纳米碳酸盐的制备及其化学反应行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙醇钠等是有机合成工业常用的强碱,但存在腐蚀严重、副反应多、产品分离复杂、收率较低等缺点,很多有机合成工业改用碳酸盐尤其是碳酸钾。但由于碳酸钾碱性较弱,其参与的化学反应具有高温、高压、反应时间长等缺点。由于特殊的物理、化学性能,纳米材料的制备及其在有机合成中的应用成为近年来的研究热点,但纳米碳酸钾的制备及其在有机合成中的应用研究未见报道。本论文目的是制备纳米碳酸钾,取代传统强碱,应用于有机合成反应,实现有机合成的绿色化。主要研究内容和结果如下:
     1.采用高频共振研磨机制备纳米碳酸钾,对影响纳米碳酸钾粒径的因素进行了考察。结果表明,湿法研磨比干法研磨制备的碳酸钾粉体粒径更小,质子性有机溶剂利于湿法研磨制备碳酸钾粉体,若加入少量月桂酸,碳酸钾粉体的粒径会进一步降低。在无水乙醇中加入碳酸钾物质的量0.3%的月桂酸,可以制备平均粒径为98nm的纳米碳酸钾,其中小于100nm的纳米碳酸钾颗粒占75%。测试表明,在质子性有机溶剂中纳米碳酸钾表现出较强的碱性,可以取代乙醇钠等强碱促使丙二酸二乙酯与苄基氯进行烃基化反应。
     2.以纳米碳酸钾取代乙醇钠等强碱,研究了活泼亚甲基化合物与卤代烃在非水有机溶剂中的烃基化反应,考察了反应的不同影响因素。结果表明,质子性有机溶剂利于反应的进行;不同的底物和卤代烃,反应活性有差异,对于Br,Cl-二卤代烷烃,活泼亚甲基化合物可以与溴代烃发生选择性烃基化反应。在无水乙醇中50-80℃反应,活泼亚甲基化合物的单烃基化产品收率为82-90%,高于乙醇钠法的收率。
     3.以纳米碳酸钾取代乙醇钠等强碱,研究了双酚A等二羟基酚类化合物与卤代烃在非水溶剂中的Williamson反应,考察了反应的不同影响因素。结果表明,质子性有机溶剂利于反应的进行,在质子性有机溶剂中双酚A等酚类化合物的两个羟基分步与卤代烃进行反应,与传统强碱法不同。在无水乙醇中,控制适当物料比,单酚基醚化合物收率在88%以上,二酚基醚化合物收率在95%以上。在无水乙醇中合成了双酚A液体环氧树脂,环氧值为0.4267-0.5324mol/100g,有机氯含量为0.088-0.372%,达到了工业品的技术指标,克服了传统工艺环境污染严重、物料消耗高等缺点。
     4.以纳米碳酸钾取代氢氧化钾等强碱,研究了活泼亚甲基化合物与二硫化碳在非水溶剂中的缩合反应,考察了反应的不同影响因素。结果表明,质子性有机溶剂利于反应的进行,底物的结构对反应有显著的影响。在无水乙醇中30-40℃反应,产物烷基化后的产品收率为83-90%,高于强碱法的收率。以异硫氰酸甲酯和硝基甲烷为主要原料,合成了N-甲基-1-甲硫基-2-硝基乙烯胺,产品收率由传统工艺的50%提高到85%。
     5.以纳米碳酸钾取代乙醇钠等强碱,研究了非水溶剂中活泼亚甲基化合物的非均相肟化反应,考察了反应的不同影响因素。结果表明,质子性有机溶剂利于反应的进行,底物和反应温度对反应影响显著。在无水乙醇中10-20℃反应,产品收率为81-92%,与乙醇钠法相当,但产物的分离更简单。
The strong base such as sodium ethoxide used widely in organic synthesis industry istrendling to be replaced by carbonate, espectively potassium carbonate due to sodiumethoxide with some disadvantages such as severe corrosion, more side reactions andcomplicated isolation of products. However, due to the weak alkalinity, the potassiumcarbonate participated organic rections usually need high temperature, high pressure, longreaction time and so on. The preparation and application of nano materical in organicsysnthesis have attracted more and more attentions recently due to their unique physical andchemical properties. The preparation and application of nano potassium carbonate inorganic synthesis are rare. In this thesis, the preparation and application of nano-K2CO3inorganic synthesis are studied. The main contents and results are as following:
     1. Nano-K2CO3is prepared in the high frequency resonance machine, and effects onmean size of nano-K2CO3are investigated. The results show that mean size of K2CO3prepared by wet grinding method is smaller than that by dry grinding method, and meansize of nano-K2CO3is also affected by solvents. Protonic organic solvents are morefavorable to reduce mean size of micronano-K2CO3. If0.3%of lauric acid compared withthe amount K2CO3was added to solvents, the mean size of nano-K2CO3can be reduced to98nm, which are the size of75%of particles less than100nm. The results also show thatthe alkalinity of nano-K2CO3is strong enough to replace the strong base such as sodiumethoxide to promote the reaction of diethyl malonate and phenyl chloride in protonicorganic solvents.
     2. Heterogeneous alkylation reactions of active methylene compounds withhalogenated hydrocarbon are carried out in organic solvents using nano-K2CO3as base, andthe effects on the reaction are investigated. The results show that the reactions are morefavorable in protonic organic solvents, and the reactive activity is affected by the structureof active methylene compounds and halides. For Br, Cl-dihalogenated alkylhalides, activemethylene compounds can selectively react with hydrocarbon bromide. Under50-70℃using nano-K2CO3as base in anhydrous ethanol, monoalkylation product can be preparedwith yield of82-90%, which is higher than that by sodium ethoxide.
     3. Heterogeneous Williamson reactions of phenolic compounds such as bisphenol Awith halides are studied in organic solvents using nano-K2CO3as base, and the effects onthe reaction are investigated. The results show that the reactions are more favorable inprotonic organic solvents, and the two hydroxy groups reacts with halides stepwisely,which is different from Williamson reactions promoted by traditional strong alkaline. Themonoalkylation product can be selectively prapared by control the reaction condition. Themono phenol ether can be prepared in yeild of88%under proper ratio of starting material in anhydrous ethanol. And the liquid biphenol A epoxy resin can be produced in the yield of95%. The epoxy value is0.4267-0.5324mol/100g, chloride content is0.088-0.372%, whichis reached the technical spectification of the industical. The disadvantigates such as highermaterial consumption, severe environmental pollution in traditional process are overcomed.
     4. Condensation reaction of active methylene compounds with carbon disulfide arestudied in organic solvents using nano-K2CO3as base, and the effects on the reaction areinvestigated. The results show that the reactions are more favorable in protonic organicsolvents, the reactive activity is affected by the structure of active methylene compounds.Under30-40℃in anhydrous ethanol, the yield of alkylated product is82-90%higher thanthat promoted by KOH. N-methyl-1-methylthio-2-nitroethenamine is prepared from methylisothiocyanate and nitromethane as the main raw materials in the yield of85%wich ishigher than that (50%) in traditional process.
     5. Heterogeneous oximation reactions of active methylene compounds with ethylnitrite are studied in organic solvents using nano-K2CO3as base, and the effects on thereaction are investigated. The results show that the reactions are more favorable in protonicorganic solvents, and the reactive activity is affected by the structure of active methylenecompounds and reaction temperature. Under10-20℃in anhydrous ethanol, the yield is81-92%, which is higher than that promoted by sodium ethoxide. The isolation of product issimple.
引文
[1]王静康,龚俊波,鲍颖.21世纪中国绿色化学与化工发展的思考[J].化工学报,2004,55(12):1944-1949.
    [2]王伟.功能化金纳米材料的合成、性质及其在化学发光传感器中的应用研究[D].安徽:中国科学技术大学,2008.
    [3] Zheng G Z, Shu Q, Jiao Y J, et al. Barbier-type reaction mediated with tin nano-particles inwater[J]. Tetrahedron,2005,61:2521-2527
    [4]熊明文,李辉,李和兴. In/SBA-15催化剂的一步法制备及其在水介质中Barbier反应中的应用[J].化学学报,2007,16(65):1578-1582.
    [5] Samba S, Mallikarjuna R, Nagendra P, et al. Highly efficient and reusable hydrogel-supportednano-palladium catalyst:Evaluation for Suzuki–Miyaura reaction in water[J]. Journal of MolecularCatalysis A: Chemical,2008,295:10-17.
    [6] Suryakant B S, Kiran F S, Bapurao B S, et al. Nickel nanoparticle-catalyzed facile and efficientone-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-freeconditions[J]. Tetrahedron Letters,2009,50:1754-1756.
    [7] Amit S, Ajeet K, Subho M. Ni-nanoparticles: An efficient green catalyst for chemo-selectiveoxidative coupling of thiols[J]. Journal of Molecular Catalysis A: Chemical,2007,269:35-40.
    [8] Francisco A, Paola R, Miguel Y. Hydrogen-transfer reduction of carbonyl compounds promoted bynickel nanoparticles[J]. Tetrahedron,2008,64:1847-1852.
    [9] Francisco A, Paola R, Miguel Y. Hydrogen-transfer reduction of carbonyl compounds catalysed bynickel nanoparticles[J]. Tetrahedron Letters,2008,49:1939-1942.
    [10] Reetz M, Lohmer G. A new synthesis of benzofurans from phenols via Claisen rearrangement andring-closing metathesis[J]. Chemical Communications,1996,16:1921-1926.
