非化学计量比ZrC_x中的空位有序化及氧化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于在非金属子晶格上存在的高浓度空位和很宽的成分范围,ZrC_x通常被看做是一种高度非化学计量比的化合物。在常温常压条件下,空位有序是热力学稳定态,但在通常情况下,通过传统烧结方法所制备的非化学计量比ZrC_x为空位无序态。相关研究已经证明ZrC的氧化是一种扩散控制的过程,因此,空位,尤其是有序化空位的存在,对于扩散控制的氧化过程应该具有非常显著的影响。然而,到目前为止,对于非化学计量比ZrC_x中空位有序化,以及有序化的碳空位对于氧化过程和机理的实验研究仍然非常缺乏。本论文主要针对具有高空位浓度的非化学计量比ZrC_x中的空位有序化的实现,以及有序化空位在氧化过程中所起的关键作用和相关现象展开研究。
     首先通过高能球磨的方法,以高纯的金属Zr粉和甲苯为原料制备了不同碳含量的非化学计量比ZrC_x纳米晶团聚体。在制备过程中,通过原料比例、球磨时间等参数的调节,实现了球磨产物中碳含量的调控。通过SPS烧结的方法将机械化学法制备的非化学计量比ZrC_x纳米晶团聚体进行了烧结,并在致密化的同时同步实现了空位的有序化,得到了一种立方Zr_2C型的有序相,其空间群为Fd3m,晶胞参数为0.9323nm。TEM及HRTEM研究结果表明,空位有序化仅局限于纳米尺度,形成平均尺寸约为30nm的有序畴,畴壁为反相畴界。尽管空位有序为稳定态,但在室温条件下,足够剂量的电子辐照能够导致空位有序向无序转变。第一性原理计算表明有序化的碳空位极大地降低了非化学计量比ZrC_(0.6)中的孪晶界面能,导致在其中形成了大量的{111}孪晶结构。
     在空气及25~300℃的温度范围内,热驱动的扩散使氧原子通过有序化空位所形成的空位通道扩散进ZrC_(0.6)的晶格中并占据有序化的空位,进而形成一种立方Zr_2CO型的氧原子有序相ZrC_(0.6)O_(0.4),其空间群为Fd3m,晶胞参数为0.93986nm。与空位有序的ZrC_(0.6)类似,氧原子的有序化局限于纳米尺度,形成具有不规则形状的纳米有序畴。在氧原子有序的ZrC_(0.6)O_(0.4)中,仍然存在大量的{111}孪晶结构。稍过量的氧扩散可导致氧原子长程有序向短程有序转变,而在稍高的温度条件下,过量的氧扩散可导致有序的ZrC_(0.6)O_(0.4)颗粒表面非晶化,形成ZrC_(0.6)Oy>0.4非晶层。其原因在于过量的O原子占据了Zr原子组成的四面体中心,导致其结构的不稳定性。过量氧扩散所形成的ZrC_(0.6)Oy>0.4非晶在电子辐照下会向晶态的氧化物亚稳相转变,形成与ZrC_(0.6)O_(0.4)具有相同晶体学取向的立方ZrO_(2-x),同时在某些局域位置观察到嵌于其中的正交结构ZrO_(2-x)。
     在空气及380~620℃温度条件下,空位有序的ZrC_(0.6)可被快速氧化为亚稳的四方相ZrO_2纳米颗粒。在更高的温度条件下对所得的ZrO_2纳米粉体进行退火处理时,纳米晶间的融合使之逐渐长大,并产生大量具有{011}孪晶结构的四方相ZrO_2纳米颗粒。在融合长大后的四方相ZrO_2纳米颗粒中观察到三种孪晶结构,即简单、层状多重孪晶和环状多重孪晶,其中简单和层状多重孪晶源于纳米晶以{011}表面相互融合,而具有五重对称的环状多重孪晶则源于相邻纳米晶以随机的取向相互融合,不全位错的发射和纳米晶的塑性变形在其中起关键作用。在一定量的ZrO_2纳米颗粒中,实验观察到了空间群为Pbca和Pbcm的正交ZrO_2,相变前孪晶界面的存在和相变过程中产生的微观应变是正交结构形成并稳定存在的关键因素。
     本论文的研究确认了非化学计量比ZrC_x中存在的立方Zr_2C型有序相,以及有序化空位对孪晶界面能的影响。通过氧化过程、机理和产物的研究,揭示了有序化空位在非化学计量比ZrC_x氧化过程中的关键作用,确认了氧化中间相ZrC_xOy的存在及结构,提出了快速氧化空位有序ZrC_x制备四方相ZrO_2纳米粉体的方法,并针对其中存在的孪晶结构提出了一种形成机制。通过HRTEM、XRD,确定了ZrO_2纳米颗粒在发生马氏体相变后形成的正交相,并表征和分析了晶体结构和形成并稳定存在的原因。
Owing to the wide homogeneity composition region and high concentration ofvacancies on the octahedral sites of the metalloid sublattice, ZrC_xis often regarded as ahighly nonstoichiometric compound. Under ambient conditions, the ordered carbonvacancies are considered to be the thermodynamic equilibrium, however, using theconventional sintering routes, the synthesis of nonstoichiometric carbides usually leads tothe disordered carbon vacancies. The previous studies indicated that the oxidation of ZrCis diffusion controlled, thus, the presence of carbon vacancies, especially ordered carbonvacancies should have a very significant impact on the oxidation of nonstoichiometricZrC_x. However, the studies focused on the ordering of carbon vacancies, and the effect ofordered vacancies on the oxidation of nonstoichiometric ZrC_xis still lacking up to now.The present study is mainly focused on the realization of vacancy ordering, and the keyrole of ordered carbon vacancies in oxidation process of nonstoichiometric ZrC_xas well asrelative phenomena.
