稀土碳酸盐制备铈基稀土抛光粉的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铈基稀土抛光粉是一种优良的抛光材料,因其独特的抛光性能及质量,而被广泛地应用于光学玻璃、电子产品等高科技领域。铈基抛光粉的抛光性能是由其特殊的物理化学性质决定的。而如何制备出性能优异的抛光粉,已经成为一项热门的研究课题。
     本论文以铈碳酸盐和镧铈碳酸盐为原料,通过球磨粉碎、掺氟、干燥、焙烧等工艺过程,制备出WFC型(氧化铈)、C型(含氟氧化铈)、WFLC型(镧铈氧化物)和LC型(含氟镧铈氧化物)铈基稀土抛光粉,并从晶体学的角度分析了其晶体结构,测试了其抛光性能,进而研究了晶体形貌和晶体结构与抛光性能之间的关系。论文分为四个部分:
     第一部分通过XRD和DTA方法对四种铈基稀土抛光粉制备流程中的粉碎过程、氟化过程、干燥过程、焙烧过程的相组成和化学反应进行了研究。并首次分别对C型(掺氟铈碳酸盐)和LC型(掺氟镧铈碳酸盐)碳酸盐焙烧过程中稀土氟氧中间化合物生成的动力学进行了研究,结果表明:其反应在357~417℃温度范围和425~452℃温度范围的动力学方程分别为y1=-4.4×102x+0.45和y2=-3.4×103x+0.69;表观活化能分别为E1=8425 kJ·mol-1,E2=65104kJ·mol-1;反应级数分别为n1=0.45和n2=0.69。
     第二部分采用XRD、SEM和HRTEM等测试技术对四种铈基稀土抛光粉的颗粒形貌、晶体结构(晶体尺寸、晶格常数、晶格畸变)进行了研究。结果表明:①WFC型、WFLC型铈基稀土抛光粉的烧结颗粒形貌呈片状和针状,C型和LC型铈基稀土抛光粉的烧结颗粒呈球形团聚体状态;四种铈基稀土抛光粉的颗粒都由球形晶粒组成,其中WFC型晶粒聚集紧密,WFLC型晶粒聚集紧密度仅次于WFC型,C型晶粒聚集相对松散,LC型晶粒聚集紧密度大于C型。说明F对颗粒形貌和聚集状态影响显著。②La固溶于CeO2晶格中,同时含有F时,La部分存在于CeO2晶格中形成固溶体,部分La和F共同形成新相CeLa2O3F3。③在950℃下,随焙烧时间的延长,四种铈基稀土抛光粉的晶粒尺寸均不断增大。F对CeO2的晶粒尺寸的影响大于La。同时掺La和F的铈基稀土抛光粉中的物相CeLa2O3F3将F大量固定,导致氟主要以镧铈氟氧化物存在,使得C型和LC型的CeO2晶粒的生长趋势基本一致;四种铈基稀土抛光粉中CeO2的晶格常数总的变化趋势是逐渐减小并趋于稳定,各铈基稀土抛光粉中CeO2晶格常数的大小次序为LC型>WFLC型>C型>WFC型;晶格畸变逐渐减小,F对CeO2晶格畸变的影响大于La。
     第三部分研究了焙烧条件、粒度分布、颗粒形貌、晶体结构(晶体尺寸和结晶子径结晶形状)与抛光粉性能之间的关系。结果表明:四种稀土抛光粉的抛光能力大小为LC型>WFLC型>C型>WFC型;950℃焙烧的LC型(含氟镧铈氧化物)稀土抛光粉的研削力、划伤和光洁度的指标都优于其他条件下制备的抛光粉;L111/L200比值太小则三级棱角十分尖锐,容易划伤工件表面;L111/L200比值太大,则三级棱角不明显,抛光能力下降,进而证明L111/L200比值接近1时抛光效果最好。
     第四部分采用Hunter Lab空间色体系理论,研究了以镧铈碳酸盐生产的稀土抛光粉的颜色与抛光性能的关系。其结果表明:随着焙烧温度和焙烧时间的增加,稀土抛光粉L、b值减小,a值增大,颜色逐步变深;稀土抛光粉颜色与研削能力呈规律变化。这为直接用抛光粉色度参数控制抛光粉的生产条件和评价产品质量提供了可能。
The ceria-based polishing powder is a kind of outstanding polishing material. With its unique polishing performance and quality, it is extensively applied to High-tech fields, such as the optical glass, electronic product, etc. The polishing performance of ceria-based polishing powder is determined by its special physical and chemical property. And how to prepare the polishing powder of excellent performance, already become a hot subject for research.