    [12] Iyer S, Ramesh C, Sarkar A, et al. Macrocyclization on solid support using Heck reaction[J].Tetrahedron Letters,1997,38(29):5185-5188.
    [13] Calo V, Nacci A, Monopoli A, et al. New surface-modified lipid nanoparticles as delivery vehiclesfor salmon calcitonin[J]. Organic Letters,2004,7:617-622.
    [14] Amarajothi D, Kasi P. Clay entrapped nickel nanoparticles as efficient and recyclable catalysts forhydrogenation of olefins[J]. Tetrahedron Letters,2008,49:1818-823.
    [15] Zhu K, Kubel C, Riehards R. Efficient preparation and catalytic activity of MgO(111) nanosheets[J].Angewandte Chemie International Edition,2006,45(43):7277-7281.
    [16] Sabitha G, Reddy K B, Yadav J S, et al. A practical procedure for the selective N-alkylation of4-alkoxy-2-pyridones and its use in a sulfone-mediated synthesis ofN-methyl-4-methoxy-2-pyridone[J]. Tetrahedron. Letters,2005,46(46):7917-7920.
    [17] Athawale A A, Bhagwat S V. Synthesis and characterization of novel copper/polyanilinenanocomposite and application as a catalyst in the Wacker oxidation reaction[J]. Journal of AppliedPolymer Science,2003,89(9):2412-2417.
    [18] Vasant R C, Deepa K D. Magnesium oxide supported nano-gold: A highly active catalyst forsolvent-free oxidation of benzyl alcohol to benzaldehyde by TBHP[J]. Catalysis Communications,2009,10:1738-1742.
    [19]顿静斌,张晓昕.2007年美国总统绿色化学挑战奖项目评述.现代化工,2007,12:1145-1148.
    [20] Feng S, Man K T, Marga M P, et al. Nano-iron oxide-catalyzed selective oxidations of alcohols andolefins with hydrogen peroxide[J]. Journal of Molecular Catalysis A: Chemical,2008,292:28-35.
    [21] Cao W, Han H, Zhang J. Preparation of biodiesel from soybean oil using supercritical methanol andcosolvent[J]. Fuel,2005,84:347-51.
    [22] Duane C H. Process for catalytic reduction of carboxylic acids to aldehydes. US,4950799[P].1990-10-22.
    [23] Koutstaal C A, Ponec V. New aspects of the selective reduction of aromatic carboxylic acids to thealdehydes[J]. Science and Technology in Catalysis,1994:105-110.
    [24] Sakata Y, Tol-Koutstaal C A, Ponec V. Selectivity problems in the catalytic deoxygenation ofbenzoic acid[J]. Journal of Catalysis,1997,169:13-21.
    [25] Caroline M, Gunther B. Study of a new rate increasing “Base Effect” in the Palladium-Catalyzedamination of aryl Iodides[J]. Journal of Organic Chemistry,2004,69:6010-6017.
    [26] Jeong W Y, Mouloungui Z, Gaset A. Method for producing an epoxide, in particular of glycidol, andinstallation for implementation. US,6316641[P].2001-08-11.
    [27] Jose R O, Olga G, Belen M, et al. Synthesis of glycerol carbonate from glycerol and dimethylcarbonate by transesterification: Catalyst screening and reaction optimization[J]. Applied CatalysisA:General,2009,366:315-324.
    [28] Tundo P, Moraglio G, Trotta F. Gas-liquid phase-transfer catalysis: A new continuous-flow methodin organic synthesis[J], Industrial and Engineering Chemistry Research,1989,21:881-886.
    [29] Marques C A, Selva M, Tund P. Selective mono-methylation of arylacetonitriles and methylarylacetates by ditnethylcarbonate[J]. Journal of the Chemical Society. Perkin Translations,1994,1:1323-1327.
    [30] Tundo P, Selva M, Bomben A. Mono-C-methylation of arylacetonitriles and methylarylacetates bydunethylcarbonate: A general method for the synthesis of pure2-arylpropionicacids[J]. OrgicSynthesis,1998,76:169-173.
    [31] Bomben A, Marques C A, Selva M, et al. A new synthesis of2-aryloxy propionic acids derivates viaselective mono-C-methvlation of methyl arvloxv acetates arvloxvacetonitriles withditnethylCarbonate[J]. Tetrahedron,1995,51:11573-11578.
    [32] Duhamel P, Duhamel L, Danvy D, et al. Process for the synthesis of alpha-substituted acrylic acids,and their application as intermediates for amino acid derivatives. EP,0729936[P].1996-04-06.
    [33] Jackson B. Process for the preparation of pure alkyl2-alkylacetoacetates using strong basetreatment. EP,0795538[P].1997-09-17.
    [34] Yu L W, Renhua D, Aiqia M, et al. Solid-liquid phase transfer catalytic synthesis. XII. Microwaveirradiated alkylation of diethyl malonate[J]. Synthetic Communications,1995,25(11):1761-1764.
    [35] Keglevich G, Majrik K, Vida L, et al. Microwave irradiation as a green alternative to phase transfercatalysis: solid-liquid phase alkylation of active methylene containing substrates under solvent-freeconditions[J]. Letters in Organic Chemistry,2008,5(3):224-228.
    [36] Chern C Y, Chen S J, Wai M K. Design and synthesis of3-aryl-5-alicyclic-[1,2,4] oxadiazoles asnovel platelet aggregation inhibitors[J]. Journal of the Chinese Chemical Society(Taipei, Taiwan),2005,52(2):331-338.
    [37]郭佳,张永明,赵艳萍,等.奥替溴铵的合成研究[J].中国药物化学杂志,2008,18(5):358-361.
    [38]李荣东,徐燕.奥替溴铵的合成[J].中国新药杂志,2008,17(14):1238-1239,1246.
    [39] Asai K, Konishi G, Sumi K, et al. Synthesis of silyl-functionalized oligothiophene-based polymerswith bright blue light-emission and high refractive index[J]. Journal of Organometallic Chemistry,2011,696(6):1236-1243.
    [40] Van Rijn J A, Guijt M C, Bouwman E, et al. Selective O-allylation of bisphenol A: toward achloride-free route for epoxy resins[J]. Applied Organometallic Chemistry,2011,25(3):207-211.
    [41] Fukushima M, Higuchi K, Komori H. Coating composition, cured protective film havingimproved water vapor barrier properties, and coated article. US,20110034626[P].2011-02-10.
    [42] Chattopadhyay S K, Biswas T, Maity S. Sequential double Claisen rearrangement andtwo-directional ring-closing metathesis as a route to various benzofused bisoxepin and bisoxocinderivatives[J]. Synlett,2006,14:2211-2214.
    [43] Arbiser J L, Amblard F. Honokiol derivatives for the treatment of proliferative disorders. WO,2006107451[P].2006-05-23.
    [44]钱立军,叶龙健,孟烨,等.本体Claisen转位合成二烯丙基双酚A[J].现代化工,2009,8:47-50.
    [45] Uchida H, Sato H. Preparation of allyl ethers from hydroxy compounds and allyl carboxylates. JP,2011026253[P].2011-02-10.
    [46] Uchida H, Arai Y, Sato K, et al. Process for production of glycidyl ether compounds, andmonoallyl monoglycidyl ether compound. WO,2011078060[P].2011-06-30.
    [47] Kumru M E, Maiershofer S, Reinheimer A, et al. Silane-modified, two-component mortar withimproved adhesion to the surface of damp boreholes in mineral background. DE,102010013198[P].2011-09-29.
    [48] Ramachary D B, Narayana V V, Ramakumar K. A new one-pot synthetic approach to the highlyfunctionalized (Z)-2-(buta-1,3-dienyl)phenols and2-methyl-2H-chromenes: use of amine,ruthenium and base-catalysis[J]. European Journal of Organic Chemistry,2008,23:3907-3911.
    [49] Tsai T W, Eng C W, Sie R L, et al. A new synthesis of benzofurans from phenols via Claisenrearrangement and ring-closing metathesis[J]. Journal of the Chinese Chemical Society (Taipei,Taiwan),2004,51(6):1307-1318.
    [50] Makosza M, Serafinowa B R. Reactivity of electrogenerated polysulfide ions towards acylthioanhydrides and anhydrides in N,N-dimethylacetamide[J]. Chemistry,1966,40:1647-1651.
    [51]肖光普.邻苯二酚制备呋喃酚的合成方法.湖南化工,1994,2:14-17.
    [52] Singh R K. Substituted-aryl cyclopropanecarbonitriles and derivatives thereof as herbicideantidotes. US,4859232[P].1989-08-17.
    [53] Veera R A, Udaya Bhaskara R S, Pramod K D. Efficient cyclopropanation of activie methylenecompounds. A serendipitous discovery[J]. Tetrahedron Letters,2005,46:7247-7248.
    [54] Alfred H, Murthy K S. Conversion of unsaturated alcohol into functionalized tetrahydrofurans andtetrahydropyrans via nitrile oxide dipolar cycloadditions[J]. Journal of Orgic Chemistry,1989,54:5277.
    [55]李锋,陆明,刘福萍,等.4-氰基四氢吡喃-4-甲酸乙酯固液相反应研究[J].精细化工,2008,25(6):614-617.
    [56] Choi D M, Oh S J. Photochemical reactions of a dimethacrylate compound containing a chalconemoiety in the main chain[J]. European Polymer Journal,2002,38:1559-1564.
    [57] Feng R, Tsushima M, Matsumoto T, et al. Synthesis and properties of novel photosensitivepolyimides containing chalcone moiety in the main chain[J]. Journal of Polymer Science Part A,1998,36(5):685-689.