     Firstly, the nonstoichiometric ZrC_xnanopowders are synthesized by the high-energymilling of pure Zr powder in liquid toluene. By the adjusting of the milling duration andother milling parameter, the C content of nanopowders can be finely controlled. By SPS ofthe mechanochemically synthesized ZrC_xnanopowders, the nonstoichiometric ZrC_(0.6)hasbeen prepared. The ordered carbon vacancies in the sintered ZrC_(0.6)are achievedsimultaneously during the sintering process, forming a cubic Zr_2C type ordering phasewith the space group of Fd3m. The cell parameter is determined to be0.9323nm. Themeasurements of TEM and HRTEM indicate that the ordering of carbon vacancies isrestricted to the nanoscale, forming the nanodomains with an average size of~30nm, andseparated by the antiphase domain boundaries. The electron irradiation can induce thedisordering of the ordered vacancies. The first principle calculation indicated that thetwinning interfacial energy in ordered ZrC_(0.6)is reduced owing to the presence of orderedcarbon vacancies, inducing the presence of {111} twinning.
     In air and temperature range of25~300℃, thermally activated oxygen diffusion issignificantly facilitated through these vacancy channels. The oxygen atoms diffusedirectly into and occupy the vacancies, producing a cubic Zr_2CO type ordered ZrC_(0.6)O_(0.4)with the space group of Fd3m. The cell parameter is determined to be0.93986nm.Similar to the vacancies in ordered ZrC_(0.6), the ordering arrangement of O atoms in theordered ZrC_(0.6)O_(0.4)is in nanoscale length, thus forming the nano superstructural domainswith irregular shapes. The large amount of {111} twinning are also observed in orderedZrC_(0.6)O_(0.4). Slightly diffusion of superfluous oxygen atoms can induce the long rangeordering of oxygen atoms transform to short range ordering, however, at the elevatedtemperature higher than300℃, the superfluous diffusion of oxygen atoms can induce theamorphization of ordered ZrC_(0.6)O_(0.4), forming amorphous ZrC_(0.6)Oy>0.4layer on the surfaceof powders. The amorphous formation is recognized to originate from diffusion ofsuperfluous oxygen atoms into Zr-tetrahedral centers in the surface area, thus leading tosevere distortion of lattice. Under electron beam irradiation, the amorphous ZrC_(0.6)Oy>0.4layer transforms to a cubic ZrO_(2-x)layer with the same orientation as the underlyingordered ZrC_(0.6)O_(0.4). Moreover, the orthorhombic-like ZrO_(2-x)embedded at locally areas isrecognized inside the cubic ZrO_(2-x)layer.
     In air and the temperature range of380~620oC, the vacancies ordered ZrC_(0.6)can befast oxidized to predominant spherical tetragonal ZrO_2nanocrystals. By annealing of theas-prepared tetragonal ZrO_2nanocrystals at higher temperature, the growth of thosenanocrystals owing to the coalescence of adjacent nanocryatals has been observed. Threetypes of {011}-specific twins, i.e., single, lamellar, and fivefold cyclic twins, arerecognized in those coalescence induced nanoparticles. The formation of single andlamellar twins is occasional and occurs via the coalescence of adjacent nanocrystals onwell-developed {011} facets of tetragonal ZrO_2nanocrystals. The formation of dominantcyclic twins originates from the coalescence on the mismatched surfaces, and the emissionof partial dislocations and plastic deformation are identified to play the key role. In someZrO_2nanoparticles,the presence of orthorhombic phase with space group of Pbca andPbcm are identified with the helps of HRTEM and XRD. The twinning boundary innanoparticles before the martensitic phase transformation and the microstrains induced by the phase transformation play the key role in the formaiton and stabilization of observedorthorhombic ZrO_2.
     The present study confirm the presence of cubic Zr_2C type ordered phase, as well asthe influence of ordered carbon vacancies for twinning interfacial energy innonstoichiometric ZrC_x. The investigations focused on the oxidation mechanism andproducts reveal the key role of ordered carbon vacancies in the oxidation process ofnonstoichiometric ZrC_x, confirm the presence of intermediate phase of ZrC_xOy. Based onthe quickly oxidation of ordered ZrC_(0.6)at low temperature, a routine for preparation oftetragonal ZrO_2nanopowders. The twinning structures in annealing induced tetragonalnanoparticles are also investigated, and a formation mechanism is proposed. By themearsurments of XRD and HRTEM, the crystal structures and the formation mechanismof observed orthorhombic ZrO_2are also investigated.
引文
[1] Oyama S T. The Chemistry of Transition Metal Carbides and Nitrides [M]. Glasgow: BlackieAcademic&Professional,1996.
    [2] Pierson HO. Handbook of refractory carbides and nitrides-properties, characteristics, processingand applications [M]. New Mexico: Albuquerque,1996.
    [3] Toth L E. Transition Metal Carbides and Nitrides [M]. New York: Academic Press,1971.
    [4] Kumashiro Y. Electric refractory materials [M], New York: Marcel Dekker, Inc.,2000.
    [5] Van Wie D M, Drewry D G, King D E, et al. The hypersonic environment: required operatingconditions and design challenges [J]. J. Mater. Sci.2004(39):5915–5924.
    [6] Yada K, Masaoka H, Shoji Y, et al. Studies of refractory carbides, nitrides, and borides as thethermionic emitters for electron-microscopy [J]. J. Electron. Microsc. Tech.1989(12):252–61.
    [7] Ogawa T, Ikawa K. Diffusion of metal fission-products in ZrC1.0[J] J. Nucl. Mater.1982(105):331–334.
    [8] Gusev A I. Order–disorder Transformations and Phase Equilibria in Strongly NonstoichiometricCompounds [J]. Physics-Uspekhi.2000(43):1-37.
