机械化学法制备氧化物陶瓷过程及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在机械化学反应动力学中引入结构转变分析,并借鉴燃烧合成领域的结构宏观动力学理论,本文提出了机械化学反应结构宏观动力学及其研究方法,从化学反应和物质结构转变两方面共同对材料的机械化学合成过程进行考察并成功应用于锐钛矿型TiO2、CaO+TiO2以及Fe2O3+ZnO体系的研究。
     主要结论如下:
     1、剪切力促进了锐钛矿相的晶型转变,通过改变机械力作用方式,可望实现锐钛矿型Ti02沿着不同的相变途径转化,这对合成有晶型组成要求的Ti02陶瓷材料具有实际参考价值。本实验条件下的研究表明,锐钛矿型Ti02在行星球磨机和搅拌球磨机中的相变历程表现为锐钛矿相→TiO2-Ⅱ相→金红石相的分步相变;在振动磨样机中除了分步相变外,还发生了锐钛矿相→金红石相的直接相变。
     2、在相同研磨条件下,碱土金属氧化物MgO、CaO、BaO与锐钛矿型Ti02的机械化学反应速率依次增大。实验表明,机械化学合成中存在同系递变现象。锐钛矿型Ti02与碱土金属氧化物的机械化学反应过程中可发生锐钛矿相的相变,导致反应过程存在差异。
     (1)在MgO+TiO2体系中,锐钛矿型TiO2难以直接与MgO发生反应得到MgTiO3,而是首先发生锐钛矿型Ti02向TiO2-Ⅱ相的转变,新生相TiO2-Ⅱ较锐钛矿相有更好的反应活性,可以与MgO发生反应得到MgTiO3。
     体系存在如下的化学反应:TiO2(Anatase)→TiO2-Ⅱ AO+TiO2-Ⅱ→ATiO3
     (2)对于CaO+TiO2及BaO+TiO2体系,未检测到TiO2-Ⅱ相,锐钛矿型TiO2易与CaO和BaO直接发生反应得到CaTiO3和BaTiO3。
     体系存在如下的化学反应:AO+TiO2(Anatase)→ATiO3
     3、在相同研磨条件下,CuO、NiO、ZnO三种金属氧化物与Fe2O3的机械化学反应速率依次增大。研究表明,反应物和生成物的结构相似,则反应容易进行;反之,则反应相对困难。
     4、锐钛矿型Ti02体系生成金红石相的机械化学相变动力学、CaO+TiO2体系和Fe2O3+ZnO体系的机械化学反应动力学均满足Avrami-Erofe'ev模型,属于形核生长机制,表明产物晶核随机产生并随后长大。
     (1)锐钛矿型Ti02体系的相变动力学方程为:[-ln(1-α)1/1.9147=0.2484t(振动磨样机,710rpm)
     (2)CaO+TiO2体系的反应动力学方程为:[-ln(1-α)]1/0.8685=0.3658t(行星球磨机,500rpm,球料比20:1)
     (3)Fe2O3+ZnO体系的反应动力学方程为:[-ln(1-α)]1/133262=0.0859t(行星球磨机,500rpm,球料比20:1)
     5、以Fe2O3+ZnO体系合成ZnFe2O4的机械化学过程为例,进行了动力学的能量方法研究。研究表明,Fe2O3+ZnO体系的机械化学反应按Avrami-Erofe'ev动力学模型拟合可以得到很好的拟合效果。在本实验条件下,对于确定的球料比,反应转化率只与能量输入直接相关。用能量代替研磨时间来度量机械化学反应动力学可有较少的研磨参数限制。动力学方程在不同球料比条件下的具体形式为:[-ln(1-α)]1/1.3179=0.0254EKum(球料比40:1)[-ln(1-α)]1/1.3706=0.0151EKum(球料比20:1)
By introducing the structural transformation analysis into the kinetics of mechanochemical reaction and borrowing the structural macrokinetics research theory from the combustion synthesis, the structural macrokinetics of mechanochemical reaction and its research methods are put forward in this thesis. Based on the chemical reaction and material structure transformation, the mechanochemical processes were investigated and the research methods were applied successfully to the anatase TiO2, CaO+TiO2and Fe2O3+ZnO systems.