    [58]钟琦,陆荣健.有机碲氧化物催化合成,β-不饱和酮和2,4-二烯酮[J].应用化学,1990,3:89-92.
    [59] Daskiewicz J B, Comte G, Barron D, et al. A Short Synthesis of Azasugars via Aldol Reaction ofChelated Amino Acid Ester Enolates[J]. Tettrahedron Letters,1999,38(46):7095-7099.
    [60]陆文兴,颜朝国,顾惠芬.查尔酮的KF-Al2O3催化合成[J].化学试剂,1995,4:253-254.
    [61] Wei W, Qunrng W, Liqin D, et al. Synthesis of dinitrochalcones by using ultrasounic irradiation inthe presence of potassium carbonate[J]. Ultrasonics Sonochemistry,2005,12:411-414.
    [62] Buruiana E C, Strat G, Strat M. Synthesis and optical properties of new polyurethane cationomerswith anchored stilbene chromophores[J]. Journal of Polymer Science Part A: Polymer Chemistry,2002,40:1918-1923.
    [63] Li Y Q, Zhao W J, Wen R X, et al. Synthesis of stilbene derivatives with inhibition of SARScoronavirus replication[J]. European Medicinal Chemistry,2006,41:1084-1087.
    [64] Yeonhwa A, Samdong E, Byeokjeokgol J A, et al. Stilbene derivatives, a method for preparationthereof, and its use. WO,2003010121[P].2003-02-06.
    [65] Adolfsson M, Lilla N, Martin K, et al. Sanitary device for domestic animals. WO,2001010194[P].2001-02-15.
    [66] Murphy P J, Lee S E. Palladium-catalyzed coupling of alkynes with chloroformates to formalkynecarboxylic acid esters[J]. Journal of Chemical Society, Perkin Trans,1.1999,3555-3556.
    [67] Shinokubo H, Oshima K. The synthesis of arylalkyne-substituted tetrapyrazinoporphyrazines andan evaluation of their potential as photosensitisers for photodynamic therapy[J]. European Journalof Organic Chemistry,2004,5:1136-1142.
    [68] Venkatesan C, Singh A P. Evaluation of the maximum potential activity of Co–Mo/Al2O3catalystsfor hydrodesulfurization[J]. Journal of Catalysis,2004,222:143-151.
    [69] Nmer T, Yoel S, Mandan C. Phase transfer methodology for the synthesis of substituted stilbeneunder Knovenagel condensation condition[J]. Appplied Catalysis A: Ceneral,2008,350:217-224.
    [1] Mazoroki T, Mori K, Ozaki A. Arylation of olefin with aryl iodide catalyzed by palladiumbull[J].Chemical Society of Japan,1971,44:581.
    [2] Reetz M, Lohmer G. Helical transition-metal compounds: preorganisation of the ligands by aparacyclophane group[J]. Chemical Communications,1996,16:1918-1921.
    [3] Danny F D, Michael G B, Drew P, et al. Resorcarene-Based Nanoarchitectures: Metal-DirectedAssembly of a Molecular Loop and Tetrahedron[J]. Angewandte Chemie-International Edition,2000,39(1):135-140.
    [4] Thathagar M B, Elshof J E, Rothenberg G. Pd Nanoclusters in C=C Coupling Reactions: Proof ofLeaching[J]. Angewandte Chemie-International Edition,2006,45(18):2886-2890.
    [5] Zheng G Z, Shu Q, Jiao Y J, et al. Barbier-type reaction mediated with tin nano-particles in water[J].Tetrahedron Letters,2005,61:2521–2527
    [6] The Presidential Green Chemistry Challenge Awards Program:Summary of2007Award Entries andRecipients.http://www.epa.gov/greenchemistry.
    [7] Reetz M, Lohmer G. The cluster–surface analogy: the interaction of norbornene and norbornadienewith low-nuclearity ruthenium carbonyl clusters[J]. Chemical Communications,1996,12:1425-1426.
    [8] Reetz M, WrstermannE. Phosphane-Free Palladium-Catalyzed Coupling Reactions: The DecisiveRole of Pd Nanoparticles[J]. Angewandte Chemie-International Edition,2000,39(1):165-168.
    [9] Suryakant B S, Kiran F S, Bapurao B. S, et al. Nickel nanoparticle-catalyzed facile and efficientone-pot synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-freeconditions[J]. Tetrahedron Letters,2009,50:1754-1756.
    [10] Amit S, Ajeet K, Subho M. Ni-nanoparticles: An efficient green catalyst for chemo-selectiveoxidative coupling of thiols[J]. Journal of Molecular Catalysis A: Chemical,2007,269:35-40.
    [11] Francisco A, Paola R, Miguel Y. Hydrogen-transfer reduction of carbonyl compounds promoted bynickel nanoparticles[J]. Tetrahedron,2008,64:1847-1852.
    [12] Amarajothi D, Kasi P. Clay entrapped nickel nanoparticles as efficient and recyclable catalysts forhydrogenation of olefins. Tetrahedron Letters,2008,49:1818-1823.
    [13] Amarajothi D, Kasi P. Clay entrapped nickel nanoparticles as efficient and recyclable catalysts forhydrogenation of olefins[J]. Tetrahedron Letters,2008,49:1818-1823
    [14] Zhu J H, Kubel R R.. Efficient Preparation and Catalytic Activity of MgO(111) Nanosheets[J].Angewandte Chemie-International Edition,2006,45(43):7277-7281.
    [15] Haruta M, Kobayashi T, Sano H. Novel gold catalysts for the oxidation of carbon monoxide at atemperature far below0℃[J]. Chemistry Letters,1987,16:405-408.
    [16] Bamwenda G R, Tsubota S, Nakamura T, et al. The influence of the preparation methods on thecatalytic activity of platinum and gold supported on TiO2for CO oxidation[J]. Catalysis Letters,1997,44:83-87.
    [17] Bher J, Eilting K, Irawadi J, et al. Synthesis of icosahedral gold particles by a simple and mild routeGreen[J]. Chemistry.2008,10:1094-1098.
    [18] Vasant R C, Deepa K D. Magnesium oxide supported nano-gold: A highly active catalyst forsolvent-free oxidation of benzyl alcohol to benzaldehyde by TBHP[J]. Catalysis Communications,2009,10:1738-1742.
    [19] Porta F, Prati L, Rossi M, et al. New Au(0)sols as precursors for heterogeneous liquid-phaseoxidation catalysts[J]. Journal of Catalysis,2002,211:464-469.
    [20] Miyamura H, Matsubara R, Miyazaki Y, et al. Aerobic oxidation of alcohols at room temperatureand atmospheric conditions catalyzed by reusable gold nanoclusters stabilized by the benzene ringsof polystyrene derivatives[J]. Angewandte Chemie-International Edition,2007,46:4151-4154.
    [21] Dalip K, Buchi R V, Braj G M, et al. Nanosized magnesium oxide as catalyst for the rapid andgreen synthsis of substituted2-amino-2-chromenes[J]. Tetrahedron,2007,63:3093-3097.
    [22]杨华明,邱冠周.超细粉碎过程助磨剂的作用机理[J].中南工业大学学报(自然科学版),2000,25(05):48-50.
    [23]富亮.超细SiO2表面改性及其性能研究[D].哈尔滨:哈尔滨工业大学,2010.
    [24] Motoyuki I. Effect of particle size on surface modification of silica nanoparticles by using silanecoupling agents and their dispersion stability in methylethylketone[J]. Journal of Colloid andInterface Science,2007,307:418–424.
    [25]祁利民,刘雅琴,吴澜尔.亚微米碳化硅超细粉体的制备及破碎机理探讨[J].粉末冶金技术,2003,18(04):11-13.
    [26] Yadav T P, Srivastava O N. Synthesis of nanocrystalline cerium oxide by high energy ballmilling[J]. Ceramics International,2012,38:5783–5789.
    [27] Yadav T P, Mukhopadhyay N K, Tiwari R S, et al. Studies on the formation and stability of nano-crystalline Al50Cu28Fe22alloy synthesized through high-energy ball milling[J]. Materials Scienceand Engineering A,2005,393:366–373.
    [28] Khakpour Z, Youzbashi A A, Maghsoudipour A, et al. Synthesis of nanosized gadolinium dopedceria solid solution by high energy ball milling[J]. Powder Technology,2011,214:117–121.
    [29] Wen Bin F, Wa F, Hong Fei S. Preparation of bulk ultrafine-grained Mg-3Al-Zn alloys byconsolidation of ball milling nanocrystalline powders[J]. Transactions of nonferrous metals societyof China,2012,21:247-251.
    [30] Tiwary C S, Akash V, Krishanu B, et al. Preparation of ultrafine CsCl crystallites by combinedcryogenic and room temperature ball milling[J]. Ceramics International,2011,37:3677–3686
    [31]冯拉俊,刘毅辉,雷阿利.纳米颗粒团聚的控制[J].微纳电子技术,2003,1:35-38.
    [32]尹小东,王长会,谭涌,等.超细粉碎技术现状与应用[J].中国非金属矿业导刊,2009,7:46-49.
    [33]郭文瑛,吴国林.偏高岭土活性评价方法的研究[J].武汉理工大学学报,2006,28(3):76-79.
    [34]诸华军,姚晓,华苏东,等.煅烧制度对偏高岭土胶凝火星的影响[J].非金属矿,2007,30(3):6-8.
