煤泥分选过程强化及两段式分选研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机械化采煤比例的提高和重介质选煤的快速发展,我国煤泥呈现微细化、高灰、连生体含量大等难选特点,煤泥分选问题进一步凸显。煤泥分选过程的完善程度直接影响到精煤产品的质量与产量、精煤和尾煤的脱水作业以及整个选煤厂的洗水平衡。然而,我国现有的煤泥分选过程仍存在回收能力弱、过程适应性差、通过牺牲处理量来保证回收率的缺陷,煤泥可浮性的非均匀性变化对煤泥分选过程设计提出了更高要求;实际生产又对分选设备大型化、精细化和适应性提出了更高要求。针对上述问题,论文以过程机理分析、过程特征试验、过程强化试验和工业实践为主线,选取唐山开滦矿区难选烟煤和河南神火矿区无烟煤两种代表性煤泥为试验样品,对煤泥分选过程强化及两段式分选机理进行了系统研究,得到了如下研究成果:
     研究了煤泥分选的可浮性过程变化特征。分析了唐山烟煤和永城无烟煤的浮选过程特征,研究了不同粒度级煤泥的浮选速率常数变化特征,探索了浮选药剂用量、浮选机转速、充气速率、入料浓度等参数对浮选速率常数的影响;通过对浮选速度试验产品的粒度、密度和SEM分析,探明了细泥的浮选行为特征;并理论推导和实验室试验验证了浮选入料可浮性随着分选过程非线性变差的规律。
     研究了煤泥分选过程的能耗变化规律。建立了煤泥分选能耗测试系统,分析了不同能耗条件下的浮选产品特性,探索了浮选功率输入与浮选速率常数的函数关系。研究表明,随着浮选的进行,上浮单位精煤可燃体回收率所消耗的能量逐渐增加,粗颗粒连生体和微细粒难浮煤粒需要在高能量条件下才能回收。
     提出了煤泥两段式分选过程。将煤泥分选过程分为快浮段和回收段,快浮段低能量输入快速浮出易浮物料,回收段高能量输入强制回收难浮物料;研究了两段式分选机理,从理论上证明了两段式分选过程与单段式分选过程相比的优势,即当浮选中物料的可浮性变化越大,则要求两段式分选过程一段与二段能量分配的差值越大;提出了基于能量输配的浮选过程设计理念,即构建越来越强的能量条件来适配物料可浮性在浮选中越来越差的物性变化特征,以实现过程设计与物性特征的最佳耦合,达到最佳的矿化反应状态。
     研究了基于柱分选的两段式煤泥分选过程。以旋流-静态微泡浮选柱为基础,结合两段式分选方法,设计了FCSMC10002000两段式柱分选试验装置,并在开滦集团钱家营选煤厂进行了连选试验,从浮选流体动力学角度研究了两段式柱分选的回收率模型,并通过连选试验对模型进行了验证。结果表明,两段式柱分选过程在整体处理能力和粗颗粒回收能力上均优于单段式柱分选过程。
     根据两段式柱分选的原理和煤泥浮选过程特征,确定了两段式柱分选设备的结构原型及放大准则。设计了FCSMC30006000大型两段式柱分选设备,并在开滦集团钱家营选煤厂和神火集团薛湖选煤厂得到了应用和验证,与单段柱分选设备相比,其处理能力和过程适应性均得到改善和提高。
     进行了难选煤泥分选的工艺强化研究。实验室中煤煤岩解离再选试验表明,在精煤灰分相当情况下,煤岩解离再选的工艺流程与原煤直接浮选相比,其精煤可燃体回收率提高8.12个百分点;难选煤泥工艺强化连选试验表明,两段式柱分选过程一段采取低压力、小中矿循环量回收易浮物料,二段采取高压力、大中矿循环量回收难浮矿物,中间连生体颗粒磨矿解离后再选回收,在精煤灰分相近条件下,可燃体回收率高于常规分选工艺10个百分点以上。
     提出了基于二次资源回收的高灰难选煤泥高效分选工艺。在提高精煤质量方面,提出了粗精煤入沉降过滤离心机脱水后滤液再精选流程,减小了精选压力和系统循环量;在提高精煤可燃体回收率方面,提出了粗选尾煤入旋流器浓缩分级、旋流器底流入高频筛脱水、高频筛筛上物入球磨机磨矿解离后再选的工艺流程,在开滦集团钱家营矿选煤厂建立了矿浆处理能力为400m3/h的工艺系统。工业应用结果表明,根据中煤含量的不同,在精煤灰分相当情况下,过程强化高效分选工艺与浮选机一粗一精流程相比,精煤可燃体回收率提高5-10个百分点。
     论文共包含131幅图,58个表格,156篇参考文献。
With the improvement in the proportion of mechanical coal mining and rapiddevelopment of heavy-medium coal preparation, China's fine coal is gradually characterizedby size reduction, ash increase and intergrowth content raise. Fine coal separation problembecomes prominent. Perfect degree of fine coal separation process directly affects the qualityand quantity of clean coal products, dewatering operation of clean coal and tailings, andwashing water balance of the whole coal preparation plant. However, there are still manydefects as weak recovery, weak flexibility, and contradiction between recovery andproductivity in the existing fine coal separation process in our country. Inhomogeneouschanges of fine coal flotability put forward higher requirement on fine coal separationprocess design. Actual production raised higher demands for large-scale, fining andadaptability of separation devices. In view of the above difficult problems, taking processmechanism analysis, process characteristics test, process intensification test and industrialpractice as the main line, the hard-to-float bituminous coal of Tangshan Kailuan mine andanthracite coal of Henan Shenhuo mine these two kinds of representative slime were taken asresearch samples, and fine coal separation process intensification and two-stage separationmechanism were systematically studied. The following findings are obtained:
