Ba-Fe-O铁氧体的制备、结构表征和磁性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ba-Fe-O铁氧体作为一种磁性材料,它的发展吸引了很多人的注意,铁氧体磁性材料以其优异的磁性能和价格优势在磁性材料的研究和发展中占有举足轻重的地位,并引起研究者广泛的兴趣。Ba-Fe-O铁氧体在微波毫米波器件,高密度磁记录介质以及医疗等领域已被广泛地应用。例如可以作为隐形飞机和无人侦察机表面的涂层,进行微波的吸收,达到隐形的目的;还可以作为药物载体的磁靶,使药物发挥更好的治疗效果。为了更好地发挥Ba-Fe-O铁氧体的应用价值,对于研究者来说如何更进一步提高其矫顽力,优化其磁性能,探讨其形成机制,调控掺杂元素的掺杂状态任重道远。研究工作对促进Ba-Fe-O铁氧体的应用和丰富磁性理论有重要意义。
     Ba-Fe-O铁氧体的结构主要有三种类型:尖晶石型、磁铅石型(M型)和石榴石型。尖晶石铁氧体是一种软磁材料,广泛地应用于高密度磁记录、微波装置和磁流体等领域。尖晶石铁氧体结构的化学通式为:AB2O4,为面心立方结构,晶胞中含有许多四面体和八面体空位间隙,这些空位的存在为改进铁氧体性能提供了条件,为金属离子的掺杂和取代创造了条件,因而使尖晶石型铁氧体种类繁多,性能更加优异。M型Ba-Fe-O铁氧体材料是一种永磁材料,为硬磁材料,广泛用于磁记录,发动机马达以及电磁波吸收材料等。M型钡铁氧体具有宽磁滞回线、高的矫顽力、单轴磁晶各向异性、优良的旋磁特性、高的化学稳定性、高居里温度和高剩磁等特点,同时具有较高的性价比。
     近些年随着合成技术和手段的不断创新提高,通过掺杂不同的元素和采取不同的方法研究铁氧体合成过程中结构和相变的报道很多,由于机械合金法做为一个合成磁性纳米材料的主要手段,应用越来越广泛,且机械合金化由于反应复杂,材料配比和球磨能量不同,导致产生结构相变情况也不同。因此,可以形成高性能的纳米磁性前驱体粉末。甘氨酸硝酸盐法又称自蔓延高温合成法,是近二三十年兴起的制备材料的方法,属于一种高新技术。烧结合成出铁氧体粉末性能稳定和尺寸分布均匀等,且燃烧合成前驱体颗粒较小,比表面积大,反应活性高,可用于制造高性能的铁氧体。
     采用机械合金法进行Ba-Fe-O铁氧体的合成,通过球磨BaCO3和α-Fe2O3,首次制备出尖晶石结构BaxFe3-xO4相。研究表明:在球磨过程中,首先形成了α-(Fe,Ba)2O3固溶体,随着球磨时间的增加,Ba在α-(Fe,Ba)2O3中的固溶量增加,当Ba含量达到一定的固溶限时,α-(Fe,Ba)2O3转变为具有较高密度的BaxFe3-xO4尖晶石相。在BaxFe3-xO4中,Ba2+替代Fe2+占据尖晶石结构中八面体的B位,其成份为Ba0.23Fe2.77O4,饱和磁化强度为53.3emu/g,矫顽力是113.7 Oe。
     利用常规烧结、机械合金化结合高温烧结和甘氨酸硝酸盐法开展了M型钡铁氧体(M-BaFe12O19)的制备、表征和磁性能的研究工作,并利用烧结曲线研究了不同制备方法中M-BaFe12O19的形成机理。研究结果表明:以α-Fe2O3和BaCO3为原材料,利用常规烧结制备M-BaFe12O19过程中,首先是α-Fe2O3和BaCO3反应生成具有正交结构的BaFe2O4中间相,然后BaFe2O4与α-Fe2O3在770至920℃温度之间反应,烧结形成M-BaFe12O19.在机械合金化结合高温烧结法中,首先将α-Fe2O3和BaCO3的混合物球磨80h形成尖晶石结构的BaxFe3-xO4,然后将BaxFe3-xO4在700-1000℃退火2小时,形成M-BaFe12O19.在甘氨酸硝酸盐方法中,首先通过自蔓延反应生成了α-Fe2O3,Fe3O4和BaFe2O4混合的前驱体粉末,然后通过在1000℃条件下烧结前驱体粉末制备出了单一相的M-BaFe12O19。比较三种制备方法,以尖晶石结构BaxFe3-xO4为前驱体通过烧结制备M-BaFe12O19的最低形成温度最低。研究发现,以机械合金法制备的M-BaFe12O19的饱和磁化强度和矫顽力分别是47.24emu/g和5086.340e,其矫顽力比其它两种方法制备的M-BaFe12O19的矫顽力大。矫顽力的增大不是由于晶粒尺寸和纯度所造成的,而是由于Ba离子残留在八面体2a位置上的原因。
     利用甘氨酸硝酸盐法进行了Al、Dy及La掺杂M-BaFe12O19的制备和掺杂元素对钡铁氧体的结构和矫顽力的影响规律和机制的研究工作。研究结果表明:当燃料和氧化物比为1.5:1时,前驱体粉末经900℃烧结2h形成单一M-BaFe12O19相。因此,所有掺杂都是在这一比例下进行的。对于A1掺杂,A1在M-BaFe12O19中Al3+替代Fe3+,记作BaAlxFe12-xO19。XRD测试结果表明:当0As a kind of magnetism materials, the development of Ba-Fe-O ferrite attracts many people's notice, ferrite magnetic materials occupy important status in magnetism study and development for excellent magnetism performance and cheap price, and bring broad interest to investigator. Ba-Fe-O ferrites had been applied extensively in mircrowave and millimeterwave device, high density magnetic recording and medical cure field etc. For example, they were made of coats of latent aeroplane and scout without people, airplane obtain aim of conceal themselves by absorbed microwave. In order to bring to applied value mostly from Ba-Fe-O, The task is arduous for improving cocercive, optimizing magnetic performance, studying form mechanism and controling adulteration element state. Our present study work was significant in advanced Ba-Fe-O ferrites and enrich magentism theory.