    [9] Zueva L V, Lipatnikov V N, Gusev A I. Ordering Effects on the Microstructure and Microhardnessof Nonstoichiometric Titanium Carbide TiCy[J]. Inorg. Mater.2000(36):695-698.
    [10] Lipatnikov V N, Lengauer W, Ettmayer P, et al. Effects of Vacancy Ordering on Structure andProperties of Vanadium Carbide [J]. J. Alloys. Compd.1997(261):192-197.
    [11] Morgan G, Lewis M H. Hardness Anisotropy in Niobium Carbide [J]. J. Mater. Sci.1974(9):349-358.
    [12] Valeeva A A, Davydov D A, Rempel S V, et al. Microstructure and Microhardness of VanadiumOxides in the Range VO0.57-VO1.29[J]. Inorg. Mater.2009(45):905-909.
    [13] Miracle D B, Lipsitt H A. Mechanical Properties of Fine-Grained Substoichiomebic TitaniumCarbide [J]. J. Am. Ceram. Soc.1983(66):592-597.
    [14] Tsurekawa S, Kurishita H, Yoshinaga H. High Temperature Deformation Mechanism inSubstoichiometric Titanium Carbide-Correlation with Carbon Vacancy Ordering [J]. J. Nucl.Mater.1989(169):291-298.
    [15] Bittner H, Goretzki H. Magnetische Untersushungen der Carbide TiC, ZrC, HfC, VC, NbC undTaC [J]. Mh. Chem.1962(93):100-1004.
    [16] Goretzki H. Neutron Diffraction Studies on Titanium-Carbon and Zirconium-Carbon Alloys [J].Phys. Status Solidi B.1967(20): K141–K143.
    [17] Gusev A I, Rempel A A, Magerl A J. Disorder and Order in Strongly Non-StoichiometricCompounds-Transition Metal Carbides, Nitrides and Oxides [M]. Berlin: Springer,2001.
    [18] Moisy-Maurice V, Lorenzelli N, De Novion C H, et al. High Temperature Neutron DiffractionStudy of the Order-Disorder Transition in TiC1-x[J]. Acta Metall.1982(30):1769-1779.
    [19] Lipatnikov V N, Kottar A, Zueva L V, et al. Ordering effects in nonstoichiometric titaniumcarbide [J]. Inorg. Mater.2000(36):155–161.
    [20] Kim S, Szlufarska I, Morgan D. Ab initio study of point defect structures and energetics in ZrC [J].J. Appl. Phys.2010(107):053521.
    [21] Gusev A I. Disorder and Long-Range Order in Non-Stoichiometric Interstitial CompoundsTransition Metal Carbides, Nitrides, and Oxides [J]. Phys. Status Solidi B1991(163):17-54.
    [22] Gozzi D, Montozzi M, Cignini P L. Apparent oxygen solubility in refractory carbides [J]. SolidState Ionics1999(123):1-10
    [23] Lin Z J, Zhuo M J, He L F, et al. Atomic-scale microstructures of Zr2Al3C4and Zr3Al3C5ceramics[J]. Acta Materialia.2006(54):3843-3851.
    [24] Yu R, Zhan Q, He L L, et al. Si-induced twinning of TiC and formation of Ti3SiC2platelets [J].Acta Materialia.2002(50):4127-4135.
    [25] Yu R, He L L, Ye H Q. Effects of Si and Al on twin boundary energy of TiC [J]. Acta Materialia.2003(51):2477-2484.
    [26] Das G. Measurement of the stacking fault energy of TiC [J]. J. Less-Common Met.1982(83):L7-10.
    [27] Bulychev V P, Andrievskii R A, Nezhevenko L B. The sintering of zirconium carbide [J]. PowderMetall. Met. Ceram.1977(16):273-276.
    [28] Obata N, Nakazawa N. Superlattice Formation in Zirconium-Carbon System [J]. J. Nucl. Mater.1976(60):39-42.
    [29] De Novion C H, Maurice V. Order and Disorder in Carbides and Nitrides [J]. J. Phys. Colloques.1977(38): C7-211-C7-220.
    [30] De Novion C H, Landesman J P. Order and Disorder in Transition Metal Carbides and Nitrides:Experimental and Theoretical Aspects [J]. Pure Appl. Chem.1985(57):1391-1402.
    [31] Combemale L, Leconte Y, Portier X, et al. Synthesis of nanosized zirconium carbide by laserpyrolysis route [J]. J. Alloys Compd.2009(483):468-472.
    [32] Rama Rao G A, Venugopal V. Kinetics and Mechanism of the Oxidation of ZrC [J]. J. AlloysCompd.1994(206):237-242.
    [33] Shimada S, Inagaki M, Suzuki M. Microstructural Observation of the ZrC/ZrO2Interface Formedby Oxidation of ZrC [J]. J. Mater. Res.1996(11):2594-2597.
    [34] Shimada S. Oxidation and Mechanism of Single Crystal Carbides with Formation of Carbon [J]. J.Ceram. Soc. Jap.2001(109): S33-S42.
    [35] Shimada S. A Thermoanalytical Study on the Oxidation of ZrC and HfC Powders with Formationof Carbon [J]. Solid State Ionics.2002(149):319-326.
    [36] Shimada S, Yoshimatsu M, Inagaki M, et al. Formation and Characterization of Carbon at theZrC/ZrO Interface by Oxidation of ZrC Single Crystals [J]. Carbon.1998(36):1125-1131.
    [37] Bellucci A, Gozzi D, Kimura T, et al. Zirconia Growth on Zirconium Carbide Single Crystals byOxidation [J]. Surface&Coatings Technology.2005(197):294-302.
    [38] Gozzia D, Montozzi M, Cignini P L. Oxidation Kinetics of Refractory Carbides at Low OxygenPartial Pressures [J]. Solid State Ionics.1999(123):11–18.