     The main conclusions are as follows:
     1. The shear force can promote the crystal transfer of anatase phase. By changing the action mode of mechanical force, the phase transformation of anatase can be expected to proceed along different courses, which is of practical reference value to synthesize TiO2ceramic material with the demands of crystal form. Results show that under our experimental conditions the anatase TiO2powder is demonstrated to induce different phase transformation phenomena with mechanical processing:a step-by-step transformation from anatase to TiO2-Ⅱ and then to rutile in all three mills:a planetary ball mill, an attritor and a ring-roller mill; besides a direct transformation from anatase to rutile in the ring-roller mill.
     2. Under the same milling conditions, the mechanochemical reaction rates increased in turn when the alkaline-earth metal oxides MgO, CaO and BaO were milled with anatase, respectively, which indicates the existence of an alternation phenomenon along main group elements. Phase transformation might occur in anatase when it was milled with alkaline-earth metal oxides, which results in the different courses of reaction.
     (1) In the system MgO+TiO2, it is hard to synthesize MgTiO3directly from the reaction of MgO with anatase TiO2. Experimental results show that the TiO2-Ⅱ, as a newborn phase with better reactivity than anatase TiO2, is firstly transformed from anatase TiO2with mechanical force, and MgTiO3can be formed through the reaction of MgO with the TiO2-Ⅱ.
     There exist the chemical reactions in the system as follows: TiO2(Anatase)→TiO2-Ⅱ AO+TiO2-Ⅱ→ATiO3
     (2) For the system CaO+TiO2and BaO+TiO2, TiO2-Ⅱ was not detected during the course of milling. And experimental results show that it is easy for anatase TiO2to directly react with CaO and BaO to form CaTiO3and BaTiO3, respectively. There exists the chemical reaction in the two systems as follows: AO+TiO2(Anatase)→ATiO3
     3. Under the same milling conditions, the mechanochemical reaction rates increased in turn when the metallic oxides CuO, NiO and ZnO were milled with Fe2O3, respectively. Results show that with a similar structure between the reactant and the resultant, the reaction runs smoothly; otherwise, it runs relatively hard.
     4. The mechanochemical kinetics of phase transformation to rutile in anatase system and reactions in both CaO+TiO2and Fe2O3+ZnO systems, are best expressed by Avrami-Erofe'ev model, which indicates the random nucleation of products phase followed by a growth of nuclei.
     (1) The kinetic equation of anatase system is as:[-1n(1-α)]1/1.9147=0.2484t (Ring-roller mill,710rpm)
     (2) The kinetic equation of CaO+TiO2system is as:[-ln(1-α)]1/08685=0.36581(Planetary ball mill,500rpm, BPR=20:1)
     (3) The kinetic equation of Fe2O3+ZnO system is as:[-ln(1-α)]1/13262=0.0859/(Planetary ball mill,500rpm, BPR=20:1)
     5. Taking the mechanochemical synthesis of ZnFe2O4by milling Fe2O3+ZnO mixed powders for example, the reaction kinetics was studied by energetic approach in this thesis. Results show that a fine effect could be obtained when Avrami-Erofe'ev kinetics model is used to fit the mechanochemical reaction. When it is under a certain BPR, the reaction conversion degree only directly relates to the energy dose. Energy-scaled knetics of mechanochemical reaction has less restriction on milling parameters than time-scaled kinetics.The kinetic equations under different BPR are as follows:
     [-ln(1-α)]1/1.3179=0.0254Ekum(BPR=40:1)
     [-ln(1-α)]1/13706=0.0151Ekum(BPR=20:1)
引文
[1]Heinicke G. Tribochemistry [M]. Berlin:Akademie-Verlag,1984.
    [2]Balaz P. Mechanochemistry in nanoscience and minerals engineering [M]. Berlin: Springer-Verlag,2008.
    [3]Ostwald W. Lehrbuch der Allgemeinen Chemie [M]. Leipzig:Engelmann-Verlag, 1887.
    [4]陈鼎,陈振华.机械力化学[M].北京:化学工业出版社,2008.
    [5]陈振华,陈鼎.机械合金化与固液反应球磨[M].北京:化学工业出版社,2006.
    [6]盖国胜,马正先,陶珍东.超细粉碎分级技术[M].北京:中国轻工业出版社,2000.
    [7]Benjamin J S. [C]//Arzt E, Schultz L. New materials by mechanical alloying techniques. Oberursel:DGM Informationgesellschaft,1989:3-18.