     In this paper, using cerium carbonate and lanthanum-cerium carbonate as raw materials, four kinds of ceria-based rare earth polishing powders were prepared by the processes of ball milling grinding, fluorine-doping, drying and calcination.Their crystal structure were analysized, and the polishing performance were also tested.The relation between crystal structure and polishing performance were studied.This paper consists four parts:
     In partⅠ,the phase composition and the chemical reaction during the processes of ball milling grinding, fluorine-doping, drying and calcination were studied by XRD and DTA.And the dynamics of flu-oxide intermediate compound generating during C and LC calcinating process were studied first time.The results showed, the corresponding dynamics equation were y1=-4.4x102x+0.45,y2=-3.4×103x+0.69 respectively, and the apparent activation energy were 8425 kJ·mol-1,65104kJ·mol-1 respevtively, and the reaction order were 0.45,0.69 respevtively.
     In partⅡ,the particle pattern and crystal structure(consists of grain size, lattice constant and distortion of lattice) were studied by XRD,SEM and HRTEM.The results showed that: firstly, the particle patterns of WFC and WFLC ceria-based polishing powders appeared flaky and needlelike, while those of C and LC ceria-based polishing powders appeared spherical aggregate; the particle of four ceria-based polishing powders all consisted of spherical crystal grain, among which the WFC crystal grain aggregate closely, the crystal grain closeness of WFLC only was less than that of WFC, the C crystal grain aggregate incompact relatively, the crystal grain closeness of LC was higher than that of C. The above results indicated that the particle pattern and coherent condition were influenced obviously by F. Secondly, La solutionized into CeO2 crystal lattice, while in the condition that contains F simultaneously, one part of La solutionized into CeO2 crystal lattice, and the other part of La generated new phase CeLa2O3F3 with F. Thirdly, the crystal size of four ceria-based polishing powders increased with the prolonging sintering time.The effect of F on crystal size was grater than that of La. The phase CeLa2O3F3 in the ceria-based polishing powder doping La and F simultaneously fixed large quantity of F, which caused that F existed mainly as fluoxide, so the CeO2 crystal growth tendency of C and LC basically in correspondence. The general tendency of CeO2 lattice constant of four ceria-based polishing powders gradually decreased and drived to stabilization. The CeO2 lattice constant of four ceria-based polishing powders was LC>WFLC>C>WFC.The distortion of lattice gradually decreased with the prolonging time. The effect of F on the lattice distortion was grater than that of La.
     In partⅢ, the relation between polishing performance and many factors such as different sintering condition, size distribution,particle pattern,crystal structure(consists of grain size and crystallizing shape)were studied. The results showed that:the polishing performance of four ceria-based polishing powders was LC>WFLC>C>WFC;the polishing performance, fishtail, smooth finish of LC ceria-based polishing powder calcined under 950℃were better than others; too low L111/L200 caused tertiary edge angle to be very sharp, and work surface were easily fishtailed, while too high L111/L200 caused tertiary edge angle not to be obvious, and the polishing performance decreased, which indicated that the polishing ability was the best as the value of L111/L200 approached 1.
     In partⅣ, the relationship between ceria-based polishing powder's color and the polishing performance was studied using Hunter's Lab theory of color space. The results showed that, with the increasing calcination temperature and time, the value of L and b increased, the value of a decreased, the color became dark.The viration between the ceria-based polishing powder's color and the polishing performance appeared regularity, so it was possible to use the color parameters to control ceria-based polishing powder's preparing condition and evaluate the product quality.
引文
1.李学舜.稀土抛光粉的生产及应用[J],中国稀土学报,2002,20(5):392-397.
    2.黄绍东,李培忠,李学舜.稀土抛光粉研磨试验研究[J],包钢科技,2003,29(2):83-85.
    3.李永锈,周新木.稀土抛光粉材料的生产、应用及其新进展[J],稀土,2002,23(5):71-74.