     Ba-Fe-O ferrites have three kinds structure:spinel type, magnetoplumbite type(M type) structure and garnet type structure. Spinel ferrite was a kind of soft magnetic material, it widely used high density magnetic recording materials, microwave devices (MW) and magnetic fluid etc. The chemical formula of structure was AB2O4, belong to facecenter cubic structure, many tetrahedral and octahedral interspaces in crystal cells, these interspaces offer changes for improving magnetism performance of ferrite, also created conditions for adulteration and substitution of metal ionic, so many kinds of spinel ferrites have appeared, their performancs were excellent. As a forevermagetic material of M type Ba-Fe-O ferrites was hard magnetic material, widely used in magnetic recording, engine motor and absorbing electromagnetic wave materials etc. It possess many characteristic, such as wide hysteresis curve, high coercivity, single axial magnetic crystal anisotropy, excellent spin magenitsm performance, high stability of chemistry, high curie temperature, high remanence and high quality to price ratio etc.
     In recently years, some synthesis technologies improve gradually, some reports of structures and phase changes for synthesis process about adulterating elements and adopted different methods appeared a large number, mechanical alloy method was used abroadly as a synthesis magnetic nanometer material mode, because the reaction of mechanical alloy was complex, so different structure phase changes were happened for different material ratios and milling energies. So high performance precursor nanometer powders were perpared by ball milling. Glycin nitrate method also called self-combustion high temperature synthesis, was arise in recently twenty-thirty years, it is a kind of new technologies. The performances of samples which were prepared by this method were stable and sizes distributed uniformity, at the same time the grain of producation for combustion synthesis was small and relative surface was large, the reaction character was high, so high performance ferrites could be prepared by this method.
     Ba-Fe-O ferrites was synthesized in mechanical alloy method, BaxFe3_xO4 with spinel structure was fabricated by ball milling BaCO3 andα-Fe2C>3 powders for the first time. The result of study show that, theα-(Fe,Ba)2O3 solid solubility body was formed in the milling process firstly, the Ba content in theα-(Fe,Ba)2O3 increased with increasing milling time, when the Ba content exceeded a limited solubility, theα-(Fe,Ba)2O3 transformed into a high density phase of BaxFe3_xO4 with spinel structure, in which the Fe2+was substituted Ba2+occupied an octahedral site. The composition of production was Ba0.23Fe2.77O4, the saturation magnetization was 53.3emu/g and coercivity was 113.7Oe.
     The research work for preparation, characteristic and magnetism performance of M type barium hexaferrite (M-BaFe12O19) were developed in general sinter method, mechanical alloy method and Glycin nitrate method. Then, the form mechanism of M-BaFe12O19 which were prepared in different methods was studied by sintering curve. The study result show in the process of preparing M-BaFe12O19 with a-Fe2O3 and BaCO3 as raw and processed materials in general sinter method, fistly the a-Fe2O3 reacted with BaCO3 to form Orthorhombic BaFe2O4 middle phase, then the BaFe2O4 reacted with a-Fe2O3 to form M-BaFe12O19 in a sintering temperature ranging from 770 to 920℃. However, in mechanical alloy method, the a-Fe2O3 reacted with BaCO3 to form BaxFe3-xO4 with spinel structure, while the M-BaFe12O19 was obtained by annealing the BaxFe3-xO4 at 700-1000℃. In the glycin-nitrate procedure, the precursor powders containing a-Fe2O3, Fe3O4 and BaFe2O4 were fabricated by self-propagating reaction firstly, and then the single M-BaFe12O19 was produced by sintering the precursor powders at 1000℃. The form temperature of M-BaFe12O19 which was sintered for precursor powders of BaxFe3-xO4 with spinel structure was lowest. We find that saturation magnetization and the coercivity of the M-BaFe12O19 which was fabricated by mechanical alloy method were 47.24 emu/g and 5086.34 Oe, respectively, which were much larger than those of the M-BaFe12O19 produced by other two procedures. The cause was Ba ion occupied octahedral 2a site, it was independent of grain sizes and purity.