    [8]Kaneyoshi T, Takahashi T, Hayashi Y. Advances in powder metallurgy and particulate material [M]. Princeton:Metal Powder Industries Federation,1992.
    [9]Suryanarayana C, Ivanov E, Boldyrev V V. The science and technology of mechanical alloying [J]. Materials Science and Engineering:A,2001,304-306: 151-158.
    [10]Gilman P S, Benjamin J S. Mechanical alloying [J]. Annual Review of Materials Science,1983,13:279-300.
    [11]Balaz P, Dutkova E. Fine milling in applied mechanochemistry [J]. Minerals Engineering,2009,22 (7-8):681-694.
    [12]Agnew C J, Welham N J. Oxidation of chalcopyrite by extended milling [J]. International Journal of Mineral Processing,2005,77 (4):208-216.
    [13]Zhao Z W, Long S, Chen A L, et al. Mechanochemical leaching of refractory zinc silicate (hemimorphite) in alkaline solution [J]. Hydrometallurgy,2009,99 ):255-258.
    [14]李洪桂.钨矿物原料碱分解的新工艺研究[J].稀有金属与硬质合金,1987,(1-2):3-9.
    [15]杨华明,邱冠周.机械化学法处理钼渣的新工艺[J].中国钼业,1998,22(3):13-15.
    [16]陈世琯.机械活化及其在浸出过程中的应用[J].上海有色金属,1998,(2):91-96.
    [17]Yaneva V, Petkova V, Dombalov D. Structural transformations accompaying mechanochemical activation of natural phosphorite from Syria [J]. Chemistry for Sustainable Development,2005,13:347-354.
    [18]Boldyrev V V, Tkacova K. Mechanochemistry of Solids:Past, Present, and Prospects [J]. Journal of Materials Synthesis and Processing,2000,8 (3): 121-132.
    [19]Yan J H, Peng Z, Lu S Y, et al. Degradation of PCDD/Fs by mechanochemical treatment of fly ash from medical waste incineration [J]. Journal of Hazardous Materials,2007,147 (1-2):652-657.
    [20]Birke V, Mattik J, Runne D. Mechanochemical reductive dehalogenation of hazardous polyhalogenated contaminants [J]. Journal of Materials Science, 2004,39 (16):5111-5116.
    [21]Wieczorek-Ciurowa K, Gamrat K. Some aspects of mechanochemical reactions [J]. Materials Science-Poland,2007,25 (1):219-232.
    [22]Guo Xiuying, Xiang Dong, Duan Guanghong, et al. A review of mechanochemistry applications in waste management [J]. Waste Management, 2010,30(1):4-10.
    [23]Schaffer G B, Mccormick P. Mechanical alloying [J]. Materials Forum,1992, (16):91-97.
    [24]Zyryanov V V. Mechanochemical synthesis of complex oxides [J]. Russian Chemical Reviews,2008,77 (2):105-135.
    [25]任强,武秀兰,朱振峰.机械化学制备陶瓷及复合材料粉体的研究进展[J].中国陶瓷,2003,39(5):1-4.
    [26]Ivanov E, Suryanarayana C. Materials and process design through mechanochemical routes [J]. Journal of Materials Synthesis and Processing, 2000,8:235-244.
    [27]赵中伟.含金硫化矿的机械化学及其浸出工艺研究[D].长沙:中南工业大学,1995.
    [28]Bowden F. Yoffe A. Initiation and Growth of Explosion in Liquids and Solids [M]. Cambridge:Cambridge University Press,1952.
    [29]Bowden F, Yoffe A. Fast Reactions in Solids [M]. London:Butterworths,1958.
    [30]Saito F. Changes in physicochemical properties and synthesis of inorganic materials with an aid of mechano-chemical effects [J].粉体和工业,1993,25 (4):27-37.
    [31]Boldyrev V V, Lyakhov N, Pavlyuchin Y, et al. Achievements and prospects in mechanochemistry [J]. Russian Chemical Reviews,1990.14:105-161.
    [32]Tkacova K. Mechanical Activation of Minerals [M]. Amsterdam:Elsevier,1989.
    [33]Urakaev F K, Boldyrev V V. Mechanism and kinetics of mechanochemical processes in comminuting devices:1. Theory [J]. Powder Technology,2000, 107 (1-2):93-107.