    [35]魏存弟,杨殿范,李益,等.煅烧温度对高岭石相转变过程及Si、Al活性的影响[J].矿物学报,2005,25(3):197-200.
    [36] Kakali G, Perraki T, Tsivilis S, et al. Thermal treatment of kaolin: the effect of mineralogy on thepozzolanic activity[J]. Applied Clay Science,2001,20:73-78.
    [37]诸华军,姚晓,张祖华.高岭土煅烧活化温度的初选[J].建筑材料学报,2008,11(5):621-625.
    [38]宫晨琛,李东旭,王晓军.煤矸石增钙煅烧的机理[J].硅酸盐学报,2007,35(7):881-885.
    [39]王春梅,杨立荣,蔡基伟,等.煅烧制度及激发剂对偏高岭土活性的影响[J].武汉理工大学学报,2009,31(7):126-130.
    [40]韩跃新.矿物材料[M].北京:科学出版社,2006,07.182-183.
    [41] Peter B, Erika D. Fine milling in applied mechanochemistry[J]. Minerals engineering,2009,22:681-694.
    [42]宋晓兰,岳冠洲,杨华明.机械化学及其应用研究进展[J].金属矿山,2004,34(11):34-39.
    [43]邢锋,丁浩,冯乃谦.天然沸石加工与改造技术的现状及应用前景[J].矿产综合利,1999,(6):32-36.
    [44]潘兆橹,万朴.应用矿物学[M].武汉:武汉工业大学出版社,1993.25-26.
    [45]丁浩,邢锋,冯乃谦.天然沸石搅拌磨湿法细磨中机械力化学效应的研究[J].矿产综合利用,2000,12:26-31.
    [46]彭同江,万朴,刘福生,等.非金属矿开发中矿物的可改造型研究[J].中国非金属矿工业导刊,1998,2:12-15.
    [47] Kristof E, Juhasz A Z. The effect of Inten sive grinding on the crystal structure of dolomite[J].Powder Technology,1993,75:175.
    [48]吴红亚,马晓艳,杜高翔.三乙醇胺对辉沸石湿法超细粉碎效果的影响[J].中国非金属矿工业导刊,2009,78(5):43-44.
    [49]张荣,徐怀德,姚勇哲,等.黄芪超微粉碎物理特性及其制备工艺优化[J].食品科学,2011,18:34-38.
    [50]陈宇红.高频振动磨超细粉碎黄芪试验研究[J].中国粉体技术,2008,9:37-39.
    [51] Khalil A K, Sug Won K. Mechanical wet-milling and subsequent consolidation of ultra-fineA12O3-(ZrO2+3%Y2O3) bioceramics by using high-frequency induction heat sintering[J].Transactions of nonferrous metals society of China,2007,17:21-26.
    [52]徐熙,郑水林,张晓波.蒙皂石的湿式超细粉碎试验研究[J].非金属矿,2010,33(2):26-29.
    [53] Sample dispersion and refractive index guide. Malvern Instruments Ltd.2007,04.
    [1] Johnson R R, Nicholson J A. The Structure, Chemistry and Synthesis of Solanone[J]. Journal ofOrganic Chemistry,1965,30:2918-2923.
    [2] Oee S P, Hong J K, Woo K C, et al. A New Synthesis of Solanone[J]. Bull Korean Chemical Society,1993,14(5):639-41.
    [3] Volker K, Astrid K, Jutta G, et al. Stereoisomeric flavour compounds2-,3-, and4-alkylbranchedacids, Part1: General approach to the synthesis of the enantiopure acids[J]. Chirality.1994,6(5):420-426.
    [4]陈梅玲,裴慧霞.喷昔洛韦合成工艺研究[J].中国药业,2006,15(7):33-34.
    [5] John C, Great B. A process for Preparing2-amino-6-chlolopurine or2-acylated derivatsve. WO,9213859[P].1992-08-20.
    [6]卿凤翎,懂环文.一类含氟多元羧酸化合物的合成方法及其用途. CN,1405141A[P].2003.03.26.
    [7]隋岩,曾锡瑞,李新发等.乙烷-1,1,2-三羧酸乙酯及其制备方法与作为增缩剂的应用. CN,101003480[P].2007-07-25.
    [8]宋国强,王彦臣,卢旺.3-环烷基丙酸的制备方法. CN,102140061A[P].2011-08-03.
    [9] Almarrson O, Blumberg L C, Remenar J F. Quaternary ammonium salt prodrugs and theirpreparation and use. WO,2011084846[P].2011-07-14.
    [10] Varrone M, Nencini A, Quinn J M, et al. Quinazolines and related compounds as Wnt pathwayantagonists and their preparation and use for the treatment of cancer. WO,2011042145[P].2011-04-14.
    [11] Scanio M J, Bunnelle W H, Carroll William A., et al. Preparation of N-quinazolinyl,N-pyrimidinylcarbo-xamide, and related compounds for use as potassium channel modulators. WO,2010138828[P].2010-12-02.
    [12] Mudhar H, Witty A. One-pot conversion of alkyl aldehydes into substituted propanoic acids viaKnoevena-gel condensation with Meldrum's acid[J]. Tetrahedron Letters,2010,51(38):4972-4974.
    [13] Qin J, Rao A, Chen X, et al. Discovery of a potent nicotinic acid Receptor agonist for the treatmentof dyslipidemia[J]. ACS Medicinal Chemistry Letters,2011,2(2):171-176.
    [14] Liu Y G, Prashad M, Ciszewski L, et al. Practical synthesis of a peptide deformylase(PDF) inhibitor.Organic Process Research&Development,2008,12(2):183-191.
    [15] Giovannini R, Dorner C C, Eickmeier C, et al. New pyrazolopyrimidinone compounds as PDE9inhibitors and their preparation and use for the treatment of CNS disorders. US,20110082137[P].2011-04-07.
    [16] Giovannini R, Doerner C C, Eickmeier C, et al. Preparation ofheterocyclyldihydropyrazolopyrimidinone derivatives for use as PDE9A modulators. WO,2009121919[P].2009-10-08.
    [17] Sharma L, Sattigeri J A., Kumar N. Preparation of pyrrole carboxylic acid derivatives asantibacterial agents. WO,2010013222[P].2010-02-04.
    [18] Aftab D T, Laird D A, Lamb P, et al. Preparation of azetidine MEK kinase inhibitors andpyridopyrimidine and quinoxaline and analog PI3K inhibitors and methods of using MEK inhibitorsin combination with PI3K inhibitors for the treatment of proliferative diseases, especially cancer.WO,2008021389[P].2008-02-21.
    [19] Berthel S J, Haynes N E, Kester R F, et al. Pyridazinones as glucokinase activators and theirpreparation, pharmaceutical compositions and use in the treatment of metabolic disorders. WO,2009127544[P].2009-10-22.
    [20] Liu Yugang, Prashad Mahavir, Ciszewski Lech, et al. Practical synthesis of a peptide deformylase(PDF) inhibitor[J]. Organic Process Research&Development,2008,12(2):183-191.
    [21]郝宝玉,陈新志,张维汉.4-氯-7H-吡咯并[2,3-d]嘧啶与2,4-二氯-7H-吡咯并[2,3-d]嘧啶的合成研究[J].有机化学,2010,30(6):6918-6922.
    [22]谢建春,孙宝国,沙爽等.食用香料化合物4-戊烯酸的合成研究[J].北京工商大学学报(自然科学版),2007,25(1):7-9.
    [23] Balamurugan R, Kothapalli R B, Thota G K. Gold-Catalyzed Activation of Epoxides: Application inthe Synthesis of Bicyclic Ketals[J]. European Journal of Organic Chemistry,2011,8:1557-1569.
    [24] Shi J D, Taveras A, Vande W R, et al. Preparation of fused pyrimidines as heat shock protein90inhibitors. WO,2010117425[P].2010-10-14.
    [25] Bhat N G., Caga A Z, Leija R. A novel synthesis of(Z)-2-(1-trimethylgermyl-1-alkenyl)-1,3,2-dioxaborin-anes and their conversion into carboxylicacids[J]. Tetrahedron Letters,2005,46(31):5109-5111.
    [26] Han A Q, Wang E, Gauss C, et al. Preparation of pyrimidines as HCV entry inhibitors and antiviralagents. WO,2010118367[P].2010-10-14.
    [27] Aicher T D, Chicarelli M J, Gauthier C A, et al. Preparation of pyrrolidones and piperidinones asinhibitors of11-β-hydroxysteroid dehydrogenase1. WO,2006068992[P].2006-06-29.
    [28] Stamm A, Kneuper H J, Henkelmann J, et al. Procedure for the preparation of chloroalkylcarboxylicacid chlorides by catalytic chlorination of lactones with hydrogen chloride and phosgene. DE,10010595[P].2001-09-06.
    [29] Truscott B J, Klein R, Kaye P T. Expeditious synthesis of N'-substituted N-mesitylimidazolium saltsas NHC precursors[J]. Tetrahedron Letters,2010,51(38):5041-5043.
    [30]胡文祥,王建营.松果体素的合成方法. CN,1422847[P].2003-06-11.
    [31]刘守信,韩建荣,田霞等.-酮肟酸酯的制备方法. CN,101215246A[P].2008-04-09.
    [32] Neelamkavil S F, Boyle C D, Chackalamannil S, et al. Preparation of7H-pyrrolo[2,3-d]pyrimidinederivatives as GPR119modulators. WO,2010009195[P].2010-01-21.