    [39] Edamoto K, Nagayama T, Ozawa K, et al. Angle-Resolved and Resonant Photoemission Study ofthe ZrO-Like Film on ZrC(100)[J]. Surf. Sci.2007(601):5077-5082.
    [40] H kansson K L, Johansson H I P, Johansson L I. High-Resolution Core-Level Study of ZrC(100)and Its Reaction with Oxygen [J]. Phys. Rev. B.1993(48):2623.
    [41] Nernst W. Reasoning of theoretical chemistry: Nine papers (1889-1921)[M]. Frankfurt m Main:Verlag Harri Deutsch,2003.
    [42] Nernst W. Theoretical chemistry from the standpoint of Avogadro's rule and thermodynamics [M].Stuttgart, F. Enke,18935th editon,1923].
    [43] Heinicke G. Tribochemistry [M]. Akademic-Verlag, Berlin.1984.
    [44] Tkacova K. Mechanical Activation of Minerals [M]. Elsevier, Amsterdam.1989.
    [45] Boldyrev V. Mechanochemistry and mechanical activation of solids [J]. Solid State Ionics1993(63-65):537-543.
    [46] McCormick P G, Froes F H. The fundamentals of mechanochemical processing [J]. JOM-J MINMET MAT S.1998(50):61-65.
    [47] Suryanarayana C, Ivanov E, Boldyrev VV. The science and technology of mechanical alloying [J].Mater. Sci. Eng. A2001(304):151–158.
    [48] Fu Y Q, Gu Y W, Shearwood C, et al. Spark plasma sintering of TiNi nanopowders for biologicalapplication [J]. Nanotechnology.2006(17),5293-5298.
    [49] Zhang Z H, Wang F C, Wang L, et al. Sintering mechanism of large-scale ultrafine-grained copperprepared by SPS method [J]. Mater. Lett.2008(62):3987-3990.
    [50] Zhang Z H, Wang F C, Li S K, et al. Microstructural characteristics of large-scaleultrafine-grained copper [J]. Mater. Charact.2008(59):329-333.
    [51] Xu C Y, Jia S S, Cao Z Y. Synthesis of Al-Mn-Ce alloy by the spark plasma sintering [J]. Mater.Charact.2005(54):394-398.
    [52] Kim K H, Shim K B. The effect of lanthanum on the fabrication of ZrB2-ZrC composites by sparkplasma sintering [J]. Mater. Charact.2003(50):31-37.
    [53] Chen W, Anselmi-Tamburini U, Garay J E, et al. Fundamental investigations on the spark plasmasintering/synthesis process I. Effect of DC pulsing on reactivity [J]. Mater. Sci. Eng. A2005(394):132-138.
    [54] Wan X H, Hu AM, Li M, et al. Performances of CaSiO3ceramic sintered by spark plasmasintering [J]. Mater. Charact.2008(59):256-260.
    [55] Zhao L Y, Jia D C, Duan X M, et al. Low temperature sintering of ZrC-SiC composite [J]. J.Alloys Compd.2011(509):9816-9820.
    [56] Sreenivasulu G, Gopalan R, Chandrasekaran V, et al. Spark plasma sintered Sm2Co17-FeConanocomposite permanent magnets synthesized by high energy ball milling [J]. Nanotechnology2008(19):335701.
    [57] Zhang Z H, Wang F C, Wang L, et al. Ultrafine-grained copper prepared by spark plasma sinteringprocess [J]. Mater. Sci. Eng. A2008(476):201-205.
    [58] Shearwood C, Fu Y Q, Yu L, et al. Spark plasma sintering of TiNi nanopowder [J]. Scr. Mater.2005(52):455-460.
    [59] Kim G S, Shin D H, Seo Y I, et al. Microstructure and mechanical properties of a ZnS-SiO2composite prepared by ball milling and spark plasma sintering [J]. Mater. Charact.2008(59):1201-1205.
    [60] Kumar R, Prakash K H, Cheang P, et al. Microstructure and mechanical properties of sparkplasma sintered zirconia hydroxyapatite nanocomposite powders [J]. Acta Mater.2005(53):2327-2335.
    [61] Munir Z A, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on thesynthesis and consolidation of materials: A review of the spark plasma sintering method [J]. J.MATER. SCI.2006(41):763-777.
    [62] Shon I J, Munir Z A. Synthesis of MoSi2–xNb and MoSi2–yZrO2composites by the field-activatedcombustion method [J]. Mater. Sci. Eng. A1995(202):256–261.
    [63] Anselmi-Tamburini U, Gennari S, Garay J E, et al. Fundamental investigations on the sparkplasma sintering/synthesis process II. Modeling of current and temperature distributions [J]. MaterSci Eng A2005(394):139-148.
    [63] Anselmi-Tamburini U, Garay J E, Munir Z A. Fundamental investigations on the spark plasmasintering/synthesis process. III. Current effect on reactivity [J]. Mater Sci Eng A2005(407):24-30.
    [64] Bermúdez V, Huang L, Hui D, et al. Role of stoichiometric point defect in electric-field-polinglithium niobate[J]. Appl. Phys. A-Mater.2000(70):591-594.
    [65] Neudeck P G. Electrical Impact of SiC Structural Crystal Defects on High Electric Field Devices[J]. Mater. Sci. Forum.2000(338-342):1161-1166.
    [66] Geng L M, Yang W. Agglomeration of point defects in ferroelectric ceramics under cyclic electricfield [J]. Modell. Simul. Mater. Sci. Eng.2005(14):137-155.
    [67] Korsunska N E, Markevich I V, Borkovska L V. Investigation of lattice defects by means of theirdrift under electric field [J]. Physica B.2001(308–310):967–970.
    [68] Lutterotti L. MAUD, version:2.33,2011.