    4.王学正.稀土抛光粉的制取[J],有色金属与稀土应用,1994,4:34-37.
    5.SilvernailW L.Polish ing composition and process of forming same[P],U S, 3097083,1963.
    6.程耀庚,冯法伦,魏绪钧.以铈富集物为原料制取稀土抛光粉的研究[J],稀土,1998,19(4):39-41.
    7.李进,郝仕油.抛光粉制备工艺的研究[J],江西化工,2003,(3):35-38.
    8.杨遇春.稀土在中国高新材料研制开发中的应用[J],中国稀土学报,1996,14(1):72-78.
    9.郭殿东.附壁效应在稀土抛光粉工艺精密气流分级的应用和推广[J],稀土,2001,22(6):54-59.
    10.Silvernail W L.Process for rejuvenafing spent glass polishing agents [P],US,3436199,1969.
    11.Nanoinaker F C.Process for preparing a polishing compound [P],US,3131039,1964.
    12.Randle R M.Process for preparing a polishing compound and products [P],US,3298807, 1967.
    13.Ruefer H L.Rare earth chlorides in glass polishing composition [P],US,3317293,1969.
    14. Alexander H M.Glass polishing of rare earth nitrate [P],US,3240580,1966.
    15.Tomas L D.Glass polishing composition comprising a water soluable zinc salt [P],US, 3317294,1967.
    16. Khaladji.Rare earth polishing compositions[P],US,4529410,1985.
    17.Melard.Cerium/rare earth polishing compositions[P],US,4786325,1986.
    18.Chane Ching.Process for producing cerium oxide particulate[P],US,4663137,1985.
    19.翟永青.稀土抛光粉的应用及发展[J],河北化工,1998,(1):40-42.
    20.李永锈.稀土产品的物性控制与稀土产业的发展[J],稀土,1999,20(4):73-76.
    21.稀土编写组.稀土[M],北京:冶金工业出版社,1978,422-424.
    22.林河成.我国稀土抛光粉的发展现状及前景[J],稀有稀土金属,2004,(1):32-35.
    23.郭怀华.包钢生产H-500型稀土抛光粉可行性分析[J],包钢科技,1999,(1):80-83.
    24.程耀庚,魏绪钧.以氟碳铈精矿为原料制取稀土抛光粉的研究[J],稀土,1998,19(1):36-39.
    25.李学舜,崔凌霄,杨国胜等.TCE高性能稀土抛光粉的制备及影响因素的研究[J],稀土,2003,24(6):48-51.
    26.黄绍东,刘铃声,李学舜等.光学玻璃抛光用稀土抛光粉的制备[J],稀土,2002,23(6):46-49.
    27.Hedirck J B.Mineral Commodity Summuries—RareEarths[M],U S Geological Survry,1996,2000-2002.
    28.李进,何小彬,李永锈等.光学玻璃抛光材料用超细Ce02前驱体的制备[J],稀有金属与硬质合金,2003,31(3):1-4.
    29.洪科.稀土氧化物抛光粉的生产方法[J],今日科技,1996,(2):10-12.
    30.程耀庚,魏绪钧.以氯化稀土为原料制备稀土抛光粉的研究[J],稀有金属与硬质合金,1998,(32):9-13.
    31.郑武城.稀土抛光粉的物化性能与抛光能力之间的关系[J],稀土,1981,(1):46-51.
    32.何松,高勇,曾清华.氟碳铈矿稀土抛光粉与氟碳酸盐稀土抛光粉性能研究[J],稀有金属,1998,22(4):304-307.
    33.邬烈恭.关于光学玻璃抛光过程的研究[M],北京:国防工业出版社,1979,13-15.
    34.[苏联]卡恰洛夫.毛文杰,杨映芳译.平板玻璃研磨抛光工艺学[M],中国工业出版社,1965,87-89.
    35.高发明,张思远.ANB8-N晶体中的化学键参数与硬度的关系[J],应用化学,1992,9(2):69-72.
    36.林鸿海.氧化铈的光学抛光效果[J],光学技术,1990,11(4):23-26.
    37.盖国胜.超细粉碎分级技术[M],北京:中国轻工业出版社,2000,51-59.