    [33] Vishwanatha T. M., Narendra N., Sureshbabu V V. Synthesis of β-lactam peptidomimetics throughUgi MCR: first application of chiral Nβ-Fmoc amino alkyl isonitriles in MCRs[J]. TetrahedronLetters,2011,52(43):5620-5624.
    [34] Jian D C, Ya N Z, Gui X Z, et al. Isolation and preliminary identification of a novel microorganismproducing aspartame from soil samples. Food Science and Biotechnology.2010,19(2):367-371.
    [35] Neelamkavil S F, Boyle C D., Harris J M., et al. Bicyclic heterocycle derivatives as GPCRmodulators and their preparation, pharmaceutical compositions and use in the treatment of diabetes.WO,2010009207[P].2010-01-21.
    [36]严洁.一种米格列奈钙的制备及质量控制方法. CN,1844096[P].2006-10-11.
    [37]曹育才,周慧,马静君,等.一种茚酮类化合物的制备方法. CN,101337874[P].2009-01-07.
    [38]魏德洲,刘文刚,孙亚光,等.苄基丙二酸的合成及捕收性能研究[J].东北大学学报(自然科学版),2007,28(8):1186-1189.
    [39]徐立中,贺燕,刘宇.固-液相转移催化合成苄基丙二酸的研究[J].沈阳理工大学学报,2010,29(4):71-75.
    [40]刘文刚,魏德洲,高淑玲,等.苄基丙二酸与羟肟酸类捕收剂组合使用的浮选效果[J].中国矿业,2007,16(8):99-101.
    [41] Wu Z X, Minhas G S, Wen D Y, et al. Design, Synthesis, and structure-activity relationships ofhaloenol lactones: site-directed and isozyme-selective glutathione S-transferase inhibitors[J].Journal of Medicinal Chemistry,2004,47(12):3282-3294.
    [42] Wang Y L, Deng R H, Mi A Q, et al. Solid-liquid phase transfer catalytic synthesis. XII. Microwaveirradiated alkylation of diethyl malonate[J]. Synthetic Communications.1995,25(11):1761-1764.
    [43] Szabo G. T., Aranyosi K., Csiba M., et al. Co-catalytic effects in phase-transfer catalyzed reactions.Synthesis.1987,6:565-6.
    [44] Duhamel P, Duhamel L, Danvy D, et al. Process for the synthesis of alpha-substituted acrylic acids,and their application as intermediates for amino acid derivatives. EP,0729936[P].1996-04-06.
    [45] Jackson B. Process for the preparation of pure alkyl2-alkylacetoacetates using strong basetreatment. EP,0795538[P].1997-09-17.
    [46]陈利民,曹国君,谭成侠.新鱼腥草素钠的合成工艺改进[J].广东化工,2009,36(9):147,161.
    [47]徐奎,王伟.鱼腥草素类高水溶性、稳定性前体药物及其制备方法与运用. CN,101659629[P].2010-03-03.
    [48]陈红香,李婷婷,孙凌峰.2-庚酮的合成及其应用[J].江西师范大学学报(自然科学版),2003,27(4):298-300.
    [49]杜红梅.减肥药物中间体2-正己基乙酰乙酸甲酯的合成研究[D].沈阳:沈阳理工大学,2008.
    [50] Borate H B, Sawargave S P, Maujan S R, et al. Thiophene derivatives as antifungal agents and theirpreparation and use for the treatment of fungal infection. IN,2008MU02132[P].2010-04-09.
    [51] Harran P G., Brown M S., Goldstein J L., et al. Small molecule inhibitors of ghrelino-acyltransferase and therapeutic use thereof. US,20100086955[P].2010-04-08.
    [52] Alagiri K, Prabhu K R. Efficient synthesis of carbonyl compounds: oxidation of azides and alcoholscatalyzed by vanadium pentoxide in water using tert-butylhydroperoxide[J]. Tetrahedron,2011,67(44):8544-8551.
    [53] Schaetzle S, Steffen-Munsberg F, Thontowi A, et al. Enzymatic asymmetric synthesis ofenantiomerically pure aliphatic, aromatic and arylaliphatic amines with (R)-selective aminetransaminases[J]. Advanced Synthesis&Catalysis,2011,353(13):2439-2445.
    [54] Cui L, Tada N, Okubo H, et al. Efficient synthesis of gem-dihydroperoxides with molecular oxygenand anthraquinone under visible light irradiation with fluorescent lamp[J]. Green Chemistry,2011,13(9):2347-2350.
    [55] Kim Y D, Shin J Y. Preparation of high-purity rebamipide. JP,2010043053[P].2010-02-25.
    [56] Nakada Y, Kagara K. Preparation of2-(4-chlorobenzamido)-3-(2-oxo-1,2-dihyd-roquinolin-4-yl)propan-oic acid via2-(diphenylmethyleneamino)-3-(2-oxo-1,2-dihydroqui-nolin-4-yl)propanoicacid lower alkyl esters. JP,2008105970[P].2008-05-08.
    [57]刘胜.格列美脲的制备工艺研究[P].山东化工,2009,38:14-16.
    [58]邓勇,钟裕国,唐维高等.降血糖新药-格列美脲合成工艺研究[J].中国药物化学杂志,2000,10(2):58-61.
    [59] Gurjar M K, Joshi R A, Chaudhuri S R, et al. Total synthesis of cis and trans-hydroxyglimepiride:active metabolite of glimepiride[J]. Tetrahedron Letters,2003,44(26):4853-4855.
    [50]冯艳菊,王林,郭亚军,等.3-乙基-3-羟基呋喃-2,4-(3H,5H)-二酮的合成[J].化学试剂,2007,29(1):55-56.
    [51] Iqbal J, Bhatia B, Nayyar N K. Cobalt(II) acetate promoted oxidative addition of1,3-dicarbonylcompounds to alkenes under aerobic conditions[J]. Tetrahedron,1991,47(32):6457-68.
    [62] Jayachandra S B, Yogesh R, Morampudi R, et al. Process for the preparation of cistatin[P]. WO,2011061609A2[P].2011-05-26.
    [63] Panchapakesan G, Arumugam N, Pandian P S, et al. An improved proces for the preparation ofcilastatin and sodium salt. WO,2007054771[P].2007-05-18.
    [64] Graham D W, Rogers E F, Kahan F M. Thienamycin renal peptidase inhibitors. US,5147868[P].1992-09-15.
    [65] Arai K, Tamura S, Kawai K, et al. A novel electrochemical synthesis of ureides from esters[J].Chemical&Pharmaceutical Bulletin,1989,37(11):3117-18.
    [66] Tarsa M, Zuchowski G, Stasiewicz-Urban A, et al. Hydrolysis of2,4-dithiophenobarbital[J]. ActaPoloniae Pharmaceutica,2009,66(2):123-128.
    [67]唐汉华,方大为,许新华.氢氧化铯作用下-烷基(或,-二烷基)二乙酯的合成[J].合成化学,2009,17(4):480-482.
    [68]邵国强.离子液体中二羰基化合物的烷基化反应[J].合成化学,2003,11(1):6-8.
    [69] Keglevich G, Majrik K, Vida L, et al. Microwave irradiation as a green alternative to phase transfercatalysis: solid-liquid phase alkylation of active methylene containing substrates under solvent-freeconditions[J]. Letters in Organic Chemistry,2008,5(3):224-228.
    [70]彭祥运,徐成治.固液相经基化反应的研究.Ⅰ.以碳酸钾为碱的丙二酸二乙酯和氰乙酸乙酯的烃基化反应[J].化学学报,1983,41(6):514-518.
    [71] Sajja E, Agrawal S K, Alagarsamy A, et al. Process for preparation of primidone by treatment of5-phenyl-5-ethyl-2-thiobarbituric acid with Raney nickel. US,20070149779[P].2007-06-28.
    [72] Ronald B, Leo C C. Photochromic coating exhibiting improved perforance. US,20090315199A1[P].2009-12-24.
    [73] Ronald B, Leo C C. Photochromic coating exhibiting improved perforance and reduced yellowness.WO,2009/155425A1[P].2009-12-23.
    [1] Woiwode T F, Wandless T J. A simple and efficient method for the preparation of hindered alkyl-aryl ethers[J]. Journal of Organic Chemistry,1998,63(25):9594-9596.
    [2]张竟清,李化其,袁毅华.萘丁醚的合成[J].精细石油化工,2001,6:45-46.
    [3] Asai K, Konishi G I, Sumi K, et al. Synthesis of silyl-functionalized oligothiophene-basedpolymers with bright blue light-emission and high refractive index[J]. Journal of OrganometallicChemistry,2011,696(6):1236-1243.
    [4] Van R J A, Guijt M C, Bouwman E, et al. Selective O-allylation of bisphenol A: toward a chloride-free route for epoxy resins[J]. Applied Organometallic Chemistry,2011,25(3):207-211.
    [5] Fukushima M, Higuchi K, Komori H. Coating composition, cured protective film having improvedwater vapor barrier properties, and coated article. US,20110034626[P].2011-02-10.
    [6] Yu F, Zhang L Q. Thermosetting resin composition and use thereof. US,20110224332[P].2011-09-15.
    [7] Uchida H, Kobayashi T, Fukumoto N. Process for production of epoxy compound by epoxidationwith hydrogen peroxide. WO,2011078091[P].2011-06-30.
    [8] Kanayama K, Oonuma Y. Preparation of alkenyl phenyl ethers. JP,05155798[P].1993-08-12.
    [9] Okada K, Ochi K. Preparation of allylated phenols. JP,2000191572[P].2000-07-25.