    [69] Gatan Inc. DigitalMicrograph(TM)3.11.2for GMS1.6.2.
    [70] Crystal Maker Software Ltd. CrystalMaker2.2.4.
    [71] Accelrys Software Ltd. Materials Studio4.0.
    [72] Kaneyoshi T, Takahashi T, Motoyama M. Reaction of niobium with hexane and methanol bymechanical grinding [J]. Scripta. Metall. Mater.1993(29):1547-1551.
    [73] Niu X P, Froyen L, Delaey L, et al. Hydride formation in mechanically alloyed Al–Zr andAl-Fe-Zr [J]. Scripta. Metall. Mater.1994(30):13-18.
    [74] Tokumitsu K. Formation of metal hydride powders and metal-hydrogen amorphous powders bymechanochemical reaction [J]. J. Less-Common. Met.1991(172):153-159.
    [75] Manna I, Chattopadhyay P P, Banhart F, et al. Formation of face-centered-cubic zirconium bymechanical attrition [J]. Appl. Phys. Lett.2002(81):4136-4138.
    [76] Fredrickson D R, Hubbard W N, Nuttall R L, Flotow H E. Enthalpies of formation of zirconiumdihydride and zirconium dideuteride [J]. J. Phys. Chem.1963(67):1506-1509.
    [77] Baker F B, Storms E K, Holley C E. Enthalpy of formation of zirconium carbide [J]. J. Chem. Eng.Data.1969(14):244-246.
    [78] Borchers C, Leonov A V, Morozova O S. Mechanical activation of structural and chemicaltransformations in a Zr-C-H system in two stages [J]. J. Phys. Chem. B2002(106):1843-1848.
    [79] Lipatnikov V N, Gusev A I. Annealing-induced ordering of bulk nonstoichiometric vanadiumcarbide [J]. Inorg. Mater.2006(42):14-18.
    [80] Valeeva A A., Tang G, Gusev A I, et al. Observation of structural vacancies [J]. JETP Lett.2003(77):25-29.
    [81] Nagakura S, Kusunoki T. Structure of TiNxstudied by electron diffraction and microscopy [J]. J.Appl. Crystallogr.1977(10):52-56.
    [82] Takeda S. An Atomic Model of Electron-Irradiation-Induced Defects on {113} in Si [J]. Jpn. J.Appl. Phys.1991(30): L639-642.
    [83] Teweldebrhan D, Balandin A A. Modification of graphene properties due to electron-beamirradiation [J]. Appl. Phys. Lett.2009(94):013101.
    [84] Thomas G, Mori H, Fujita H, Sinclair R. Electron irradiation induced crystalline amorphoustransitions in Ni-Ti alloys [J]. Scripta Mater.1982(16):589-592.
    [85] Mori H. in Current Topics in Amorphous Materials: Physics and Technology [M], ElsevierScience Publishers, Amsterdam1997.
    [86] Okamoto P R, Lam N Q, Rein L E. in Solid State Physics: Physics of Crystal-to-glasstransformations [M], vol.52, Academic Press, San Diego,1999.
    [87] Jen i I, Bench M W, Robertson I M. Electron-beam-induced crystallization of isolatedamorphous regions in Si, Ge, GaP, and GaAs [J]. J. Appl. Phys.1995(78):974-982.
    [88] Elliman R G, William J S, Maher D M, et al. in Ion Implantation and Ion Beam Processing ofMaterials [M], edited by Kubler G K, Holland O W, Clayton C R, et al.(Mater. Res. Soc. Symp.Proc., North Holland, NY,1984)
    [89] Miyao M, Polman A, Sinke W, Saris F W, van Kemp R. Electron irradiation-activatedlow-temperature annealing of phosphorus-implanted silicon [J]. Appl. Phys. Lett.1986(48):1132.
    [90] Frantz J, Tarus J, Nordlund K, Keinonen J. Mechanism of electron-irradiation inducedrecrystallisation in Si [J]. Phys. Rev. B200964):125313.
    [91] Kern P, J ggi C, Utke I, et al. Local electron beam induced reduction and crystallization ofamorphous titania films [J]. Appl. Phys. Lett.2006(89):021902.
    [92] Nagase T, Umakoshi Y. Electron irradiation induced crystallization of the amorphous phase inZr-Cu based metallic glasses with various thermal stability [J]. Mater. Trans.2004(45):13-23.
    [93] Nagase T, Nino A, Umakoshi Y. Phase Stability of an Amorphous Phase Against ElectronIrradiation Induced Crystallization in Fe-Based Metallic Glasses [J]. Mater. Trans.2007(48):1340-1349.
    [94] Gosset D, Dollé M, Simeone D, Baldinozzi G, Thomé L. Structural evolution of zirconium carbideunder ion irradiation [J]. J. Nucl. Mater.2008(373):123-129.
    [95] Edmondson P D, Weber W J, Namavar F, et al. Determination of the displacement energies of O,Si and Zr under electron beam irradiation [J]. J. Nucl. Mater.2011(422):86-91.
    [96] Miyamoto H, Vinogradov A, Hashimoto S, et al. Formation of Deformation Twins and RelatedShear Bands in a Copper Single Crystal Deformed by Equal-Channel Angular Pressing for OnePass at Room Temperature [J]. Mater. Trans.2009(50):1924-1929.
    [97] Bhattacharyya D, Liu X Y, Genc A, et al. Heterotwin formation during growth of nanolayeredAl-TiN composites [J]. Appl. Phys. Lett.2010(96):093113.
    [98] Das G. Measurement of the stacking fault energy of TiC [J]. J. Less-Common Met.1982(83):L7-L10.
    [99] Lin Z J, Zhou M J, He L F, et al. Atomic-scale microstructures of Zr2Al3C4and Zr3Al3C5ceramics[J]. Acta Mater.2006(54):3843-3851.