    [34]Urakaev F K, Boldyrev V V. Mechanism and kinetics of mechanochemical processes in comminuting devices:2. Applications of the theory. Experiment [J]. Powder Technology,2000,107(3):197-206.
    [35]Thiessen P A, Meyer K, Heinicke G. Grundlagen der Tribochemie [M]. Berlin: Akademie Verlag,1967.
    [36]Heinicke G. Recent advances in tribochemistry [J]. Proceedings of the International Symposium on Powder Technology,1981,81:354-364.
    [37]Smekal A. Ritzvorgang und molekulare Festigkeit [J]. Naturwissenschaften, 1942,30 (14):224-225.
    [38]Butyagin P Y. Disordered structures and mechanochemical reactions in solids [J]. Uspechi chimiji,1984,53:1769-1781.
    [39]Lyachov N Z. Mechanical activation from the viewpoint of kinetic reaction mechanisms [C]//Tkacova K, Balaz P, et al. Proceedings of the first international conference on mechanochemistry:InCoMe'93. Cambridge: Cambridge Interscience Publishing,1993.
    [40]Huttig G F. Zwischenzustande bei Reaktionen im Fester Zustand und ihre Bedentung fur die Katalyse [M]. Wien:Springer-Verlag,1943.
    [41]杨南如.机械力化学过程及效应(Ⅰ)——机械力化学效应[J].建筑材料学报,2003,3(1):19-26.
    [42]Zhang Zhong-Wu, Zhou Jing-En, Xi Sheng-Qi, et al. Formation of crystalline and amorphous solid solutions of W-Ni-Fe powder during mechanical alloying [J]. Journal of Alloys and Compounds,2004,370 (1-2):186-191.
    [43]Yang J Y, Zhang T J, Cui K, et al. Amorphization of FeNb by mechanical alloying [J]. Journal of Alloys and Compounds,1996,242 (1-2):153-156.
    [44]陶文宏,公衍生,岳云龙.Ti-A1系粉末机械合金化的热力学分析[J].济南大学学报,2003,17(2):104-106.
    [45]帅英,张少明,路承杰.机械力化学研究进展及其展望[J].新技术新工艺,2006,(11):21-24.
    [46]荣华伟,方莹.机械力化学研究进展[J].广东化工,2006,33(162):33-36.
    [47]庄稼.机械力固相化学反应合成纳米氧化物研究[D].成都:四川大学,2004.
    [48]E1-Eskandarany M S, Sumiyama K, Aoki K, et al. Mechanism of solid-gas reaction for formation of metastable niobium-nitride alloy powders by reactive ball milling [J]. Journal of Materials Research,1994,9 (11):2891-2898.
    [49]Schaffer G B, Mccormick P G. Displacement reactions during mechanical alloying [J]. Metallurgical and Materials Transactions A,1990,21 (10): 2789-2794.
    [50]Takacs L. Reduction of magnetite by aluminum:a displacement reaction induced by mechanical alloying [J]. Materials Letters,1992,13 (2-3):119-124.
    [51]Lu Y, Reno R C, Takacs L. A mossbauer study of nanophase iron produced by mechanical alloying [J]. Nanophase and Nanocomposite Materials,1993,286: 215-220.
    [52]Tschakarov C G, Gospodinov G G, Bontschev Z. Uber den mechanismus der mechanochemischen synthese anorganischer verbindungen [J]. Journal of Solid State Chemistry,1982,41 (3):244-252.
    [53]Martinelli G, Plescia P. Mechanochemical dissociation of calcium carbonate: laboratory data and relation to natural emissions of CO2 [J]. Physics of the Earth and Planetary Interiors,2004,142 (3-4):205-214.
    [54]欧阳全胜.Fe/S混合粉体的机械化学反应[J].粉末冶金材料科学与工程,2010,15(4):344-349.
    [55]Jiang J Z, Larsen R K, Lin R, et al. Mechanochemical Synthesis of Fe-S Materials [J]. Journal of Solid State Chemistry,1998,138 (1):114-125.
    [56]Chin P P, Ding J, Yi J B, et al. Synthesis of FeS2 and FeS nanoparticles by high-energy mechanical milling and mechanochemical processing [J]. Journal of Alloys and Compounds,2005,390 (1-2):255-260.