    [10] Corey E J. Methyl sulfinylcarbanion[J]. Journal of Amreican. Chemical Society,1962,84:866-867.
    [11]崔建彤,辽宝娣.普罗雌烯中间体雌二醇正丙基醚的合成方法改进研究[J].山西大学学报(自然科学版),2008,02:221-222.
    [12]夏志宇,陈子纯,冼定国.二烯丙基双酚S醚的合成与表征[J].北京化工大学学报,1997,3:178-190.
    [13]李雄.双酚S二烯丙基醚的制备方法. CN,101792408[P].2010-04-23.
    [14]马素琴,刘绍英,王公应.双酚S烯丙基醚的合成方法(醇-水混合物). CN,101774952[P].2010-11-08.
    [15] Wang M L, Lee Z F. Kinetic study of synthesizing bisphenol A diallyl ether in a phase-transfercatalytic reaction. Bulletin of the Chemical Society of Japan.2006,79(1):80-87.
    [16] Oi S, Yanase N, Nate N, et al. Preparation of bisphenol dialkyl ethers. JP,2002193865[P].2002-09-15.
    [17] Boutevin B, Youssef B, Boileau S, et al. M.Preparation of fluorinated allylic ethers and thio ethersvia phase-transfer catalysis[J]. Journal of Fluorine Chemistry,1987,35(2):399-410.
    [18] Yadav G D, Badure O V. Selective engineering in O-alkylation of m-cresol with benzyl chlorideusing liquid-liquid-liquid phase transfer catalysis[J]. Journal of Molecular Catalysis A: Chemical,2008,288(1-2):33-41.
    [19] Krompiec S, Kuznik N, Penczek R, et al. Isomerization of allyl aryl ethers to their1-propenylderivatives catalyzed by ruthenium complexes[J]. Journal of Molecular Catalysis A: Chemical,2004,219(1):29-40.
    [20] Yuan W, Feng J, Judeh Z, et al. Use of polyimide-graft-bisphenol A diglyceryl acrylate as a reactivenoncovalent dispersant of single-walled carbon nanotubes for reinforcement of cyanate ester/epoxycomposite. Chemistry of Materials,2010,22(24):6542-6554.
    [21] Miyoshi M, Kamae T, Mihara M. Epoxy resin compositions with low viscosity, high glass-transitiontemperature and elastic modulus, and excellent toughness, fiber-reinforced composite materialsthereof, and their manufacture. JP,2010163504[P].2010-07-29.
    [22] Higuchi S, Nakajima H. Manufacture of resin particles with narrow particle size distribution and noremaining surfactants or solvents using carbon dioxide-based media. JP,2010155943[P].2010-07-15.
    [23] Huang X B, Gu X J, Wei W, et al. Preparation of epoxy resin and phosphazene nanotube-basednanocomposites. CN,101891936[P].2010-11-24.
    [24] Hirai M, Ito H. Manufacture of highly purified epoxy resin. JP,11158248[P].1999-06-15.
    [25] Wojtech B, Kiessling H J, Becker W, et al. Process for the preparation of glycidyl ethers ofmonohydric or polyhydric phenols, the glycidyl ethers and use thereof. US,4373073[P].1983-02-08.
    [26] Fabio L B, Thiago P A, Bluma G S. Synthesis and properties of epoxy resin modified withepoxy-terminated liquid polybutadiene[J]. Polymer,2003,44:5811~5819.
    [27] Sinnema F H, Vegter G C. Polyglycidyl ethers with a low molecular weight. GB,1278737[P].1972-06-21.
    [28]于静,何宏伟.一种合成高纯低分子双酚A环氧树脂的工艺. CN,1546548[P].2004-11-17.
    [29]李丕高,李美军.微波辐射法合成苄基2-萘基醚的研究[J].现代生物医学进展,2007,9:1316-1318.
    [30]郑启升,赵吉寿,王金城,等.一锅法合成肼基二硫代甲酸苄酯的研究[J].化学试剂,2007,48(11):684-688.
    [31]林世静,孙阳昭,佟拉嘎,等.微波辐射合成对甲苯基苄基醚的研究[J].日用化学工业,2007,37(2):99-101,141.
    [32] Yadav G D, Bisht P M. Synergism of low energy microwave irradiation and solid-liquid phasetransfer catalysis for selective alkylation of phenols to phenolic ethers[J]. SyntheticCommunications,2004,34(16):2885-2892.
    [33] Niu J J, Guo P R, Kang J T, et al. Copper(I)-catalyzed aryl bromides to form intermolecular andintramolecular carbon-oxygen Bonds[J]. Journal of Organic Chemistry,2009,74(14):5075-5078.
    [34] Zha Z G, Qiao S, Jiang J Y, et al. Barbier-type reaction mediated with tin nano-particles in water.Tetrahedron Letters,2005,61:2521–2527.
    [35] Kolodziuk R, Kryczka B, Lhoste P, et al. An easy and efficient access to Bis-allyloxy-arenes.Synthetic Communications,2000,30(21):3955-3961.
    [36] Shaikh A G, Sivaram S. Environmentally friendly byproduct-free process for preparation of bisallylether of bisphenols. IN,182613[P].1999-02-17.
    [37] Kuwano R, Kusano H. Benzyl Protection of Phenols under Neutral Conditions:Palladium-Catalyzed Benzylations of Phenols[J]. Organic Letters,2008,10(10):1979-1982.
    [38] Uchida H, Sato H. Preparation of allyl ethers from hydroxy compounds and allyl carboxylates. JP,2011026253[P].2011-02-10.
    [39] Uchida H, Arai Y, Sato K, et al. Process for production of glycidyl ether compounds, and monoallylmonoglycidyl ether compound. WO,2011078060[P].2011-06-30.
    [40] Kumru M E, Maiershofer S, Reinheimer A, et al. Silane-modified, two-component mortar withimproved adhesion to the surface of damp boreholes in mineral background. DE,102010013198[P].2011-09-29.
    [41] Ramachary D B, Narayana V V, Ramakumar K. A new one-pot synthetic approach to the highlyfunctionalized (Z)-2-(buta-1,3-dienyl)phenols and2-methyl-2H-chromenes: use of amine,ruthenium and base-catalysis[J]. European Journal of Organic Chemistry.2008,23:3907-3911.
    [42] Chern C Y, Chen S J, KanW M. Design and synthesis of3-aryl-5-alicyclic-[1,2,4]oxadiazoles asnovel platelet aggregation inhibitors[J]. Journal of the Chinese Chemical Society (Taipei, Taiwan).2005,52(2):331-338.
    [43]李荣东,徐燕.奥替溴铵的合成[J].中国新药杂志,2008,17(14):1238-1239,1246.
    [44] Chattopadhyay S K, Biswas T, Maity S. Sequential double Claisen rearrangement andtwo-directional ring-closing metathesis as a route to various benzofused bisoxepin and bisoxocinderivatives[J]. Synlett,2006,14:2211-2214.
    [45] Ramachary D B, Narayana V V, Ramakumar K. A new one-pot synthetic approach to the highlyfunctionalized (Z)-2-(buta-1,3-dienyl)phenols and2-methyl-2H-chromenes: use of amine,ruthenium and base-catalysis. European Journal of Organic Chemistry,2008,23:3907-3911.
    [46] Tsai T W, Wang E C, Li S R, et al. A new synthesis of benzofurans from phenols via Claisenrearrangement and ring-closing metathesis. Journal of the Chinese Chemical Society (Taipei,Taiwan),2004,51(6):1307-1318.
    [47陈平,罗先福,刘祈星.二羧酸酚铝催化合成呋喃酚的方法. CN,101979387[P].2011-02-23.
    [48]胡艾希,罗先福,王宇,等.二脂肪酸异丙醇铝及其制备方法与在制备呋喃酚中的应用. CN,101844975[P].2010-09-29.
    [49] Xu Z Y, Xu D Q, Liu B Y. Williamson reaction in ionic liquids[J]. Organic Preparations andProcedures International,2004,36(2):156-161.
    [50] Zhou M Y, Li Y Q. Preparation of aryl allyl ethers in the recyclable ionic liquid [bmim]PF6. Journalof[J]. Chemical Research.2004,5:328.
    [51] Paul S, Gupta M. Zinc-catalyzed Williamson ether synthesis in the absence of base. TetrahedronLetters,2004,45(48):8825-8829.
    [1] Dieter R K.-Oxo ketene dithioacetals and related compounds: versatile three carbon synthons[J].Tetrahedron,1986,42:3029-3034.
    [2] Junjappa H, Ila H, Asokan C V.-Oxo ketene-S, S-, N, S-and N,N-acetals: versatile intoermediates in organic synthesis. Tetrahedron,1990,46:5423-5426.
    [3] Kolb M. Umpolung of the reactivity of carbonyl compounds through sulfur-containing ketenedithioacetals in organic synthe-sis: recent developments reagents[J]. Synthesis,1977,6:357-360.
    [4] Yokoyama M, Imamoto T. Organic reactions of carbon disulfide[J]. Synthesis,1984,10:797-799.
    [5]余申义,佟太锋,魏朝俊,等.氢化铝锂还原多取代嘧啶氰基[J].化学试剂,2006,28(6):357-358.
    [6] Shestopalov A M, Rodinovskaya L A, Shestopalov A A. Combinatorial synthesis of substitutedthieno[3,2-b]pyridines and other annulated heterocycles via new SN2Thorpe-Ziegler dominoreactions[J]. Journal of Combinatorial Chemistry.2010,12(1):9-12.