    [100] Yu R, Zhan Q, He L L, et al. Si-induced twinning of TiC and formation of Ti3SiC2platelets [J].Acta Mater.2002(50):4127-4135.
    [101] Yu R, He L L, Ye H Q. Effects of Si and Al on twin boundary energy of TiC [J]. Acta Mater.2003(51):2477-2484.
    [102] Clark S J, Segall M D, Pickard C J, et al. First principles methods using CASTEP [J]. Zeitschriftfuer Kristallographie.2005(220):567-570.
    [103] Perdew J P, Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple [J]. Phys.Rev. Lett.1996(77):3865-3868.
    [104] Perdew J P, Burke K, Wang Y. Generalized gradient approximation for the exchange-correlationhole of a many-electron system [J]. Phys. Rev. B1996(54):16533.
    [105] Wang Y, Chen L Q, Liu Z K, et al. First-principles calculations of twin-boundary andstacking-fault [J]. Scripta Mater.2010(62):646-649.
    [106] Zhang J, Wang J Y, Zhou Y C. Structure stability of Ti3AlC2in Cu and microstruture evolutionof Cu-Ti3AlC2composites [J]. Acta Mater.2007(55):4381-4390.
    [107] Kosolapova T Y, Fedorus V B, Panasyuk A D, et al. Conditions of formation and some propertiesof zirconium oxycarbides [J]. Powder Metall. Met. C+1972,109,47-50.
    [108] Gendre M, Maitre A, Trolliard G. Synthesis of zirconium oxycarbide (ZrCxOy) powders:Influence of stoichiometry on densification kinetics during spark plasma sintering and onmechanical properties [J]. J. Eur. Ceram. Soc.2011(31):2377-2385.
    [109] Rodriguez J, Liu P, Gomes J, et al. Interaction of oxygen with ZrC(001) and VC(001):Photoemission and first-principles studies [J]. Phys. Rev. B2005(72):075427.
    [110] Singhal S C. Oxidation kinetics of hot-pressed silicon carbide [J]. J. Mater. Sci.1976(11):1246-1253.
    [111] Reyes-Gasga J, García-García R. Analysis of the electron-beam radiation damage of TEMsamples in the acceleration energy range from0.1to2MeV using the standard theory for fastelectrons [J]. Radiat. Phys. Chem.2002(64):359-367.
    [112] Haines J, Leger J M, Atouf A. Crystal Structure and Equation of State of Cotunnite-TypeZirconia [J]. J. Am. Ceram. Soc.1995(78):445-448.
    [113]Trolliard G, Benmechta R, Mercurio D. Pure orthorhombic zirconia islands grown onsingle-crystal sapphire substrates [J]. Acta Mater.2007;55:6011-6018.
    [114] Wang G, Luo G, Soo Y L, et al. Phase stabilization in nitrogen-implanted nanocrystalline cubiczirconia [J]. Phys. Chem. Chem. Phys.2011(13):19517.
    [115] Corticelli F, Lulli G, Meili P G. Solid-phase epitaxy of implanted silicon at liquid nitrogen androom temperature induced by electron irradiation in the electron microscope [J]. Philos. Mag. Lett.1990(61):101-106.
    [116] Roddatis V V, Su D S, Beckmann E, et al. The structure of thin zirconia films obtained byself-assembled monolayer mediated deposition: TEM and HREM study [J]. Surf. Coat. Technol.2002(63-66):151-152.
    [117] Ross I M, Rainforth W M, Scott A J. Electron energy-loss spectroscopy (EELS) studies of anyttria stabilized TZP ceramic [J]. J. Am. Ceram. Soc.2004(24):2023-2029.
    [118] Tanabe K. Surface and catalytic properties of ZrO2[J]. Mater. Chem. Phys.1985(13):347-364.
    [119] Nakano Y, Iizuka T, Hattori H, et al. Surface properties of zirconium oxide and its catalyticactivity for isomerization of1-butene [J]. J. Catal.1979(57):1-10.
    [120] Martin P J, Netterfield R P, Sainty W G. Modification of the optical and structural properties ofdielectric ZrO2films by ion-assisted deposition [J]. J. Appl. Phys.1984(55):235-241.
    [121] French R H, Glass S J, Ohuchi F S, et al. Experimental and theoretical determination of theelectronic structure and optical properties of three phases of ZrO2[J]. Phys. Rev. B1994(49):5133-5141.
    [122] Sayama K, Arakawa H. Photocatalytic decomposition of water and photocatalytic reduction ofcarbon dioxide over zirconia catalyst [J]. J. Phys. Chem.1993(97):531-533.
    [123] Yamaguchi T, Application of ZrO2as a catalyst and a catalyst support [J]. Catal. Today.1994(20):199-218.
    [124] Wu T S, Wang K X, Zou LY, et al. Effect of Surface Cations on Photoelectric ConversionProperty of Nanosized Zirconia [J]. J. Phys. Chem. C2009(113):9114-9120.
    [125] Liaw B Y, Weppner W. Low Temperature Limiting-Current Oxygen Sensors Based onTetragonal Zirconia Polycrystals [J]. J. Electrochem. Soc.1991(138):2478-2483.
    [126] Gellings P J, Bouwmeester H J M. Ion and Mixed Conducting Oxides as Catalysts [J]. Catal.Today.1992(12):1-105.
    [127] Lin C K, Zhang C M, Lin J. Phase transformation and photoluminescence properties ofnanocrystalline ZrO2powders prepared via the Pechini-type sol-gel process [J]. J. Phys. Chem. C2007(111):3300-3307.
    [128] Wolf C, Rüssel C. Sol-gel formation of zirconia: preparation, structure and rheology of sols [J].J. Mater. Sci.1992(27):3749-3755.