    [57]Orumwense O A, Forssberg E. Surface and structural changes in wet ground minerals [J]. Powder Technology,1991,68 (1):23-29.
    [58]刘琨.非水介质中机械化学法制备黄铁矿粉体的动力学研究[D].长沙:中南大学,2008.
    [59]马乃恒,方小汉,梁工英.机械活化对Al-Ti-C粉体合成反应激活能的影响 [J].金属学报,2000,36(11):1169-1171.
    [60]Eckert J, Schultz L, Urban K. Amorphization reaction during mechanical alloying:influence of the milling conditions [J]. Journal of Materials Science, 1991,26 (2):441-446.
    [61]Eckert J, Schultz L, Urban K. Compositional dependence of quasicrystal formation in mechanically alloyed Al-Cu-Mn [J]. Journal of the Less Common Metals,1990,167 (1):143-152.
    [62]Suryanarayana C, Chen Guo-Hao, Froes F H. Milling maps for phase identification during mechanical alloying [J]. Scripta Metallurgica et Materialia, 1992,26(11):1727-1732.
    [63]安晓燕.论二硅化钼(MoSi2)的制备方法[J].科学技术,2009,(27):273-274.
    [64]Avvakumov E G. Mechanical Methods of the Activation of Chemical Processes [M]. Novosibirsk:Nauka,1986.
    [65]王庆学,张联盟.机械合金化——新型固态非平衡加工技术[J].中国陶瓷,2002,38(2):36-39.
    [66]齐宝森,王成国,姚新,等.机械合金化Cu-C-Ti复合粉末的组织特征[J].稀有金属,2002,26(6):433-435.
    [67]徐安莲,刘守平,周上祺,等.机械合金化的研究进展[J].重庆大学学报:自然科学版,2005,28(11):84-88.
    [68]杨华明,欧阳静,张科,等.机械化学合成纳米材料的研究进展[J].化工进展,2005,24(3):239-244.
    [69]Suryanarayana C. Mechanical Alloying and Milling [M]. New York:Marcel Dekke,2004.
    [70]马学鸣,岳兰平,董远达.氧化铜室温下机械还原的研究[J].金属学报,26(7):A470-A472.
    [71]Takacs L. Carey Lea, the father of mechanochemistry [J]. Bulletin:Bulletin of Historical Chemistry,2003.
    [72]宋晓岚,邱冠周,杨华明.机械化学及其应用研究进展[J].金属矿山,2004,341(11):34-38.
    [73]Chattopadhyay K, Varghese V. Understanding mechanical energy driven nonequilibrium processing:some results [J]. Materials Science and Engineering: A,2004,375-377:72-77.
    [74]Dean J A. Lange's Handbook of Chemistry [M].15th Edition. New York: McGraw-Hill Press,1999.
    [75]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993.
    [76]陈鼎.固液反应球磨工艺及其原理研究[D].长沙:中南大学,2003.
    [77]樊新民,张骋,蒋丹宇.工程陶瓷及其应用[M].北京:化学工业出版社,2005.
    [78]曲远方.现代陶瓷材料及技术[M].上海:华东理工大学出版社,2008.
    [79]王培,李争显,杜继红.金属氧化物陶瓷的应用进展[J].材料导报网刊,2010,5(2):31-34.
    [80]沈俊,朱达川,陈逸伟.机械力化学反应法制备纳米金红石型二氧化钛的研究[J].化学研究与应用,2007,19(11):1238-1241.
    [81]Hamada K, Senna M. Mechanochemical effects on the properties of starting mixtures for PbTiO3 ceramics by using a novel grinding equipment [J]. Journal of Materials Science,1996,31 (7):1725-1728.
    [82]Xue Junmin, Wan Dongmei, Lee See Ee, et al. Inducing crystallization in an amorphous lead zirconate titanate precursor by mechanical activation [J]. Journal of the American Ceramic Society,1999,82 (6):1641-1643.
    [83]Xue Junmin, Wan Dongmei, Lee See-Ee, et al. Mechanochemical synthesis of lead zirconate titanate from mixed oxides [J]. Journal of the American Ceramic Society,1999,82 (7):1687-1692.
    [84]Kong L B, Ma J, Huang H, et al. Crystallization of magnesium niobate from mechanochemically derived amorphous phase [J]. Journal of Alloys and Compounds,2002,340 (1-2):L1-L4.