    [7] Miyamoto Yoshiko. Synthesis of nitrogen-containing heterocycles:1,2,4-Triazole formationthrough disproportionation of polyazapolyenes[J]. Heterocycles,2008,75(4):847-857.
    [8] Wiles Jason A., Hashimoto Akihiro, Thanassi Jane A., et al. Isothiazolopyridones: Synthesis,structure, and biological activity of a new class of antibacterial agents[J]. Journal of MedicinalChemistry.2006,49(1):39-42.
    [9]董德文,欧阳艳,刘群,等.一种水介质中二硫缩烯酮类化合物的合成方法. CN,1721419[P].2006-01-18.
    [10]金玉子,刘群,尹炳柱.取代氮杂五员/六员环-2,4-二酮化合物及其合成方法. CN,1623991[P].2005-06-08.
    [11] Sommen G, Comel A, Kirsch G. A convenient synthesis of2,3,4,5-functionalized thieno[2,3-b]thiophenes[J]. Synthesis,2003,5:735-741.
    [12] Alizadeh A, Rezvanian A. Practical and novel one-pot protocol for the synthesis of highlyfunctionalized pyridinols and pyrido[1,2-a]-fused1,3-diazaheterocycles[J]. Synlett,2011,8:1105-1108.
    [13]黄文龙,邹志红,蓝晓步,等.四氢异喹啉衍生物其制备方法及用途. CN,102060764[P].2011-05-18.
    [14] Bock M G., Chikkanna D, Mccarthy C, et al. Preparation of heterocyclic sulfonamide derivativesuseful as MEK inhibitors. WO,2011054828[P].2011-05-12.
    [15]李松,何洪夏,郑志兵,等.胍丁胺衍生物及其作为药物的用途. CN,101062907[P].2007-10-31.
    [16] He H X, Liu M J, Zheng Z B, et al. Synthesis and analgesic activity evaluation of some agmatinederivatives[J]. Molecules,2006,11(6):393-402.
    [17]刘泽文,邵旭升,须志平,等.具有杀虫活性的吡啶氮氧化物类新烟碱化合物及其用途. CN,102070607[P].2011-05-25.
    [18]左伯军,石隆平,李磊,等.一种杀虫双杂环化合物. CN,101250165[P].2008-08-27.
    [19]李忠,钱旭红,邵旭升,等.一类具有高杀虫活性化合物的制备方法及用途. CN,101045728[P].2007-10-03.
    [20] Oora T, Nakaya M, Oonuma K, et al. Preparation of tetrahydrofuran derivatives as insecticides. JP,08259553[P].1996-10-08.
    [21] Yamada M, Oota C, Takanami R, et al. Nitro compounds and insecticides and acaricides containingthem. JP,05271192[P].1993-10-19.
    [22] Minamida I, Iwanaga K, Okauchi T. Alpha-unsaturated amines, particularly1,1-diamino-2-nitroethylene derivatives, their insecticidal/miticidal compositions, and processes for theirpreparation. EP,302389[P].1989-02-08.
    [23] Page L W., Bailey M, Beswick P J, et al. The acid-mediated intramolecular1,3-dipolarcycloaddition of derived2-nitro-1,1-ethenediamines for the synthesis of novel fused bicyclicisoxazoles[J]. Tetrahedron Letters,2010,51(26):3388-3391.
    [24] James G, Graham H, Arthur J, et al. Preparation of substituted ethylenes. US,5112995[P].1992-05-10.
    [25] Yekanathsa M A, Vrajalal S P, Mukarram S M. A process for the preparation and purification ofNizatidine. IN,2006MU01979[P].2008-07-25.
    [26] Reddy G O, Mamillapalli R S, Sekhar B C. An improved process for the preparation of Nizatidine.IN,187714[P].2002-06-15.
    [27] Kumar D R. An improved process for preparing nizatidine intermediate. WO,2004069817[P].2004-08-19.
    [28]王多平.一种制备盐酸雷尼替丁的方法. CN,102010389[P].2011-04-13.
    [29]刘伟,李润涛,刘振中,等.盐酸雷尼替丁的合成[J].郑州大学学报(自然科学版),1992,24(12):237-239.
    [30] Stankovic S, Stojanovic N, Stojicic S, et al. Preparation of ranitidine and related compounds. WO,2000029400[P].2000-05-25.
    [31] Yamada M, Kosugi C, Tomita M, et al. Preparation of isoxazole derivatives as insecticides. JP,03246283[P].1991-11-01.
    [32] Haga T, Toki T, Koyanagi T, et al. Preparation of benzylnitropyrimidines as pesticides. JP,03148274[P].1991-06-25.
    [33] Yamada M, Takahashi Y, Fujita T. Preparation of isoxazoles as insecticides. JP,02279680[P].1990-11-15.
    [34] Shiokawa K, Tsuboi S, Moriya K, et al. Preparation of nitro-substituted heterocyclcic compounds asinsecticides. EP,398084[P].1990-11-22.
    [35] Sukach V A., Bolbut A V, Petin A Y, et al. Synthesis of novel functionalized derivatives of5-nitro-3,4-dihydropyrimidin-2(1H)-one by the cyclocondensation of1-chlorobenzyl isocyanateswith nitroketene N,S-and N,N-acetals[J]. Synthesis,2007,6:835-844.
    [36] Schilling S, Buchholz M, Niestroj A J, et al. Preparation of imidazolyl thiourea derivatives asinhibitors of glutaminyl cyclase. WO,2005075436[P].2005-08-18.
    [37] Renslo A R, Gordeev M F, Patel D V, et al. Preparation of [3.1.0]bicyclohexylphenyloxazolidinonederivatives as antimicrobials. WO,2004089943[P].2004-10-21.
    [38] Oxford A W, Jack David. Preparation of2-aryliminopyrimido[6,1-a] isoquinolin-4-ones asphosphodiesterase inhibitors. WO,2000058308[P].2000-10-05.
    [39] Taveras A G, Mallams T, Alvarez C. Preparation and formulation of tricyclic compounds useful forinhibition of farnesyl protein transferase. US,5861395[P].1999-01-19.
    [40] Kaneko T, Clark R, Ohi N, et al. Preparation of pyrazinobenzothiazine derivatives and analogs forthe treatment of inflammation and autoimmune diseases. WO,9806720[P].1998-02-19.
    [41] Manjunatha S G, Reddy K V, Rajappa S. Nitroketene S, N-acetals as precursors for nitroacetamidesand the elusive nitrothioacetamides[J]. Tetrahedron Letters,1990,31(9):1327-30.
    [42] Choudary B M, Rao K K, Mehendar K. Process for production of alkanesulfonic acid. IN,2003DE00348[P].2007-04-27.
    [43] Choudary B M, Rao K K, Koosam M. Process for production of alkanesulfonic acids via theoxidation of mercaptoalkanes with aqueous hydrogen peroxide. WO,2004058693[P].2004-07-15.
    [44] Rao H, Surya P, Geetha K, Kamalraj M. Synthesis of lactones of ortho-tyrosine, DOPA isomers andtryptophan-ortho-tyrosine hybrid amino acids[J]. RSC Advances,2011,1(6):1050-1059.
    [45]马增欣,朱少龙,游金龙,等.1-甲胺基-1-甲氧基-2-硝基乙烯的合成方法. CN,101462969[P].2009-06-24.
    [46] Crookes D L. Preparation of ranitidine using1-alkoxy-N-methyl-2-nitroethenamines. GB,2217713[P].1989-11-01.
    [47] Deshmukh A R, Bhawal B M, Shiralkar V P, et al. An improved process for the preparation of1-substituted amino-1-substituted thio-2-nitroalkenes. EP,396830[P].1990-11-14.
    [48] Deshmukh A R, Bhawal B M, Shiralkar V P, et al. Improved process for the preparation of1-(substituted amino)-1-(substituted thio)-2-nitroalkenes. US,4967007[P].1990-10-30.
    [49] Grayson J I, Heyes G, Jackson A, et al. Preparation of ethenamines as intermediates for ranitidine.DE,4010888[P].1990-10-11.
    [50] Seager J F, Dansey R. N-methyl-1-alkylthio-2-nitroethenamines. GB,2160204[P].1985-12-18.
    [51] Kasztreiner E, Fuchs O, Lazar A, et al. Basic thioethers and their salts. HU,34965[P].1985-05-28.
    [52] Lopez M I, Domingo C A. N-Methyl-1-methylthio-2-nitroethenamine. ES,523448A1[P].1984-11-16.
    [53]周慧,黄静.1-甲胺基-1-甲硫基-2-硝基乙烯的合成[J].四川化工,1994,4:10-12.
    [54]李军章,刘守信,于奕峰,等.1-甲胺基-1-甲硫基-2-硝基乙烯的制备. CN,1962626[P].2007-05-16..
    [55] Deshmukh A R, Bhawal B M, Shiralkar V P, et al. Preparation of1-(substituted amino)-1-(substituted thio)-2-nitroalkenes from nitroalkanes and carbonimidodithioic acid esters. IN,172604[P].1993-10-23.
    [56] Ootsuka Y, Morita H, Mori H. Preparation of N-substituted-1-methylthio-2-nitroethenamines asintermediates for antiulcer agents. JP,07157465[P].1995-06-20.
    [57] Ootsuka Y, Morita H, Mori H. Isolation of N-substituted-1-methylthio-2-nitroethenamines asintermediates for H2receptor antagonists. JP,07082242[P].1995-03-28.
    [58] Lopez M I, Domingo C A. Preparation of N-methyl-1-methylthio-2-nitroethenamine, asintermediate for H2-antihistaminics. ES,2003781[P].1988-11-16.