    [129] Lopez-Luke T, De la Rosa E, Salas P, et al. Enhancing the Up-Conversion Emission of ZrO2:Er3+Nanocrystals Prepared by a Micelle Process [J]. J. Phys. Chem. C2007(111):17110-17117.
    [130] Pucci A, Clavel G, Willinger M G, et al. Transition Metal-Doped ZrO2and HfO2Nanocrystals[J]. J. Phys. Chem. C2007(113):12048-12058.
    [131] Sun Q, Zhang Y L, Deng J F, et al. A novel preparation process for thermally stable ultrafinetetragonal zirconia aerogel [J]. Appl. Catal., A: General.1997(152): L165-L171.
    [132] Hu M Z C, Hunt R D, Payzant E A, et al. Nanocrystallization and Phase Transformation inMonodispersed Ultrafine Zirconia Particles from Various Homogeneous Precipitation Methods [J].J. Am. Ceram. Soc.1999(82):2313-2320.
    [133] Srinivasan R, Harris M B, Simpson S F, et al. Zirconium oxide crystal phase: The role of the pHand time to attain the final pH for precipitation of the hydrous oxide [J]. J. Mater. Res.1988(3):787-797.
    [134] Djurado E, Bouvier P, Lucazeau G. Crystallite Size Effect on the Tetragonal-MonoclinicTransition of Undoped Nanocrystalline Zirconia Studied by XRD and Raman Spectrometry [J]. J.Solid State Chem.2000(149):399-407.
    [135] Chen F X, Hong Q, Xu G Q, et al. DADD-Assisted Hydrothermal Synthesis of t-ZrO2Nanoparticles [J]. J. Am. Ceram. Soc.2005(88):2649-2651.
    [136] Abbas H A, Hamad F F, Mohamad A K, et al. Structural Properties of Zirconia Doped withSome Oxides [J]. Diffusion Fundamentals2008(8):7.1-7.8.
    [137] Garvie R C. The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect [J]. J.Phys. Chem.1965(69):1238-1243.
    [138] Filipovich V N, Kalinina A M. The Structure of Glass. Toropov N A, Porai Koshits E A, Eds.;Consultants Bureau: New York,1965
    [139] Mitsuhashi T, Ichihara M, Tatsuke U. Characterization and stabilization of metastable tetragonalZrO2[J]. J. Am. Ceram. Soc.1974(57):97-101.
    [140] Bailey J E, Lewis D, Librant Z M, et al. Phase transformations in milled zirconia. Trans. J. Brit.Ceram. Soc.1972(71):25-30.
    [141] Xu X X, Wang X. Fine Tuning of the Sizes and Phases of ZrO2Nanocrystals [J]. Nano Res2009(2):891-902.
    [142] Voorhees P W. The theory of Ostwald Ripening [J]. J. Stat. Phys.1985(38):231-253.
    [143] Eduardo J H Lee, Ribeiro C, Longo E, et al. Oriented Attachment: An Effective Mechanism inthe Formation of Anisotropic Nanocrystals [J]. J. Phys. Chem. B2005(109):20842-20846.
    [144] Lu L H, Kobayashi A, Kikkawa Y, et al. Oriented Attachment-Based Assembly of DendriticSilver Nanostructures at Room Temperature [J]. J. Phys. Chem. B2006(110):23234-23241.
    [145] Mohr C, Hofmeister H, Claus P. The influence of real structure of gold catalysts in the partialhydrogenation of acrolein [J]. J. Catal.2003(213):86-94.
    [146] Sánchez-Iglesias A, Pastoriza-Santos I, Pérez-Juste J, et al. Synthesis and Optical Properties ofGold Nanodecahedra with Size Control [J]. Adv.Mater.2006(18):2529-2534.
    [147] Sampedro B, Crespo P, Hernando A, et al. Ferromagnetism in fcc Twinned2.4nm Size PdNanoparticles [J]. Phys. Rev. Lett.2003(91):237203.
    [148] Gruner M E, Rollmann G, Entel P, et al. Multiply Twinned Morphologies of FePt and CoPtNanoparticles [J]. Phys. Rev. Lett.2008(100):087203.
    [149] Wei B Q, Vajtai R, Jung Y J, et al. Massive Icosahedral Boron Carbide Crystal [J]. J. Phys. Chem.B2002(106):5807-5809.
    [150] Silly F, Castell M R. Temperature-Dependent Stability of Supported Five-Fold Twinned CopperNanocrystals [J]. ACS Nano2009(3):901-906.
    [151] Huang X. Q, Zheng N F. One-Pot, High-Yield Synthesis of5-Fold Twinned Pd Nanowires andNanowires [J]. J. Am. Chem. Soc.2009(131):4602-4603.
    [152] Hall C R, Fawzi S A H. On The Occurrence of Multiply Twinned Particles in electrodepositedNickel Films [J]. Philos. Mag. A1986(54):805-820.
    [153] Takeguchi M, Tanaka M, Yasuda H, et al. Real-time high-resolution transmission electronmicroscopy observation of the growth process of (001) surfaces on a nanometer-sized Simultiply twinned particle [J]. Surf. Sci.2001(493):414-419.
    [154] Wang W N, Fox N A, Davis T J, et al. Growth and field emission properties of multiply twinneddiamond films with quintuplet wedges [J]. Appl. Phys. Lett.1996(69):2825-2827.
    [155] Cheng H E, Lin T T, Hon M H. Multiple twins induced <110> preferred growth in TiN and SiCfilms prepared by CVD [J]. Scripta Mater.1996(35):113-116.
    [156] Hubert H, Devouard B, Garvie L A J, et al. Icosahedral packing of B12icosahedra in boronsuboxide (B6O)[J]. Nature1998(391):376-378.