     M-BaFe12O19 was prepared by Al3+, Dy3+and La3+substituted in Glycin-nitrate method, at the same time we study the law and mechanism which were influenced of adulteration element. The result show that, single phase M-BaFe12O19 was prepared at 900℃when fuel and oxide ratio was 1.5:1. Therefor all of adulterations were done in this proportion. Al3+substituted Fe3+in the process of Al adulterated M-BaFe12O19, it marked BaAlxFe12-xO19. XRD results indicate that the diffraction angle moved toward high angle direction when x of BaAlxFe12-xO19 increases from 0 to 4, the cause was the radius of Al3+is smaller than radius of Fe3+. The calculation result indicate adulteration influence crystal lattice a greatly, the value of a dropped from 5.887 A to 5.189 A, the change trend of crystal lattice c was same. Otherwise the FWHM (full width at half maximum) increases when adulteration quantity of AI increase, namely crystal grain size decreased when adulteration quantity of Al increased. This result account for growth speed of crystal grains was slower because of Al adulteration. The coercive force increased from 4012 Oe to 13738 Oe along with changes of crystal lattice constant and crystal grain size, it almost equal to the coercive of Nd-Fe-B. But when x up to 5, the other impurity phases appeared, the sample was made of M-BaAlxFe12-xO19, a-Fe2O3 and BaAl2O4 the coercive force declines to 8430 Oe. It indicate solid solubility of Al in BaAlxFe12-xO19 was limited. Because Al lock-in 2b and 12k site of M-BaAlxFe12-xO19 firstly, substituted Fe3+of this site, cause to decrease of magnetism Fe3+ion number, so the saturation magnetization reduces monotonously along with adulteration quantity of Al increases. When Ba was substituted by Dy, the crystal quality of BaxDy1-xFe12O19 sintered at 900℃was not good, Coercive forces did not increased for the sample of BaxDy1-xFe12O19. it decreased a little on the contrary, that was different from literature report, the cause might be different preparation method. M-BaxLa1-xFe12O19, was prepared when Ba was substituted by La, x changes from 1 to 5 range, The changes of coercive forces was not obvious, but the saturation magnetization reduces from 60.4 emu/g when x equal to 0 to 38.6 emu/g when x equal to 0.5. M-Bao.5La0.5AlFe12O19 was prepared when La and Al together adulterate, coercive foerce was 8740 Oe higher than 6679 Oe of BaAIFe11O19, the saturation magnetization was 26.7 emu/g. The anterior result show:the coercive force improvement of M-BaFe12O19come from substituting Fe3+, the method of substituted Ba2+was secondary.
引文
[1]Mathew D S, Juang R S. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions [J]. Chem Eng J,2007,129:51-65.
    [2]张晏清,张雄.纳米锌铁氧体的制备与微波吸收性能研究[J].材料科学与工程学报,2006,24(4):504-507.
    [3]王荫君,物理学进展,17,150-158(1997)
    [4]李新勇,李数本,化学进展,8(3),231(1996)
    [5]V. M.Fedosyuk, V. Shvartsater, O. I. Kasyutich, T. A. Tochinskii, Metallofiz Noveishie Tekhnol,20(11),65-70(1998)
    [6]. Fortuna S. V., Sharkeev Y.S. Bid, S.K. Pradhan. Preparation of zinc ferrite by high-energy ball-milling and microstructure characterization by Rietveld's analysis [J]. Materials Chemistry and Physics 82 (2003) 27-37
    [7]Thomas Verdier, Virginie Nachbaur, Malick Jean. Mechano synthesis of zinc ferrite in hardened steel vials:Influence of ZnO on the appearance of Fe(Ⅱ) [J]. Journal of Solid State Chemistry 178 (2005) 3243-3250.
    [8]P. Sharma, R.A. Rocha, S.N. de Medeiros, A. Paesano Jr. Structural and magnetic studies on barium hexaferrites prepared by mechanical alloying and conventional route[J].Journal of Alloys and Compounds 443 (2007) 37-42.
    [9]TomohisaYamauchi, YasunoriTsukahara, TakaoSakata, HirotaroMori, TsukasaChikata, Shunsaku Katoh, YujiWada. Barium ferrite powders prepared by microwave-induced hydrothermal reaction and magnetic property[J]. Journal of Magnetism and Magnetic Materials 321 (2009)8-11.
    [10]S.Hosseini Vajargah, H.R.Madaah Hosseini, Z.A.Nemati. Preparation and characterization of yttrium iron garnet (YIG)nanocrystalline powders by auto-combustion of nitrate-citrate gel [J].Journal of Alloys and Compounds 430 (2007) 339-343.
    [II]M. Sugimoto:J. Am. Ceram. Soc.,1999,82,269.
    [12]Ⅰ. Safarik and M. Safarikova:'Magnetic nanoparticles and biosciences', in'Nanostructured materials', (ed. H. Hofmann et al.),1-23; 2002, Vienna, Springer.
    [13]Y H Hou, Y J Zhao, Z W Liu, et al. Structural, electronic and magnetic properties of partially inverse spinel CoFe2O4:a first-principles study[J]. J. Phys. D: Appl. Phys.43 (2010) 445003 (7pp)
    [14]Mathew D S, Juang R S. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions [J]. Chem Eng J,2007,129:51-65
    [15]Arulmurugana R, Vaidyanathana G, Sendhilnathanb S, et al. CoZn ferrite nanoparticles for ferrofluid preparation:study on magnetic properties [J]. Physica B,2005,363:225-231.
    [16]M. Mozaffari, J. Amighian, A. Hasanpour. A novel technique to extract Bi from mechanochemically prepared Bi-Fe3O4 nanocomposite[J]. Physica B 371 (2006) 309-312.
    [17]Chun-Rong Lin, Yuan-Ming Chu, Sheng-Chang Wang. Magnetic properties of magnetite nanoparticles prepared by mechanochemical reaction[J]. Materials Letters 60 (2006)447-450
    [18]F. Padella, C. Alvani, A. La Barbera, G. Ennas, R. Liberatore, F. Varsano. Mechanosynthesis and process characterization of nanostructured manganese ferrite[J]. Materials Chemistry and Physics 90 (2005) 172-177.
    [19]张世远,路权,薛荣华,都有为, 《磁性材料基础》,1988.
    [20]P. Novak J. Rusz.Exchange interactions in barium hexaferrite [J].PHYSICAL REVIEW B 71,184433,2005.
    [21]Anton L. Geiler, Aria Yang, Xu Zuo, et al. Atomic Scale Design and Control of Cation Distribution in Hexagonal Ferrites. PHYSICAL REVIEW LETTERS 2008, 101:067201,1-4.
