
    [105]冯桢,于涛,郭培燕,等.基于ANSYS/PDS模块的油缸可靠度灵敏度设计[J].煤矿机械,2006,27(11):21一23.
    [106]王伟,谢禹钧.基于ANSYS的盲板盖可靠度灵敏度分析[J].石油化工技术设备,2007,28(2):9-10.
    [107]张胜民.基于有限元软件ANSYS7.0的结构分析[M].北京:清华大学出版社,2003.
    [108]王世鹏,张义民,解艳彩.广义随机空间内相关系数的可靠性灵敏度.中国机械工程[J],2007,18(23):2782-2785.
    [109]杨搏,朱平,余海东,等.基于模态分析法的车身NVH结构灵敏度分析[J].中国机械工程,2008,19(3):361-364.
    [110]张伟.结构可靠性理论与应用[M].北京:科学出版社,2008.
    [111]S. Reh, J.D. Beley, S. Mukherjee, et al. Probabilistic Finite Element Analysis using ANSYS [J]. Structural Safety,2006,28:17-43.
    [112]赵永翔.铁道车辆结构强度可靠性和安全性技术展望[J].铁道学报,2003,25(2):92-97
    [113]陈循,陶俊勇,张春华.可靠性强化试验与加速寿命试验综述[J].国防科技大学学报,2002,24(4):29-32.
    [114]张春华,温熙森,陈循.加速寿命试验综述[J].兵工学报,2004,25(4):486-489.
    [115]W. Nelson. Analysis of Accelerated Life Test Data [J]. IEEE Trans. on Electric Insulation,1971,4 (EI6):165-181.
    [116]W. Nelson. Graphical Analysis of Accelerated Life Testing Data with the Inverse Power Law Model [J]. IEEE Trans.on Reliability,1972,1 (R21):2-11.
    [117]W. Nelson Accelerated Life Testing—Step-stress Models and Data Analysis [J]. IEEE Transactions of Reliability,1980,29 (2):103-108.
    [118]茆诗松,王玲玲.加速寿命试验[M].北京:科学出版社,1997.
    [119]N. Fard, C.H. Li. Optimal Simple Step Stress Accelerated Life Test Design for Reliability Prediction [J]. Journal of Statistical Planning and Inference, 2009,139:1799-1808.
    [120]L.C.Tang, A.P.Tan, Ong S.H. Planning Accelerated Life Tests with Three Constant Stress Levels [J]. Computers & Industrial Engineering,2002,42: 439-446.
    [121]Yaohui Lu, Xingwen Wu, Pingbo Wu, Jing Zeng. Study on FEM Numerical Simulation method for the welding distortion [C]. Source:The 6th International Conference on Physical and Numerical Simulation of Materials Processing,2010,12.
    [122]尚德光,王德俊.多轴疲劳强度[M].北京:科学出版社,2007.
    [123]李人宪.有限元法基础(第2版)[M].北京:国防工业出版社,2006.
    [124]柳春图,蒋持平.板壳断裂力学[M].北京:国防工业出版社,2000.
    [125]Yaohui Lu, Jing Zeng, Pingbo Wu, Limin Zhang. Research on multi-axial fatigue strength assessment of railway vehicle bogie frame [C]. Source: Proceedings-2010 International Conference on System Science, Engineering Design and Manufacturing Informatization, ICSEM 2010, v 1:306-309.
    [126]王凡.高速客车转向架构架载荷特征及结构振动研究[D].北京:北京交通大学,2007.
    [127]张卫华,翟婉明.第十七届国际车辆系统动力学会议简介[J].国外铁道车辆,2002,39(1):6-8.
    [128]卢耀辉.提速客车车体轻量化问题的研究[D].成都:西南交通大学,2003.
    [129]周海亭,陈莲.子结构方法在ANSYS软件中的应用[J].噪声与振动控制,2001,4:16-18.
    [130]洪嘉振.计算多体系统动力学[M].北京:高等教育出版社,1999.
    [131]刘锦阳,洪嘉振.柔性体的刚-柔耦合动力学分析[J].固体力学学报,2002,2(23):159-165.
    [132]魏鸿亮.刚-柔混合动力学建模及在载重450t落下孔车中的应用[D].大连:大连交通大学,2007.
    [133]黄永安,邓子辰.中心刚体-楔形梁-质点刚柔耦合系统动力学分析[J].计算力学学报,2007,24(1):14-19.
    [134]Yaohui Lu, Jing Zeng, Pingbo Wu,Qinghua Guan. Modeling of Rigid-Flexible Coupling System Dynamics for Railway Vehicles with Flexible Bogie Frame [C]. Source:2009 4th International Conference on Innovative Computing, Information and Control, ICICIC 2009:1355-1360.
    [135]彭佳纯.C70铁路货车关键部件的疲劳应力计算[D].成都:西南交通大学,2008.
    [136]Shuguang Zhang. Study on Testing and Establishment Method for the Load Spectrum of Bogie Frame for High-Speed Trains [J]. Science in China Series E:Technological Sciences,2008,51(12):2142-2151.
    [137]任尊松,孙守光,李强,毛娟.构架结构振动与动态应力仿真研究[J].机械工程学报,2004,40(08):187-192.
    [138]王文静,李强,刘志明,毛娟.柔性构架的动应力仿真研究[J].中国工程机械学报,2004,2(04):384-389.
    [139]王国军,胡仁喜,陈欣.nSoft疲劳分析理论与应用[M].北京:机械工业出版社,2007.
    [140]Yaohui Lu, Jing Zeng, Pingbo Wu. Reliability Fatigue Life Assessment of Welded Bogie Frame of Railway Vehicle [C]. FM2009:Symposium of Transferability and Applicability of Current Mechanics Approaches,2009: 313-318.
    [141]The WAFO Group, Tutorial Version 2.0.02. WAFO-A Matlab Toolbox for Analysis of Random Waves and Loads [M]. Lund Institute of Technology, Lund University,2000.
    [142]James Andrew Ridnour. Methodology for evaluating vehicle fatigue life and durability [D].The University of Tennessee, Knoxville,2003,12.
    [143]M.A. Miner. Cumulative damage in fatigue[J]. Trans. ASME, Journal of Applied Mechanics,1945,67:A159-A164.
    [144]吕凤军,王梅,曲庆文,柴山.用模态叠加法计算车辆结构的动力响应[J].淄博学院学报(自然科学与工程版),2002,4(04):70-74.
    [145]李东旭.高等结构动力学[M].长沙:国防科技大学出版社,1997.
    [146](美)Roy R.Craig, Jr结构动力学[M].常岭,李振邦翻译.北京:人民交通出版社,1995.
    [147]卢耀辉,曾京,邬平波,李人宪,杨飞.铁道车辆转向架构架可靠性参数灵敏度分析[J].中国铁道科学.2010,31(1):111-115.
    [148]Yaohui Lu, Jing Zeng, Pingbo Wu, Fei Yang, Qinghua Guan. Reliability and Parametric Sensitivity Analysis of Railway Vehicle Bogie Frame Based on Monte-Carlo Numerical Simulation [J]. Source:Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),2010, v 5938 LNCS:280-287.
    [149]http://alta.reliasoft.com.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700