    [85]Pan Xiaoyan, Ma Xueming. Study on the milling-induced transformation in TiO2 powder with different grain sizes [J]. Materials Letters,2004,58 (3-4): 513-515.
    [86]吴其胜,高树军,张少明.高能球磨锐钛矿型Ti02晶型转变的研究[J].材料科学与工艺,2002,10(4):382-386.
    [87]Mi Guomin, Murakami Y, Shindo D, et al. Mechanochemical synthesis of CaTiO3 from a CaO-TiO2 mixture and its HR-TEM observation [J]. Powder Technology,1999,105 (1-3):162-166.
    [88]张剑光,张明福,韩杰才,等.高能磨法制备纳米钛酸钡的晶化过程[J].压电与声光,2001,25(3):381-383.
    [89]姜继森,高濂,郭景坤.高能球磨法制备纳米晶Zn铁氧体[J].材料研究学报,1999,13(2):142-146.
    [90]毛昌辉,杜军,刘落红.高能机械研磨合成尖晶石型ZnFe2O4铁氧体的研究[J].粉末冶金工业,1999,9(3):13-16.
    [91]Cai Shu, Guan Yong-Hui, Yao Kang-De. Synthesis of crystalline hydroxyapatite from CaCO3 and CaHPO4-2H2O by mechanochemical method [J]. Transactions of Tianjin University,2002,8 (4):67-72.
    [92]刘志坚,曲选辉.机械合金化反应合成TiN[J].粉末冶金技术,1997,15(2):110-112.
    [93]Muroi M, Street R, Mccormick P G. Spin-glass behavior in ultrafine La0.7Ca0,3MnOz powders prepared by mechanical alloying [J]. Journal of Applied Physics,2000,87 (9):5579-5581.
    [94]Karagedov G R, Lyachov N Z. Mechanochemical grinding of inorganic oxides [J].KONA,2003,21:76-87.
    [95]Tsuzuki T, Mccormick P G. Synthesis of CdS quantum dots by mechanochemical reaction [J]. Applied Physics A:Materials Science & Processing,1997,65 (6):607-609.
    [96]Tan G L, Wu X J. Mechanochemical synthesis of nanocrystalline tungsten carbide powders [J]. Powder Metallurgy,1998,41 (4):300-302.
    [97]Yen B K. X-ray diffraction study of mechanochemical synthesis and formation mechanisms of zirconium carbide and zirconium silicides [J]. Journal of Alloys and Compounds,1998,268 (1-2):266-269.
    [98]Yen B K, Aizawa T, Kihara J. Synthesis and formation mechanisms of molybdenum silicides by mechanical alloying [J]. Materials Science and Engineering:A,1996,220 (1-2):8-14.
    [99]Boldyrev V V. About kinetic factors which influence the mechanochemical processes in inorganic systems [J]. Kinetika i Kataliz,1972,13:1411-1412.
    [100]罗世永,张家芸,周土平.固/固相反应动力学模型及其应用[J].材料导报,2000,14(4):6-40.
    [101]席生岐,屈晓燕,刘心宽,等.高能球磨固态扩散反应研究[J].材料科学与工艺,2000,8(3):88-91.
    [102]刘玮书,张波萍,李敬锋,等.机械合金化合成CoSb3过程中的固相反应机理的热力学解释[J].物理学报,2006,55(1):465-471.
    [103]冯端.金属物理学[M].北京:科学出版社,2000.
    [104]Avvakumov E G, Kosova N V. Fast propagating solid-state mechanochemical reactions [J]. Sibir. Khim. Zhurn.,1991,5:62-66.
    [105]Avvakumov E G, Senna M, Kosova N. Soft Mechanochemical Synthesis:A Basis for New Chemical Technologies [M]. Boston:Kluwer Academic Publisher,2001.
    [106]Merzhanov A G. Self-propagating high-temperature synthesis:Twenty years of search and findings [M]. Chernogolovka:ISMAN,1989.
    [107]Merzhanov A G, Rogachev A S. Structural macrokinetics of SHS processes [J]. Pure & Appl. Chem.,1992,64 (7):941-953.
    [108]Merzhanov A G. History and recent developments in SHS [J]. Ceramics International,1995,21 (5):371-379.
    [109]Merzhanov A G. Combustion processes that synthesize materials [J]. Journal of Materials Processing Technology,1996,56:222-241.