    [22]J.M.Le Breton, et al. [J]. Magn Magn Mater.2004,272:2214-2215.
    [23]B.D. Cullity, Introduction to Magnetic Materials, Addison-Wesley, Reading, MA,1972.
    [24]D.E. Speliotis, IEEE Trans. Magn. MAG 23 (1987) 3143.
    [25]H. Kojima, Fundamental properties of hexagonal ferrites, in:E.P. Wohlfarth (Ed.), Ferromagnetic Materials, North-Holland, New York,1982.
    [26]X. Liu, J. Wang, L.M. Gan, S.C. Ng, J. Magn. Magn. Mater.195 (1999) 452 U. Topal, J. Magn. Magn. Mater.320 (2008) 331.
    [27]刘亚丕 磁性材料及器件2003 34(1)
    [28]TomohisaYamauchi, YasunoriTsukahara, TakaoSakata,et al. Barium ferrite powders prepared by microwave-induced hydrothermal reaction and magnetic property [J] Journal of Magnetism and Magnetic Materials.321 (2009) 8-11.
    [29]K.S. Martirosyan, E. Galstyan, S.M. Hossain, et al. Barium hexaferrite nanoparticles: Synthesis and magnetic properties Materials Science and Engineering B 176 (2011) 8-13
    [30]El-Lawindy AMY, Mansour SA, Hafiz M Influence of the Mole Ratio, Sintering Condition and Particle Size on the Magnetic Properties of BaFe12O19 Synthesized by Ceramic Method[J]. International Journal of Applied Ceramic 2010,7(6):868-873.
    [31]B.T.Shirk, W.R.Buessem[J]. IEEE Trans on Magn,1972,659
    [32]张有纲,黄永杰,罗迪民.。磁性材料[J].成都电讯工程学院出版社,1987.
    [33]Chen N, Yang K, Gu MY. Microwave absorption properties of La-substituted M-type strontium ferrites [J].Journal of Alloys and Compounds 2010,490 (1-2) 609-612.
    [34]Li QL, Zhang CR, Zhao JX, et al. Preparation of Barium Ferrite Microtubules and the Effect of the La-dope onto the Property of Barium Ferrite Microtubules [J].Chinese Journal of Inorganic Chemistry.2009,25(2):312-316.
    [35]Moon KW, Jeon KW, Kim J. Synthesis and Magnetic Properties of BaFe12-xAlxO19 Nanopowders[J]. IEEE Trans on Magn.2009,45(10) 4405-4408.
    [36]贺祯.M型BaA12Fe10O19粉体的沉淀法制备和磁性能[J].中国陶瓷第46卷 第8期.2010年8月26-28.
    [37]Ⅰ. Bsoula, S.H. Mahmood, Magnetic and structural properties of BaFe12-xGaxO19 nanoparticles[J]. Journal of Alloys and Compounds 2010 (489):110-114.
    [38]F.kools, A.Morel, et al[J]. J.Magn. Magn.Mater,2002,242-245:1270-1276.
    [39]George Litsardakis, Ioannis Manolakis, Anagnostis C. Stergiou, et al. New Dy-Substituted Ba Hexaferrites With High Coercivity [J]. IEEE Trans on Magn., 2008,44, (11),4222-4224.
    [40]陈志君,傅正义,王皓等.铁氧体材料研究进展[J].陶瓷科学与艺术.2003,3.37:31-35.
    [41]S.Gdoh, E.B.Kim, B.H.Lee. J.Magn.Magn.Mate,272(2004)22-38.
    [42]W.A.Kaczmarek, B.W.Ninham.J.Appl.Phys,76(1994)6065.
    [43]N.Sugita, M Maekawa, IEEE Trans.Magn,1995,31:28-54.
    [44]W.Liu, J.Wu, Mater.Chem.Phys,2001,69 (1-3),148-151.
    [45]Gmendoza-Suarez, M.C.Cisneros-Morales, M.M.Cisneros-Guerrero,et al. Mater.Chem.Phys,2003,77:796-798.
    [46]J.C.Corral-Huacuz, G Mendoza-Suarez, J.Magn.Magn.Mater.2002,430:242-245.
    [47]Yang, XF; Li, QL; Zhao, JX, et al. Preparation and magnetic properties of controllable-morphologies nano-SrFe12O19 particles prepared by sol-gel self-propagation synthesis[J]. Journal of Alloys and Compounds.2009,475(1-2): 312-315.
    [48]Chen, Q; Wang, XQ; Ge, HL. Magnetic properties of aluminum-substituted strontium hexaferrite prepared by citrate-nitrite sol-gel technique[J]. International Journal of Modern Physics B.2008,22(20):3413-3420.
    [49]J.Rivas,Q.Lopez, IEEE Trans Magn,1993,29:26-35.
    [50]Doroftei, C; Rezlescu, E; Rezlescu, N, et al.Strontium ferrite for magnetic recording prepared by self-combustion method. [J]. Journal of Optoelectronics and Advanced Materials.2008 10 (11):2919-2923.
    [51]Holt J B. The fabrication of SiC,Si3N4 and A1N by combustion synthesis [J]. Ceramic Components for Engines,1994,98:800~809.
    [52]Munir Z A. Synthesis of high-temperature materials by self-propagating combustion methods.Ceramic Bulletin [J].AIChE. J,1998,667:342-349.
    [53]Yangsheng Zhang and Gregory C. Stangle, A micromechanistic model of microstructure development during the combustion synthesis process [J]. J.Mater.Res.1995,10.14:322-324.