    38.卢寿慈.粉体加工技术[M],北京:中国轻工业出版社,1999,7-15.
    39.杨金龙,黄勇,谢之鹏等.陶瓷粉末颗粒尺寸测试、表征及分散(二)[J],硅酸盐通报,1995,(3):71-74.
    40.黄长雄,马作楠,何弗等.库尔特激光颗粒粒度分布分析仪[J],国外分析仪器技术与应用,1992,(3):80-82.
    41.米凤文.激光衍射粒度分析仪粒度分布求解方法的研究[J],光子学报,1999,28(2): 151-154.
    42.杨玉颖,解庆红.LS230激光粒度仪及其应用[J],现代科学仪器,2003,(3):41-43.
    43.周玉,武高辉.材料分析测试技术[M],哈尔滨:哈尔滨工业大学出版社,1998,80-81.
    44.王英华,许顺生.X光衍射技术基础[M],北京:原子能出版社,1993,206-211.
    45.王英华,许顺生.X光衍射技术基础[M],北京:原子能出版社,1993,263-265.
    46.周玉,武高辉.材料分析测试技术[M],哈尔滨:哈尔滨工业大学出版社,1998,183-186.
    47.李伯民,赵波.现代研磨技术[M],北京:机械工业出版社,2003,384-390.
    48.Silvernail W L.The mechanism of glass polishing[J],Glass Ind,1971,52(5):20-26.
    49.胡赓祥.材料科学基础[M],上海:上海交通大学出版社,2000:150-153
    50.王仁智.金属晶粒纳米化与亚晶粒纳米化技术[J],材料热处理学报,1998,23(3):24-27.
    51.Klug H P, Alexander L E.盛世雄译.X-ray diffraction procedures for polycrystalline and Amorphous materials(X射线衍射技术)[M],北京:冶金工业出版社,1986,442-445.
    52.丘利,胡玉和.X射线衍射技术及设备[M],北京:冶金工业出版社,1998,129-131.
    53.李凤生.超细粉体技术[M],北京:国防工业出版社,2000,78-83.
    54.谢洪勇.粉体力学与工程[M],北京:化学工业出版社,2003,69-74.
    55.张福根.粒度测量基础理论与研究论文集[C],珠海:珠海欧美克科技有限公司,2001,89-102.
    56.施妙根,顾丽珍.科学和工程计算基础[M],北京:清华大学出版社,1999,88-93.
    57.吴文远.稀土冶金学[M],北京:化学工业出版社,2005,10-11.
    58.中山大学金属系.稀土物理化学常数[M],北京:冶金工业出版社,1978,337-338.
    59.冯天泽.稀土碳酸盐的制法、性质和组成[J],稀土,1989,(3):45-49.
    60.柳召刚,常叔,魏绪均等.氟碳铈精矿焙烧反应的研究[J],稀土,1997,18(2):15-18.
    61.付静,涂赣峰,吴文远等.混合碳酸稀土热分解过程研究[J],黄金学报,2000,2(4):266-270.
    62.张衡中.碳酸盐分解温度的变化规律[J],有色金属,1994,46(3):58-60.
    63.张世荣,涂赣峰,任存治等.氟碳铈矿热分解行为的研究[J],稀有金属,1998,22(3):185-187.
    64.张世荣,李红卫,马秀芳.高品位氟碳铈矿焙烧分解过程的研究[J],广东有色金属学报,1997,7(2):113-116.
    65.王常珍.冶金物理化学研究方法[M],北京:冶金工业出版社,2002,438-440.
    66.于伯龄,姜胶东.实用热分析[M],北京:纺织工业出版社,1990,163-166.
    67.张克丛,张乐惠.晶体生长科学与技术[M],北京:科学出版社,1997,96-102.
    68.张克丛,张乐惠.晶体生长[M],北京:科学出版社,1981,83-86.
    69.钱逸泰.结晶化学导论[M],合肥:中国科技大学出版社,2002,304-309.
    70.潘兆橹.结晶学及矿物学[M],北京:地质出版社,1985,103-108.
    71.劳迪斯RA.刘光照译.单晶生长[M],北京:科学出版社,1979,139-142.
    72.伐因斯坦.吴自勤译.现代晶体学[M],合肥:中国科技大学出版社,1990,110-115.