    [110]殷声.燃烧合成[M].北京:冶金工业出版社,2004.
    [111]Konopka M, Turansky R, Reichert J, et al. Mechanochemistry and thermochemistry are different:stress-induced strengthening of chemical bonds [J]. Physical Review Letters,2008,100 (115503):1-4.
    [112]Rosen B M, Percec V. Mechanochemistry:a reaction to stress [J]. Nature,2007, 446:381-382.
    [113]Flammersheim H-J, Opfermann J R. Kinetic evaluation of DSC curves for reacting systems with variable stoichiometric compositions [J]. Thermochimica Acta,2002,388 (1-2):389-400.
    [114]Ginstling A M, Brounshtein B I. Diffusion kinetics of reactions in spherical particles [J]. J. Appl. Chem. USSR,1950,23:1249-1259.
    [115]Carter R E. Kinetic model for solid-state reactions [J]. J. Chem. Phys,1961,34: 2010-2015.
    [116]Haruhiko T. Thermal analysis and kinetics of solid state reactions [J]. Thermochimica Acta,1995,267:29-44.
    [117]沈兴.差热、热重分析与非等温固相反应动力学[M].北京:冶金工业出版社,1995.
    [118]Magini M, Iasonna A. Energy transfer in mechanical alloying (overview) [J]. Materials Transactions,1995,36 (2):123-133.
    [119]张国旺.超细粉碎设备及其应用[M].北京:冶金工业出版社,2005.
    [120]廖立兵,李国武.X射线衍射方法与应用[M].北京:地质出版社,2008.
    [121]刘粤惠,刘平安.X射线衍射分析原理与应用[M].北京:化学工业出版社,2003.
    [122]马礼敦.高等结构分析[M].上海:复旦大学出版社,2006.
    [123]黄继武.MDI Jade使用手册——X射线衍射实验操作指导[EB/OL].长沙:中南大学,2006-6-5[2009-12-16]. http://www.doc88.com/p-94650294866. html.
    [124]Pourghahramani P, Forssberg E. Microstructure characterization of mechanically activated hematite using XRD line broadening [J]. International Journal of Mineral Processing,2006,79 (2):106-119.
    [125]张小辉.X射线衍射在材料分析中的应用[J].沈阳工程学院学报:自然科学版,2006,2(3):281-282.
    [126]周玉,武高辉.材料分析测试技术:材料X射线衍射与电子显微分析[M].哈尔滨:哈尔滨工业大学出版,1998.
    [127]Cotto M C, Emiliano A, Nieto S, et al. Degradation of phenol by mechanical activation of a rutile catalyst [J]. Journal of Colloid and Interface Science,2009, 339(1):133-139.
    [128]刘红超,郭常霖.X射线多晶衍射全谱图拟合方法在无机材料研究中的应用[J].无机材料学报,1996,11(3):407-414.
    [129]Sanchez-Bajo F, Cumbrera F L. The use of the Pseudo-Voigt function in the variance method of X-ray line-broadening analysis [J]. Journal of Applied Crystallography,1997,30 (4):427-430.
    [130]Perego C, Revel R, Durupthy O, et al. Thermal stability of TiO2-anatase:Impact of nanoparticles morphology on kinetic phase transformation [J]. Solid State Sciences,2010,12 (6):989-995.
    [131]吴其胜.机械力化学效应及应用于钛酸盐纳米粉体的制备[D].南京:南京工业大学,2002.
    [132]潘晓燕.机械驱动下纳米二氧化钛的结构与相变[D].上海:上海大学,2003.
    [133]Jentoft F C, Schmelz H, Knozinger H. Preparation of selective catalytic reduction catalysts via milling and thermal spreading [J]. Applied Catalysis A: General,1997,161 (1-2):167-182.
    [134]Jamieson J C, Olinger B. Pressure-temperature studies of anatase, brookite, rutile and TiO2(II):a discussion [J]. Am. Mineral,1969,54:1477-1481.
    [135]Navrotsky A, Kleppa O J. Enthalpy of the anatase-rutile transformation [J]. Journal of the American Ceramic Society,1967,50 (11):626.
    [136]Zhang Hengzhong, Banfield J F. New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particle [J]. Am. Mineral,1999,84 (4):528-535.