     Flotability process features of fine coal separation were studied. Flotation processcharacteristics of Tangshan bituminous coal and Yongcheng anthracite coal were analyzed.Changes in characteristics of the flotation rate constant of different size fine coal wereresearched. Effects of parameters as the amount of flotation reagents, flotation machinerotation rate, superficial gas velocity, and feeding concentration on flotation rate constantwere explored. By analyzing the size distribution, density and SEM of the products from thetests of flotation dynamics, flotation process behavior of fine mud was provened. Theoreticalderivation and experiment verify the common law that the floatability of floating materialbecame poor with the flotation process.
     Change rule of energy consumption of fine coal flotation was studied. Fine coalseparation energy consumption testing system was established, flotation productscharacteristics under different energy consumption conditions were analyzed, and therelationship between energy input and flotation rate constant was also studied. The resultsshow that the energy consumption for floating unit mass of clean coal gradually increased with the flotation process. Coarse intergrowth and micro-fine hard-to-float coal particlescould only be recycled under high energy condition.
     Two stages separation process of fine coal was put forward. Fine coal separationprocess was divided into fast float section and recycling section. Easy floating materialswere recycled with low energy in fast float section, and hard-to-float materials werecompulsorily recycled with higher energy in recycling section. Two stages separationmechanism was studied. The superiority of two stages separation process compared withsingle stage separation process was proved theoretically, that was to say, the more thefloatability changes in flotation, the bigger the energy distribution difference between onestage and two stage separation process. Flotation process design concept based on energytransmission and distribution was put forward. To construct more and more strong energyconditions to adapt the physical property changes of the minerals in flotation, so as to realizethe best interconnection of process design and physical property characteristics and achievethe best mineralization reaction condition.
     Two stages fine coal separation process based on column flotation was studied.Combining two stages separation methods, a two-stage column separation test device(FCSMC1000×2000) based on Cyclonic-Static Micro-bubble Flotation Column wasdesigned, and tests were conducted in Qianjiaying Coal Preparation Plant, Kailuan Group.From flotation fluid dynamics perspective, recovery model of two stages column separationprocess was studied, and the reliability of models was tested and verified.The results showthat, two stages column separation process was both superior to single stage flotation columnin processing power and coarse particle recovery capability.