    [157] Hofmeister H. Fivefold Twinned Nanoparticles. In Encyclopedia of Nanoscience andNanotechnology; Nalwa, H. S., Ed.; American Scientific: Stevenson Ranch, CA,2004.
    [158] Karkin L, Karkina L, Gornostyrev Y. Formation of Multiply-Twinned Particles duringTwo-Nanoparticles Agglomeration: The Results of MD Simulation [J]. Mater. Sci. Forum2008,584-586,1033-1038.
    [159] Kelly P M, Francis Rose L R. The martensitic transformation in ceramics-its role intransformation toughening [J]. Prog. Mater Sci.2002(47):463-557.
    [160] Deville S, Guénin G, Chevalier J. Martensitic transformation in zirconia part I. nanometer scaleprediction and measurement of transformation induced relief [J]. Acta Mater.2004(52):5697-5707.
    [161] Eichler A, Kresse G. First-principles calculations for the surface termination of pure andyttria-doped zirconia surfaces [J]. Phys. Rev. B2004(69):045402.
    [162] Morterra C, Cerrato G, Ferroni L, et al. Surface characterization of tetragonal ZrO2[J].Appl. Surf.Sci.1993(65-66):257-259.
    [163] Shen P, Lee W H.(111)-specific coalescence twinning and martensitic transformation oftetragonal ZrO2condensates [J]. Nano Lett.2001(1):707-711.
    [164] Zhang J, Huang F, Lin Z. Progress of nanocrystalline growth kinetics based on orientedattachment [J]. Nanoscale,2010,2,18–34.
    [165]Tang J, Zhang F, Zoogman P, et al. Martensitic phase transformation of isolated HfO2, ZrO2.and HfxZr1-x(0    [166] Bagley B G. A Dense Packing of Hard Spheres with Five-fold Symmetry [J]. Nature1965(208):674-675.
    [167] Johnson C L, Snoeck E, Ezcurdia M, et al. Effects of elastic anisotropy on strain distributions indecahedral gold nanoparticles [J]. Nat. Mater.2007(7):120-124.
    [168] Hofmeister H, Bardamid A F, Junghanns T, et al. Crystalline particles with multiply twinnedstructure in amorphous films of germanium [J]. Thin Solid Films1991(205):20-24.
    [169] Han W Z, Wu S D, Li S X, et al. Origin of deformation twinning from grain boundary in copper[J]. Appl. Phys. Lett.2008(92):221909.
    [170] Hendy S, Brown S A, Hyslop M. Coalescence of nanoscale metal clusters: Molecular-dynamicsstudy [J]. Phys. Rev. B2003(68):241403.
    [171] Marks L D. Physics of Condensed Matter: Structure, Defects and Mechanical Properties [J].Philos. Mag. A.1984(49):81-93.
    [172] Nakanishi N, Shigematsu T. Martensitic Transformations in Zirconia Ceramics [J]. Mater. Trans.JIM,1992(33):318-323.
    [173] Skovgaard M, Ahniyaz A, S rensen B F,et al. Effect of microscale shear stresses on themartensitic phase transformation of nanocrystalline tetragonal zirconia powders [J]. J. Am.Ceram. Soc.2010(30):2749-2755.
    [174] Desgreniers S, Lagarec K. High-density ZrO2and HfO2: Crystalline structures and equations ofstate [J]. Phys. Rev. B.1999(59):8467-8472.
    [175] Ohtaka O, Fukui H, Kunisada T, et al. Phase relations and equations of state of ZrO2under hightemperature and high pressure [J]. Phys. Rev. B.2001(63):174108-1-174108-8
    [176] Ohtaka O, Andrault D, Bouvier P, et al. Phase relations and equation of state of ZrO2to100GPa[J]. J. Appl. Cryst.2005(38):727-733.
    [177] Lenz L K, Heuer A. H. Stress-Induced Transformation during Subcritical Crack Growth inPartially Stabilized Zirconia [J]. J. Amer. Ceram. Soc.1982(65): C192-194.
    [178] Heuer A H, Schoenlein L H. Thermal shock resistance of Mg-PSZ [J]. J. Mater. Sci.1985(20):3421-3427.
    [179]. Dicherson R M, Swain M, Heuer A H. Microstructural Evolution in Ca-PSZ and theRoom-Temperature Instability of Tetragonal ZrO2[J]. J. Amer. Ceram. Soc.1987(70):214-220.
    [180] Ohtaka O, Yamanaka T, Kume S, et al. Structural Analysis o f Orthorhombic ZrO2by HighResolution Neutron Powder Diffraction [J]. Proc. Jpn. Acad.1990(66B):193-196.
    [181] Kudoh Y, Takeda H, Arashi H. In Situ Determination of Crystal Structure for High PressurePhase of ZrO2Using a Diamond Anvil and Single Crystal X-Ray Diffraction Method [J]. Phys.Chem. Minerals.1986(13):233-237.
    [182] Chiao Y H, Chen I W. Martensitic growth in ZrO2-An in situ, small particle, TEM study of asingle-interface transformation [J]. Acta. Metall. Mater.1990(38):1163-1174.
    [183] H tch M J, Stobbs W M. Quantitative comparison of high resolution TEM images with imagesimulations [J]. Ultramicroscopy.1994(53):191-203.
    [184] H tch M J, Snoeck E, Kilaas R. Quantitative measurement of displacement and strain fields fromHREM micrographs [J]. Ultramicoscopy1998(74):131-146.
    [185] H tch M J, Putaux J L, Pénisson J M. Nanoscale measurement of stress and strain by quantitativehigh-resolution electron microscopy [J]. Nature2003(423):270-273.
    [186] zd l V B, Koch C T, van Aken P A. A nondamaging electron microscopy approach to map Indistribution in InGaN light-emitting diodes [J]. J. Appl. Phys.2010(88):065130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700