    [54]Z.yang, H.X.Zeng, et al. J.Magn.Magn. Mater,1992115:77-78.
    [55]Kazin, PE; Trusov, LA; Zaitsev, DD, et al.Glass crystallization synthesis of ultrafine hexagonal M-type ferrites:Particle morphology and magnetic characteristics[J]. Russian Journal of Inorganic Chemistry.2009,54, (14):2081-2090.
    [56]F.LicLi.Besagni, IEEE Trans.Magn.1984,20:16-39
    [57]Yang, CC; Gung, YJ; Shih, CC, et al. Synthesis, infrared and microwave absorbing properties of BaFe12O19+BaTiO3)/polyaniline composite[J]. J.Magn.Magn.Mate.2011,323(7):933-938.
    [58]Ohlan, A; Singh, K; Chandra, A, et al.Conducting ferromagnetic copolymer of aniline and 3,4-ethylenedioxythiophene containing nanocrystalline barium ferrite particles[J]. Journal of Applied Polymer Science.2008,108(4):2218-2225.
    [1]Benjamin J S. Hydriding reactions induced by ball milling[J]. Metal Tran, 1970,8(1):29-43
    [2]G.B.Schaffer and P.GMccormick, Appl. Phys. Lett.1989,55:45
    [3]计汉容.固态反应中的机械合金化技术[J].云南冶金,1998,27(2)
    [4]Benjamin JS. Fundamentals of Mechanical Alloying [J]. Mater Sci, Forum,1992, (88):1
    [5]L.Schults and E.Hellsstern,in sinece and Technology of Rapidly Quenched Alloys, edited by M.Tenhover,W.L.Johnson,and L.E.Tanner (Mater.Res.Soc. Symp.Proc.80, Pittsburgh,PA,1987),P.3
    [6]E.Hellstern and L.Schultz, J. Appl. Phys.,1988,63:1408.
    [7]D.L.Zhang, T.B.Massalaki and M.R.paruchuri, Met. Mater.Trans.A,1994,25:73
    [8]T.Fukunaga,M.Utsumi,H.Akatsuka,M.Misana and U.Mizutni, J. Non-Crst. Solids, 1996,205-207:531.
    [9]C. C. Koch, J. D. Whittenberge. Mechanical milling/alloying of intermetallics[J]. Intermetallics,1996,4:339-355
    [10]D. Guzm'an, S. Ordonez, D. Serafini, P. Rojas, O. Bustos. Effect of the milling energy on the production and thermal stability of amorphous Mg50Ni50[J]. Journal of Alloys and Compounds.471 (2009) 435-441
    [11]H. Zuhailawati, Y. Mahani. Effects of milling time on hardness and electrical conductivity of in situ Cu-NbC composite produced by mechanical alloying[J]. Journal of Alloys and Compounds.476 (2009) 142-146.
    [12]FlorinVasiliu L.Diamandescu D.Macovei, C. M. Teodorescu D. Tarabasanu-Mihaila, A. M. Vlaicu V. Parvulescu. Fe-and Eu-doped TiO2 Photocatalytical Materials Prepared by High Energy Ball Milling. Top Catal[J]. (2009) 52:544-556.
    [13]Bensebaa, N; Alleg, S; Loudjani, N, et al. Effect of the milling conditions on the amorphisation of Fe77Cr4P8C11 alloy [J]. Annales De Chimie-Science Des Materiaux 2010,35 (3):177-186.
    [14]Wang, HW; Chyou, SD; Wang, SH, et al. Amorphous phase formation in intermetallic Mg2Ni alloy synthesized by ethanol wet milling[J]. Journal of Alloys and Compounds. 479 (2009)330-333.
    [15]席生歧.高能球磨固态扩散反应研究[J].材料科学与工艺,[15]2000,18(3):9
    [16]Ding, ZH; Yao, B; Qiu, LX, et al. Raman scattering investigation of nanocrystalline delta-TiNx synthesized by solid-state reaction[J]. Journal of Alloys and Compounds. 421 (2006)247-251.
    [17]Li, PL; Xi, SQ; Zhou, JE. Phase transformation and gas-solid reaction of Al2O3 during high-energy ball milling in N-2 atmosphere[J].Ceramic International 2009, 35(1):247-251.
    [18]Haghir, T; Abbasi, MH; Golozar, MA, et al. Investigation of alpha to gamma transformation in the production of a nanostructured high-nitrogen austenitic stainless steel powder via mechanical alloying[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing.2009,507 (1-2): 144-148.
    [19]Merzhaov A G. Ceram. Int.1995,21:371-379.
    [20]李文霞,殷声.低温燃烧合成陶瓷微粉[J].硅酸盐学报.1999,2:71-77.
    [21]Arvind Varma and Alexander S. Mukasyan. Combustion Synthesis of Advanced Materials:Fundamentals and Applications[J]. Korean J. Chem. Eng.2004,21(2), 527-536.
    [22]宿新泰,燕青芝,葛昌纯.低温燃烧合成超细陶瓷微粉的最新研究[J].化学进展.2005,17(3):430-435.
    [23]冯端,师昌绪,刘治国.材料科学导论[M].化学工业出版社2002年5.
    [24]L. Piraux, J. M. George, J. F. Despres, C. Leroy, E. Ferain, R. Legras, K. Ounadjela and A. Fert, Appl. Phys. Lett.,65,2484 (1994)
    [25]A. Blondel, J. P. Meir, B. Doudin and J. Ph. Ansermet, Appl. Phys. Lett.,65, 3020(1994)
    [26]A. R. West, Basic Solid State Chemistry, John Wiley&Sons, (1997)
    [1]H.B. Wang, J.H. Liu, W.F. Li, J.B. Wang, L. Wang, L.J. Song, S.J. Yuan, F.S. Li. Structural, dynamic magnetic and dielectric properties of Nio.15Cu0.2Zn0.65Fe2O4 ferrite produced by NaOH co-precipitation method [J]. J. Alloys Compd.461 (2008) 373-377.