    [59] Seager J F, Dansey R. Procedure for preparing nitroethenamine derivatives. DE,3521456[P].1986-01-09.
    [1]宋宝安,刘新华,杨松,等.肟类衍生物的合成与农药生物活性的研究进展[J].有机化学,2005,05:507-527.
    [2] Rosenberger M, McDougal P, Bahr J, et al. Canthaxanthin: A new total synthesis[J]. Journal ofOrganic Chemistry,1982,47(11):2130-2134.
    [3]皮士卿,陈新志,胡四平等.虾青素的合成[J].有机化学,2007,27(9):1126-1128.
    [4] Janitschke L, Hoffmann W. Process for the preparation of compounds of the megastigman-series, andintermediates for this synthesis. DE,3231189[P].1984-02-23.
    [5]朱幸丹,孙琪,任明月,等.2,4,4-三甲基-3-(3-羰基-1-丁烯-1-基)-2-环己烯基-1-肟的合成研究[J].山东化工,2011,40(6):1-2,6.
    [6] Sheremeteev A B. Chemistry of furazan fused to five membered rings[J]. Journal of HeterocyclicChemistry,1995,32:371-385.
    [7] Pivna T S, Sukhachev D V, Evtushenko A V, et al. Co-imparative characteristic of energy contentcaculating methods for the furazan series as an example of energetic materials[J]. PropellantsExplosives Pyrotechnics,1995,20:5-10.
    [8] Zelenn A K, Trudell M L, Gilardi R D. Synthesis and structure of dinitroazofurazan[J]. Journal ofHeterocyclic Chemistry,1998,35:151-155.
    [9]吕连营,马志中,张坤玲,等.7-氨基-6-硝基苯并二氧化呋咱的合成、晶体结构及热分析[J].精细化工,2007,24:747-750.
    [10]李占雄,店松青,欧育湘,等.呋咱含能衍生物合成研究进展[J].含能材料,2002,10(2):59-65.
    [11]詹祖金,陈小微,雷鸣,等.2-肟基丙二腈与羟胺反应合成1,3-二氨基-1,2,3-三肟基丙烷反应动力学研究[J].化学学报,2011,05(14):1688-1696.
    [12] Lim J D, Liu H Z. Application and Advancement in Synthesis of2-butanone oxime[J]. ChemicalEngineering,2006,130(7):42-43
    [13] Quan N, Shi X X, Nie L D, et al. A green chemistry method for the regeneration of carbonylcompounds from oximes by using cupric chloride dihydrate as a recoverable promoter forhydrolysis[J]. Synlett,2011,7:1028-1032.
    [14] Isart C, Bastida D, Bures J, et al. Gold(III) complexes catalyze deoximations/transoximations atneutral Ph[J]. Angewandte Chemie, International Edition,2011,50(14):3275-3279.
    [15]徐兆瑜.己内酰胺生产工艺技术新进展[J].杭州化工,2006,37(3):25-29.
    [16]李焰,周叶兵,刘杰,等.新型杀菌剂醚菌酯的合成研究[J].湖北大学学报(自然科学版),2005,01:256-259.
    [17]陆翠军,刘建华,杜晓华.肟菌酯的合成工艺[J].农药,2011,03(10):241-245.
    [18] Sridhar M, Narsaiah C, Raveendra J, et al. Efficient microwave-assisted synthesis of oximes fromacetohydroxamic acid and carbonyl compounds using BF3OEt2as the catalyst[J]. TetrahedronLetters,2011,52(36):4701-4704.
    [19] Zhang G F, Wen X, Wang Y, et al. Sodium nitrite catalyzed aerobic oxidative deoximation undermild conditions[J]. Journal of Organic Chemistry.2011,76(11):4665-4668.
    [20] Liu S B, Yu Y, Liebeskind L S. N-Substituted imines by the copper-catalyzed N-imination ofboronic acids and organostannanes with O-acyl ketoximes[J]. Organic Letters.2007,9(10):1947-1950.
    [21] Gopalsamy A, Yang H, Ellingboe J W, et al.1,2,4-Oxadiazolidin-3,5-diones and1,3,5-triazin-2,4,6-triones as cytosolic phospholipase A2[J]. Bioorganic&Medicinal Chemistry Letters,2006,16(11):2978-2981.
    [22] Sudhakar D, Rao V M, Siddaiah V, et al. Facile polyethylene glycol (PEG-400) promoted synthesisof oximes[J]. Organic Chemistry: An Indian Journal,2010,6(1):63-65.
    [23] Liu S X, Liu He, Yan W Y, et al. Design, synthesis, and anti-tumor activity of (2-O-alkyloxime-3-phenyl)-propionyl-1-O-acetylbritannilactone esters[J]. Bioorganic&Medicinal Chemistry,2005,13(8):2783-2789.
    [24] Beier C, Benting J, Bernier D, et al. Preparation of fungicide hydroximoyl-heterocycles derivatives.WO,2011080254[P].2011-07-07.
    [25] Bohle D S, Perepichka I. A new synthetic route to3-oxo-4-amino-1,2,3-oxadiazole from thediazeniumdi-olation of benzyl cyanide: stable sydnone iminium N-Oxides[J]. Journal of OrganicChemistry,2009,74(4):1621-1626.
    [26] Kondo Y, Tadokoro E, Matsuura M, et al. Synthesis and seed germination stimulating activity ofsome imino analogs of strigolactones[J]. Bioscience, Biotechnology, and Biochemistry.2007,71(11):2781-2786.
    [27] Arvai G, Bertok B, Janosi A, et al. Process for producing the sodium salt of2-[(Z-hydroxyimino)-phenyl]acetonitrile by isomerization of the E-Z isomer mixture in aqueous aliphatic alcoholsfollowed by fractional crystallization. HU,2002002078[P].2004-12-28.
    [28] Gilmore J L, Sheppeck J E. Preparation of3-(4-(1-hydroxyethyl)phenyl)-1,2,4-oxadi-azolederivatives as sphingosine-1-phosphate receptor agonists for the treatment of autoimmune diseaseand inflammation. WO,2011017578[P].2011-02-10.
    [29] Dhar T M, Xiao H Y, Watterson S H, et al. Tricyclic heterocyclic compounds as G protein-coupledreceptor S1P1agonists and their preparation and use in the treatment of autoimmune and vasculardiseases. WO,2011059784[P].2011-05-19.
    [30]胡间慧.-氰基甲酮肟N-甲基氨基甲酸酯的合成[J].农药,1996,35(2):20-26.
    [31]胡尚慧.不同肟类N-甲基氨基甲酸酯的杀虫活性和离体胆碱酯酶抑制作用的研究[J].农药,1996,35(4):51-54.
    [32] Imoto H, Imamiya E, Momose Y, et al. Studies on non-thiazolidinedione antidiabetic agents.1.Discovery of novel oxyiminoacetic acid derivatives[J]. Chemical&Pharmaceutical Bulletin,2002,50(10):1349-1357.
    [33] Albericio F, El-Faham A, Luxembourg Y, et al. Preparation of proton acceptoriminium/carbocation-type and tris(amino)phosphonium-type coupling agents for the synthesis ofpolypeptides and polynucleotides. WO,2009138985[P].2009-11-19.
    [34] El-Faham A, Funosas R S, Prohens R, et al. A Safer and More Effective Replacement forBenzotriazole-Based Uronium Coupling Reagents[J]. Chemistry--A European Journal,2009,15(37):9404-9416.
    [35] Seo H J, Park E J, Kim M J, et al. Design and synthesis of novel arylpiperazine derivativescontaining the imidazole core targeting5-HT2A receptor and5-HT transporter[J]. Journal ofMedicinal Chemistry,2011,54(18):6305-6318.
    [36] Mloston G, Jasinski M, Heimgartner H. Straightforward access to (imidazol-2-yl)acetates byreaction of2-unsubstituted imidazole3-oxides with dimethyl acetylenedicarboxylate[J]. EuropeanJournal of Organic Chemistry,2011,13:2542-2547.
    [37]丛欣,黄伟,沈超,等.吡咯衍生物的制备方法及应用. CN,102146074[P].2011-08-10.
    [38] Kumar P, Ghalasasi S, Gupta R C, et al. Novel fused pyridazine derivatives, particularly N-[(fusedpyridazinyl)carbonyl] substituted amino acids, as HIF activators and their preparation,pharmaceutical compositions and use in the treatment of diseases. WO,2011048611[P].2011-04-28.
    [39]徐海云,来兰梅,刘瑛.2-乙氧羰基-3-甲基-4,5-四亚甲基吡咯的合成[J].江西师范大学学报,2010,34(3):227-231.
    [40] Antina E V, Guseva G B, Loginova A E, et al. Synthesis and spectral properties of new3,3'-bis(dipy-rrolylmethene) with acetylene spacer[J]. Russian Journal of General Chemistry,2010,80(11):2374-2381.
    [41] Nakayama M, Iwamoto F, Mori H. Preparation of aminomalonic acid ester or salt thereof.WO2010150886[P].2010-12-29.
    [42] Guo J L, Li B Z, Chen W M, et al. Synthesis of substituted1H-pyrrol-2(5H)-ones and2(5H)-furanones as inhibitors of aeruginosa biofilm[J]. Letters in Drug Design&Discovery,2009,6(2):107-113.
    [43]张峰.2-羟基丙二羰类化合物的合成在黄酮醇类合成中的应用. CN,101367785[P].2009-02-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700