    [137]Mitsuhashi T, Kleppa O J. Transformation enthalpies of the TiO2 polymorphs [J]. Journal of the American Ceramic Society,1979,62 (7-8):356-357.
    [138]Rezaee M, Khoie S M M. Mechanically induced polymorphic phase transformation in nanocrystalline TiO2 powder [J]. Journal of Alloys and Compounds,2010,507 (2):484-488.
    [139]Shanon R D, Pask J A. Topotaxy in the anatase-rutile transformation [J]. Am. Mineral,1964,49:1707-1717.
    [140]Shao Yanqun, Tang Dian, Sun Jinghua, et al. Lattice deformation and phase transformation from nano-scale anatase to nano-scale rutile TiO2 prepared by a sol-gel technique [J].China Particuology,2004,2 (3):119-123.
    [141]Begin-Colin S, Caer G L, Zandona M, et al. Influence of the nature of milling media on phase transformations induced by grinding in some oxides [J]. Journal of Alloys and Compounds,1995,227 (2):157-166.
    [142]Perm R L, Banfield J F. Formation of rutile nuclei at anatase{112} twin interfaces and the phase transformation mechanism in nanocrystalline titania [J]. Am. Mineral,1999,84:871-876.
    [143]Boldyrev V V. Mechanochemistry and mechanical activation of solids [J]. Russian Chemical Reviews,2006,75 (3):177-189.
    [144]肖松文,肖骁,曾子高.球磨作用下陶瓷粉体材料的机械化学相变行为机制研究进展[J].材料导报,2008,22(1):37-40.
    [145]王瑛玮,蒋引珊,侯天意,等.粉碎方式对TiO2粉体的影响[J].吉林大学学报:工学版,2005,35(4):348-352.
    [146]吴其胜.无机材料机械力化学[M].北京:化学工业出版社,2008.
    [147]Manik S K, Pradhan S K. Microstructure characterization of ball milled prepared nanocrystalline perovskite CaTiO3 by Rietveld method [J]. Materials Chemistry and Physics,2004,86 (2-3):284-292.
    [148]Mi Guomin, Saito F, Suzuki S, et al. Formation of CaTiO3 by grinding from mixtures of CaO or Ca(OH)2 with anatase or rutile at room temperature [J]. Powder Technology,1998,97 (2):178-182.
    [149]Bally A R. Electronic properties of nano-crystalline titanium dioxide thin films [D]. Lausanne:Ecole Polytechnique Federate de Lausanne,1999.
    [150]Bergmann I, Sepelak V, Becker K D. Preparation of nanoscale MgFe2O4 via non-conventional mechanochemical route [J], Solid State Ionics,2006,177 (19-25):1865-1868.
    [151]杨华明.材料机械化学[M].北京:科学出版社,2010.
    [152]Burgio N, Iasonna A, Magini M, et al. Mechanical alloying of the Fe-Zr system. Correlation between input energy and end products [J]. I1 Nuovo Cimento D, 1991,13 (4):459-476.
    [153]Brun P L, Froyen L, Delaey L. The modelling of the mechanical alloying process in a planetary ball mill:comparison between theory and in-situ observations [J]. Materials Science and Engineering:A,1993,161 (1):75-82.
    [154]Abdellaoui M, Gaffet E. A mathematical and experimental dynamical phase diagram for ball-milled Ni10Zr7 [J]. Journal of Alloys and Compounds,1994, 209 (1-2):351-361.
    [155]Abdellaoui M, Gaffet E. The physics of mechanical alloying in a planetary ball mill:Mathematical treatment [J]. Acta Metallurgica et Materialia,1995,43 (3): 1087-1098.
    [156]Magini M, Iasonna A, Padella F. Ball milling:An experimental support to the energy transfer evaluated by the collision model [J]. Scripta Materialia,1996, 34(1):13-19.
    [157]Iasonna A, Magini M. Power measurements during mechanical milling. An experimental way to investigate the energy transfer phenomena [J]. Acta Materialia,1996,44(3):1109-1117.
    [158]Kakuk G, Zsoldos I, Csanady A, et al. Contributions to the modelling of the milling process in a planetary ball mill [J]. Reviews on Advanced Materials Science,2009,22(1):21-38.
    [159]Sohn H Y, Wadsworth M E提取冶金速率过程[M].郑蒂基.译.北京:冶金工业出版社,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700