    [2]M. Zduji'c, C. Jovaleki'c, Lj. Karanovi'c, M. Mitri'c, D. Poleti, D. Skala. Mechanochemical treatment of a-Fe2O3 powder in air atmosphere [J]. Mater. Sci. Eng. A245(1998) 109-117.
    [3]Z. Cvejic, S. Rakic, A. Kremenovic, B. Anticc, C. Jovalekic, P. Colomban. Nanosize ferrites obtained by ball milling:Crystal structure, cation distribution, size-strain analysis and Raman investigations [J]. Solid State Sci.8 (2006) 908-915.
    [4]B. Antic, A. Kremenovic, A.S. Nikolic, M. Stoiljkovic, Cation Distribution and Size-Strain Microstructure Analysis in Ultrafine Zn-Mn Ferrites Obtained from Acetylacetonato Complexes[J]. J. Phys. Chem. B 108 (2004) 12646-12651.
    [5]Z. Cvejic, B. Antic, A. Kremenovic, S. Rakic, G.F. Goya, H.R. Rechenberg, C. Jovalekic, V. Spasojevic, Influence of heavy rare earth ions substitution on microstructure and magnetism of nanocrystalline magnetite [J]. J. Alloys Compd.472 (2009) 571-575.
    [6]S.E. Jacobo, S. Duhalde, H.R. Bertorello. Rare earth influence on the structural and magnetic properties of NiZn ferrites[J]. J. Magn. Magn. Mater.272-276 (2004)2253-2254.
    [7]K. Park, J.K. Lee, J. Alloys Compd.475 (2009) 513-517.
    [8]R.V. Upadhyay, A. Gupta, C. Sudakar, K.V. Rao, K. Parekh, R. Desai, R.V. Mehta. Effect of rare-earth Ho ion substitution on magnetic properties of Fe3O4 magnetic fluids[J]. J.Appl. Phys.99 (08) (2006) M906.
    [9]J. Jiang, Y.-M. Yang, L.-C. Li, Effect of heat treatment on the magnetic properties of nanocrystalline spinel Li-Ni ferrite prepared by a simple soft chemistry routes[J]. J. Alloys Compd.464 (2008) 370-373.
    [10]H.M. Widatallah, C. Johnson, A.M. Gismelseed, I.A. Al-Omari, S.J. Stewart, S.H. Al-Harthi, S. Thomas, H. Sitepu. Structural and magnetic studies of nanocrystalline Mg-doped Li0.5Fe2.5O4 particles prepared by mechanical milling[J]. J. Phys. D:Appl. Phys.41(2008)165006.
    [11]S.M.Yunus, H.Yamauchi,A.K.M. Zakaria, N. Igawa,A. Hoshikawa,Y. Ishii, Cation distribution and crystallographic characterization of the quaternary spinel system MgxCo1-xCrxFe2-xO4[J]. J. Alloys Compd.454 (2008) 10-15.
    [12]M. Abdellaoui, E. Gaffet.The physics of mechanical alloying in a planetary ball mill: mathematical treatment. Acta Metall. Mater.43 (1995) 1087-1098.
    [13]Y. Sun, B. Yao, Q. He, F. Su, H.Z.Wang. Journal of Alloys and Compounds[J]. J. Alloys Compd.479 (2009) 599-602.
    [14]J. Ding, T. Tsuzuki, P.G. McCormick. Ultrafine BaFe 20 9 powder synthesised by mechanochemical processing[J]. J. Magn. Magn. Mater.177-181 (1998)931-932.
    [15]Y. Shi, J. Ding, H. Yin. CoFe2O4 nanoparticles prepared by the mechanochemical method[J]. J. Alloys Compd.308 (2000) 290-295.
    [16]H.P. Steier, J. Requena, J.S. Moya. Transmission electron microscopy study of barium hexaferrite formation from barium carbonate and hematite [J]. J. Mater. Res.14 (1999)3647-3652.
    [17]B. Yao, L. Liu, S.E. Liu, B.Z. Ding, W.H. Su, Y. Li. Effect of local pressure on the crystallization product of amorphous alloys induced by mechanical milling [J]. J. Non-Cryst. Solids 277 (2000)91-97.
    [18]M.L. Trudeau, R. Schulz, D. Dussault, A. Van Neste. Structural Changes during High-Energy Ball Milling of Iron-Based Amorphous Alloys:Is High-Energy Ball Milling Equivalent to a Thermal Process [J]. Phys. Rev. Lett.46 (1990)99-102.
    [19]T. Aboud, B.-Z.Weiss, R. Chaim. Mechanical alloying of the immiscible system W-Cu[J]. Nanostruct. Mater.6 (1995) 405-408.
    [20]C.H. Li, W.H. Qiu, X.L. Kang. K.C. Chou, X.G. Lu, F.S. Li. Kinetics of Synthesis of Ba1.0Co0.7Fe0.2Nb0.1O3-8 through Solid-Solid Reaction[J]. Acta Phys. Chim. Sin.24(5) (2008)767-771.
    [21]D.B. Shieh, F.Y. Cheng, C.H. Su, C.S. Yeh, M.T.Wu, Y.N.Wu, C.Y. Tsai, C.L.Wu, D.H.Chen, C.H. Chou. Aqueous dispersions of magnetite nanoparticles with NH3+ surfaces for magnetic manipulations of biomolecules and MRI contrast agents[J]. Biomaterials 26 (2005) 7183-7191.