    73.张克丛.近代晶体学基础[M],北京:科学出版社,1987,85-91.
    74.陈继琴.晶体缺陷[M],杭州:浙江林学出版社,1992.99-104.
    75.郑武成.稀土[M],北京:冶金工业出版社,1981,46-51.
    76.N.L.Kudryavtseva.Soviet Journal of Optical Technology[J],1978,45(5):50-53.
    77.梅若兰,邬文干,包建春.混合稀土抛光粉的研制条件与其物化性能之间的关系[J],1988,3:21-24.
    78.李学舜,杨国胜,崔凌霄.稀土抛光粉在眼镜玻璃抛光中研磨条件的研究[J],2004,(3):36-39.
    79.James B,Hedrick S,Hyama P. Cerium-based polishing compounds:discovery to manufacture[J],Journal of Alloy and Matertals,1994,207-208:377-382.
    80. Kosynkin V D, Arzgatkina A A, Ivanov E N. The study of process production of polishing powder based on cerium dioxide[J],Journal of Alloy and Materials, 2000,303-304:421-425.
    81.吴春山.研磨剂之王——稀土抛光粉[J],科技信息,1997,(12):13-14.
    82.陈静中.现代晶体化学[M],北京:高等教育出版社,2001:176-177.
    83.Hu Y Z. Chemical-mechanical polishing as an enabling technology for giant magnetor resistane devices [J],Thin Solid Films,1997,3082309:555-561.
    84.Vertesy G.Influence of the core materials polish ing on the fluxset sensor's opeat ion [J], Magnetism and Magnetic Materials,2000,215-216:762-764.
    85.Rajan K, Singh R.Surface interaction forces in chemical-mechanical planarization[J], Thin Solid Films,1997,308-309:529-532.
    86.徐光宪.稀土(上册)[M],北京:冶金工业出版社,1995,63-66.
    87.何松.精矿稀土抛光粉制备工艺研究[J],稀土,1998,19(6):32-33.
    88.周雪珍.以碳酸铈为前驱体制备超细氧化铈及其抛光性能[J],稀土,2006,27(1):21-26.
    89.胡莉茵.沉淀法制备CeO2超微粉末[J],中国稀土学报,1996,14(4):372-376.
    90周雪珍,李进,丁家文等.混合碳酸稀土两步煅烧法制备超细CeO2[J],稀有金属,2004,28(5):820-824.
    91.辜子英,胡平贵,李永绣等.单分散球形氧化铈的机械化学反应制备法[J],中国有色金属学报,2003,13(3):787-791.
    92.李永绣,陈伟凡.氯化钠在球形纳米氧化铈形成过程中的作用[J],中国稀土学报,2004,22(5):636-639.
    93.Cheng ChangMing,Li YongXiu,Zhou XueZhen,et al.Preparation of well dispersed and ultra-fine Ce (Zr) O2 mixedoxide by mechanochemical processing [J],Journal of Rare Earths,2004,22(6):771-775.
    94. Li YongXiu,Chen Wei Fan,Cheng ChangMing,et al.Synthesis of CeO2 nanoparticles by mechanochemical processingand the inhibiting action of NaCl on particle agglomeration[J],Mater Lett,2005,59(1):48-52.
    95.Li YongXiu, Zhou XueZhen. Preparation of nano-size CeO2 by mechanical reaction of cerium carbonate with sodium hydroxide[J],Mater Lett,2004,58(122):245-248.
    96. Li YongXiu,Zhou XueZhen,Wang Yong. Mechanochemical reaction of lanthanum carbonate with sodium hydroxideand preparation of lanthanum oxide nanoparticle[J], Journal of Rare Earths,2002,(5):141-145.
    97.周安定,周志华.稀土氧化物抛光粉粒度的测定[J],南京师大学报,1989,12(2):35-39.
    98.荆其诚.色度学[M],北京:科学出版社,1979,44-45.
    99.李雪蕾,袁纪连.色度测量技术及其色彩管理的应用[J],今日印刷,2003,5:42-44.
    100.戚永红,周世生.均匀色彩空间及色差公式的发展简述[J],印刷世界,2003,9:16-19.
    101.张小文.颜色定性到定量的描述[J],印前技术,2003,208(7):45-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700