     According to separation principle and process characteristics of fine coal flotation,magnifying standard and structure prototype of two stages column separation device weredetermined. Large-scale two stages column separation equipment (FCSMC3000×6000) wasdesigned and applied in Qianjiaying Coal Preparation Plant, Kailuan Group and Xuehu CoalPreparation Plant, Shenhuo Group. The results show that, both the processing capability andadaptability of two-stage column separation equipment were improved averagely comparingwith that of single stage.
     Process Intensification of hard-to-float fine coal flotation was studied. The results ofcoal rock dissociation and re-separation tests in the laboratory show that, when clean coalash content equals, recovery of clean coal combustible in re-separation process based on coalrock dissociation were increased by8.12percentage points compared with raw coal directflotation. The results of technological intensified separation tests on hard-to-float fine coal show that, the first stage of the two-stage column flotation process recycled easy floatingmaterials under the condition of low pressure and small circulation, the second stagerecycled difficult floating minerals under high pressure and big circulation, and theintergrowth particles were recycled by re-separation process based on coal rock dissociation.In the condition of similar clean coal ash content, the recovery of combustible was higherthan conventional separation process by10percentage points.
     High efficient separation technology of hard-to-float high ash fine coal based on secondresource recovery was put forward. In terms of improving concentrate’s quality, there-separation process of filtrate from screen bowl centrifuge treating after the dehydrationprocess of rougher clean coal were designed in this paper, and this process reduced thecleaning pressure and system circulation. In terms of improving concentrate recovery ofcombustible, the technological process describing as classification of rougher tailings usingcyclone+dewatering of underflow from cyclone using high frequency screen+grindingdissociation and re-separation of oversize products from high frequency screen was putforward. The system with a handling capacity about400m3/h was set up in Qianjiaying coalpreparation plant in Kailuan Group. Industrial application results show that, under thecondition of similar clean coal ash content, combustion recovery of clean coal from thestudied process indicated an increase about5-10percentage points comparing with that ofonce rougher and once cleaner based on conventional flotation cell.
     This paper contains131pictures,58forms and156pieces of references.
引文
[1] Xu Zhenghe. Electro kinetic study of clay interactions with coal in flotation [J]. International Journalof Mineral Processing,2003,(68):183–196.
    [2] Bergerson, J A. Future electricity generation: an economic and environmental life cycle perspective onnear-, mid-and long-term technology options and policy implications [D]. carnegie mellon electricityindustry centre,2005.
    [3] Akdemir U, Sonmez I. Investigation of coal and ash recovery and entrainment in flotation. FuelProcessing Technology,2003,82(2003):1–9.
    [4]王淀佐,卢寿慈,陈清如,张荣曾.矿物加工学[M].徐州:中国矿业大学出版社,2003:27-28.
    [5]张一敏.固体物料分选理论与工艺[M].冶金工业出版社.2007:291-293.
    [6]王怀法.近年来选煤技术的发展与思考[J].第十届煤炭分选及加工学术研讨会论文集,徐州:中国矿业大学出版社,2004:19-21.
    [7]石常省,王泽南,谢广元.煤泥分级浮选工艺的研究与实践[J].煤炭工程,2005(3):58-60.
    [8]邱冠周,伍喜庆,王毓华,等.近年浮选进展[J].金属矿山,2006(1):41-52.
    [9]李绍英,谢华,阎志强.浮选柱的研发与工业应用[J].煤,2007,16(2):31-32.
    [10]郑飞.国外浮选柱的发展概况[J].化工矿山技术,1991,20(3):33-37.
    [11] Kyran C. Bubbles generation’s importance in flotation-blowing bubbles [J]. World mining equipment,1999,4:37-41.
    [12]今井哲男.浮选柱技术的发展[J].国外金属矿选矿,2000,8:17-21.