    [22]J.L. Zhao, X.H. Wang, L.T. Li, X.X. Wang, Y.X. Li. Stoichiometry control and structure evolution in hydrothermally derived (Ba,Sr)TiO3 films[J]. Ceram. Int.34 (2008)1223-1227.
    [23]I. Mitov, Z. Cherkezova-Zheleva, V. Mitrov. Comparative Study of the Mechanochemical Activation of Magnetite (Fe3O4) and Maghemite (γ-Fe2O3) [J]. Phys. Stat. Sol. (a) 161 (1997)475-482.
    [24]R. Janot, D. Guerard. Ball-milling in liquid media Applications to the preparation of anodic materials for lithium-ion batteries[M]. Prog. Mater. Sci.50 (2005) 1-92.
    [25]吴卫芳.穆斯堡尔谱仪及其对物质中Fe的分析应用[J].现代仪器.2000,(5):39-43.
    [26]张宝峰.穆斯堡尔谱学天津大学出版社[M].1991,12:234-235.
    [27]K. Simeonidis, S. Mourdikoudis, I. Tsiaoussis, M. Angelakerisa, C. Dendrinou-Samara, O. Kalogirou. Structural and magnetic features of heterogeneously nucleated Fe-oxide nanoparticles[J]. J. Magn. Magn. Mater.320 (2008)1631-1638.
    [28]D.H. Han, J.P.Wang, H.L. Luo. Crystallite size effect on saturation magnetization of fine ferrimagnetic particles[J]. J.Magn. Magn. Mater.136 (1994) 176-182.
    [1]刘亚丕 磁性材料及器件 2003 34(1)
    [2]P. Sharma, R.A. Rocha, S.N. de Medeiros, A. Paesano Jr., J. Alloys Compd.443 (2007) 37-42.
    [3]X.F. Yang, Q.L. Li, J.X. Zhao, B.D. Li, Y.F. Wang, J. Alloys Compd.475 (2009)312-315.
    [4]J.X. Qiu, L.J. Lan, H. Zhang, M.Y. Gu, J. Alloys Compd.453 (2008) 261-264.
    [5]T.G. Carreno, M.P. Morales, C.J. Serna, Mater. Lett.43 (2000) 97-101.
    [6]L.X. Wang, Q.T. Zhang, J. Alloys Compd.469 (2009) 251-257.
    [7]J.X. Qiu, M.Y. Gu, J. Alloys Compd.415 (2006) 209-212.
    [8]P. Xu, X.J. Han, C. Wang, H.T. Zhao, W.J. Zhang, Mater. Chem. Phys.108 (2008)196-200.
    [9]G. Benito, M.P. Morales, J. Requena, V. Raposo, M. Vazquez, J.S. Moya, J. Magn.Magn. Mater.234 (2001) 65-72.
    [10]D.E. Speliotes, IEEE Trans. Magn.23 (1987) 3143-3145.
    [11]H.J. Richter, IEEE Trans. Magn.29 (1993) 2185-2201.
    [12]A. Gruskova, J. Slama, R. Dosudil, D. Kevicka, V. Jancarik, I. Toth, J. Magn. Magn.Mater.242-245 (2002) 423-425.
    [13]S. Yong, I.B. Shum, J.C. Kim, J. Appl. Phys.91 (2002) 8465-8467.
    [14]G. Turrili, F. Licci, A. Paoluzi, T. Besagni, IEEE Trans. Magn.24 (1998) 2146-2149.
    [15]P.A. Marino-Castellanos, J.C. Somarriba-Jarque, J. Anglada-Rivera, Phys. B:Condens. Matter 362 (2005) 95-102.
    [16]C. Singh, S. Bindra-Narang, I.S. Hudiara, Bai Yang, J. Alloys Compd.464 (2008)429-433.
    [17]J. Ding, H. Yang, W.F. Miao, P.G. McCormick, R. Street, J. Alloys Compd.221 (1995) 70-73.
    [18]J.L. Liu, W. Zhang, C.J. Guo, Y.W. Zeng, J. Alloys Compd.479 (2009) 863-869.
    [19]C.S. Wang, X.W. Qi, L.T. Li, Mater. Sci. Eng. B 99 (2003) 270-273.
    [20]H. Sozeri, J. Magn. Magn. Mater.321 (2009) 2717-2722.
    [21]J.G. Huang, H.R. Zhuang, W.L. Li, Mater. Res. Bull.38 (2003) 149-159.
    [22]J. Ding, T. Tsuzuki, P.G. McCormick, J. Magn. Magn. Mater.177-181 (1998) 931-932.
    [23]J. Ding, R. Street, H. Nishio, J. Magn. Magn. Mater.164 (1996) 385-389.
    [24]H.P. Steier, J. Requena, J.S. Moya, J. Mater. Res.14 (1999) 3647-3652.
    [25]Q. He, H.Z. Wang, G.H. Wen, Y. Sun, B. Yao, J. Alloys Compd.486 (2009) 246-249.
    [26]J. Kreisel, G. Lucazeau, H. Vincent, J. Raman Spectrosc.30 (1999) 115-120.
    [27]W.Y. Zhao, P. Wei, X.Y. Wu, W. Wang, Q.J. Zhang, J. Appl. Phys.103 (2008) 063902.
    [28]G. Mendoza-Suarez, J.A. Matutes-Aquino, J.I. Escalante-Garcia, H. Mancha-Molinar, D. Rios-Jara, K.K. Johal, J. Magn. Magn. Mater.223 (2001) 55-62.
    [1]G. Turilli, A. Paoluzi, M. Lucenti,et al. L. Pareti, J. Magn.Magn. Mater.104 (1992) 1143-1148.
    [2]W.A. Kaczmarek, B.W. Ninham. J. Appl. Phys.76 (1994)6065-6072.
    [3]T.L. Hylton, M.A. Parker, U. Ullah,et al. J. Appl. Phys.75 (1994) 5960-5966.
    [4]Z. Zhuang,M. Rao, D.E. Laughlin, M.H. Kryder. J. Appl.Phys.85 (1999) 6142-6147.
    [5]Sonal Singhal, A.N. Garg, Kailash Chandra. Evolution of the magnetic properties during the thermal treatment of nanosize BaMFe11O19 (M=Fe, Co, Ni and Al)obtained through aerosol route[J]. Journal of Magnetism and Magnetic Materials.285 (2005) 193-198.
    [6]Benito G, Morales MP, Requena J,et al. J Magn Magn Mater 2001;234:65-68.
    [7]钟文定.技术磁学[M].科学出版社.2009,1:301-302.
    [8]Joonghoe Dho, E.K. Lee, J.Y. Park,et al. Effects of the grain boundary on the coercivity of barium ferrite BaFe12O19[J]. Journal of Magnetism and Magnetic Materials 285 (2005) 164-168.
    [9]Bate, G. Ferromagnetic Materials, Vol.2(Ed. Wohlfarth, E.P.) [M]. Amsterdam · New York · Oxford, North-Holland Publ. Co.,1980.p.381.
    [10]Lotgering F K. [J].J Phys&Chem Solid,1974,35:1633.
    [11]Van Uiteit L G. J Appl. Phys,1957,28:3317.
    [12]Bertaut E F, et al. J Phys Radium.1959,20:404.
    [13]Q.CHEN, X.Q.WANG, H.L.GE, et al. Magnetic Properties of Aluminum-Substituted Strontium Hexaferrite Prepared by Citrate-Nitrite Sol-Gel Technique[J]. International Journal of Modern Physics B.2008,22(20):3413-3420.
    [14]贺祯.M型BaAl2Fe10O19粉体的沉淀法制备和磁性能[J].中国陶瓷.2010,46(8):26-28.
    [15]Sung Yong An, Sang Won Lee, Dong Hyeok Choi High magnetic performance in Al-substituted BaFe12O19 by a wet chemical process[J]. Phys. Stat. Sol. (c) 1, No.12, 3310-3314(2004).
    [16]George Litsardakis(?), Ioannis Manolakis(?), Anagnostis C. Stergiou,et al. New Dy-Substituted Ba Hexaferrites With High Coercivity[J]. IEEE Transactions on Magnetics.2008,44, (11):4222-4224.
    [17]Li QL, Zhang CR, Zhao JX. Preparation of Barium Ferrite Microtubules and the Effect of the La-dope onto the Property of Barium Ferrite Microtubules[J]. Chinese Journal of Inorganic Chemistry.2009,25(2):312-316.
    [18]刘先松,钟伟,顾本喜等.稀土La3+离子取代对M型锶铁氧体的结构和磁性的影响[J].稀有金属材料与工程 2002,31,(5):385-388.
    [19]Chen N, Yang K, Gu MY. Microwave absorption properties of La-substituted M-type strontium ferrites[J]. Journal of Alloys and Compounds.2010,490:(1-2):609-612.
    [20]Wang YP, Li LC, Liu H, et al.Magnetic properties and microstructure of La-substituted BaCr-ferrite powders [J]. Materials Letters.2008,62 (14):2060-2062.
    [21]A. B. Ustinov, A. S. Tatarenko, G. Srinivasan. Al substituted Ba-hexaferrite single-crystal films for millimeter-wave Devices[J]. Journal of Applied Physics 2009,(105),023908.
    [22]Ying Liu, MichaelG.B.Drew, JingpingWang, et al. Efficiency and purity control in the preparation of pure and/or aluminum-doped barium ferrites by hydrothermal methods using ferrous ions as reactants[J]. Journal of Magnetism and Magnetic Materials 322 (2010)366-374.
    [23]Alexander G. Merzhanov. The chemistry of self-propagating high-temperature synthesis[J]. J. Mater. Chem.2004,14,1779-1786.
    [24]Bowen C R, Derby B. P. Self-propagating high temperature synthesis of ceramic materials [J]. British Ceramic Transations.1997,96(1):25-28.
    [25]李汶霞,殷声.低温燃烧合成陶瓷微粉[J].硅酸盐学报,1999,27(1):71-78
    [26]J.V.A. Santos, M.A. Macedo, F. Cunha, et al. BaFe12O19 thin film grown by an aqueous sol-gel process[J]. Microelectronics Journal 34 (2003) 565-567.
    [27]T. Garcia, J.L. Sinchez, S. Diaz, et al. Deposition of polycrystalline BaFe12O19 thin films by using a Nd-YAG laser system[J]. Materials Letters 28 (1996) 65-69.
    [28]Nimai Chand Pramanik, Tatsuo Fujii, Makoto Nakanishi.et al. Development of nanograined hexagonal barium ferrite thin films by sol-gel technique[J]. Materials Letters 59 (2005) 468-472.
    [29]He Haiyan, Thermodynamic study of nucleation property of nucleating agent[J]. J. Wuhan Univ. Tech. Mater. SCi. edition,1999,14[(2):28.
    [30]R. Grossinger, M. Kupferling, M. Haas.Magnetic anisotropy and magnetostriction of LaFe12O19[J] Journal of Magnetism and Magnetic Materials 310 (2007) 2587-2589.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700