    [13]周凌锋,张立明,甘正如.浮选柱强化细粒分选的研究[J].有色金属(选矿部分)2004,4:33-34.
    [14] G. Schena, A. Casali. Column flotation circuits in Chilean copper concentrators [J]. Minerals Engineering,1994,7(1):1473-1486.
    [15] Y. Ye, S. Gopalatreshnan, E. Paequet, etc. Development of air-sparged hydrocyclone-A swirl-flowfloatation column [C]. Column Flotation’88: Society of mining engineers, INC, Littleton, Colorado, l988:305-314.
    [16] H. El-Shall, N. A. Abdel-Khalek, S. Svoronos. Collector–frother interaction in column flotation ofFlorida phosphate [J]. Mineral Processing,2000,58(6):187-199.
    [17] L. G. Bergh, J. B. Yianatos. Flotation column automation: state of the art [J]. Control EngineeringPractice,2003,11(1):67-72.
    [18] L. G. Bergh, J. B. Yianatos, C. A. Leiva. Fuzzy supervisory control of flotation columns [J]. MineralsEngineering,1998,11(8):739-748.
    [19] J. B. Yianatos, L. G. Bergh, G. A. Cortés. Froth zone modelling of an industrial flotation column [J].Minerals Engineering,1998,11(5):423-435.
    [20] H. Deng, R. K. Mehta, G. W. Warren. Numerical modeling of flows in flotation columns [J].International Journal of Mineral Processing,1996,48(1):61-72.
    [21] G Bhaskar Raii, S Prabhaker, P R Khangaonkar. Beneficiation low grade by electron-columnflotation technique [C]. Column Flotation’88: Society of mining engineers, INC, Littleton, Colorado,l988:293-298.
    [22] M. K. Mohanty, R. Q. Honaker. A comparative evaluation of the leading advanced flotationtechnologies [J]. Minerals Engineering,1999,12(1):1-13.
    [23]黄光洪.浮选柱提高铜精矿品位的生产实践[J].工程设计与研究,2002(12):8-12.
    [24] N. K. Mittal, P. K. Sen, S. J. Chopra, etc. India's first column flotation installation in the zinc cleaningcircuit at Rajpura Dariba Mine [J]. Minerals Engineering,2000,13(5):581-584.
    [25] S. Banisi, J. A. Finch. Testing a flotation column at the Sarcheshm eh copper mine [J]. MineralsEngineering,2003,14(7):785-789.
    [26]郭杰,刘炯天,王永田,等.用自吸式充气浮选柱回收铅锌尾矿中锌的试验[J].金属矿山,2005(1):63-64
    [27] D. Fenga, C. Aldrich. Recovery of chromite fines from wastewater streams by column flotation [J].Hydrometallurgy,2004,72(3):319-325.
    [28]钟宏.细粒浮选法[C].第三届中国青年选矿学术研讨会论文集,1993,(10):265-286.
    [29]刘炯天,胡军,马力强.浮选柱分选技术的发展与应用[J]煤炭加工与综合利用.2000(1):1-5.
    [30]茹宾斯腾J B.浮选柱的设计,仿真和操作.国外金属矿选矿.2004(7):16-20.
    [31]钱伟长等编.现代科学技术词典.上海科学技术出版社.1985. p698.
    [32]柯清水.化学化工大辞典.正文书局.2001, p282-283.
    [33]刘炯天.旋流一静态微泡浮选柱及洁净煤制备研究[D].北京:中国矿业大学,1999:18-23.
    [34] CAO Yijun, GUI Xiahui, MA Zilong, et al, Process mineralogy mtudy of Copper-Nickel sulphide byflotation column separation [J]. Mining Science and Technology,2009,12:784-787.
    [35]翟爱峰,刘炯天,曹亦俊等.西南某铜矿浮选柱半工业试验研究[J].有色金属(选矿部分),2008(2):34-37.
    [36]李琳,刘炯天,王永田.浮选柱在赤铁矿反浮选中的应用[J].金属矿山,2007(9):59-61.
    [37]刘杰,刘炯天,曹亦俊,李振.某金矿石柱式浮选工艺研究[J].金属矿山,2008,(4):53-55
    [38]王大鹏,刘炯天,周长春等.旋流-静态微泡浮选柱分选铝土矿的半工业试验[J].金属矿山,2009,(4):46-49.
    [39]李国胜,曹亦俊,刘炯天等.旋流-静态微泡浮选柱用于铜钼分离的试验研究[J].有色金属(选矿部分),2009(3).
    [40]刘炯天,王永田,李小兵等.柴山铅锌矿石旋流-静态微泡柱浮选试验研究.金属矿山,2008,(2):66~69.
    [41]曹亦俊,李国胜,刘炯天等.胶磷矿柱式双反浮选工艺研究[J].中国矿业大学学报,2009(6).
    [42]周晓华,宋晓娟,刘炯天等.旋流-静态微泡浮选柱浮选萤石试验研究[J].矿冶,2005,14(2):21~24
    [43]刘炯天.旋流-静态微泡柱分选方法及应用(之二)柱分离过程的静态化及其充填方式[J].选煤技术,2000(2):1-5.
    [44]刘炯天.旋流-静态微泡浮选柱分选方法及应用(之四)旋流力场分离与强化回收机制,选煤技术,2002(4)1-4.
    [45]蔡璋.浮游选煤与选矿[M].煤炭工业出版社.1990:116-119.
    [46]陈子鸣,吴多才.浮选动力学研究之一——矿物浮选速度模型[J].有色金属(选矿部分),1978(10):28-33.
    [47]亚纳多J B.浮选柱浮选现状(二).国外金属矿选矿[J].1991(2):65:68.
    [48] Finch J A, Dobby G S. Column Flotation [M]. Pregamon Press,1996.34-57.
    [49]朱由益,张强,卢寿慈.湍流态下浮选矿化速率数学模型[J].武汉冶金科技大学学报.1998,21(14):381-386.
    [50]荀志远,新型低高度浮选柱数学模型及按比例放大[J].有色金属,1996(3):26-31.
    [51]张敏,朱小林,刘焕彬等.浮选柱脱墨过程的浮选速率模型造纸科学与技术.2009,28(3):42-45.
    [52] Luttrell G. H.等茹青译,细粒煤浮选的流体力学和数学模型[J].国外金属矿选矿,1990,(1),42-48.
    [53]周晓华.浮选柱的旋流分选机理与矿物分选实践[D].徐州:中国矿业大学,2005:81-84.
    [54]翟爱峰.基于可浮性过程特征的硫化铜矿柱式分选研究[D].徐州:中国矿业大学,2008:41-49.
    [55] Finch J A. Selectivity in column flotation froths [J]. International Journal of Mineral Processing,1988,23(3/4):279-292
    [56] Schimmoller B K, Luttrel G H. Yoon R H. A combined hydrodynamic surface force model forbubble-particle collection. Proceedings of XⅧ IMPC, Dresden,1993,751-756.
    [57] Grace J. Bubbles, drops and particles [M]. New York: Academic Press,1978.
    [58] Heinrich Schubert, Claus Bischofberger. On the microprocesses air dispersion and particle-bubbleattachment in flotation machines as well as consequences for the scale-up of microprocesses [J].International Journal of Mineral Processing,1998,52:245-259.
    [59] Dobby G S. Finch J A. Particle size dependence in flotation derived from a fundamental model of thecapture process [J]. International Journal of Mineral Processing,1986,21:241~260.
    [60]李定或,丁一刚,吴元欣.充填浮选柱的混合,传质特性及操作参数-理论分析及试验原理[J]中国有色金属学报.1995,5(1):18:21.
    [61] Li D H. In: Proc of the First International Conf on Modern Process Mineralogy and MineralProcessing. Beijing: International Academic Publishers,1992,563.
    [62] Sculze H J. Physico-chemical Elementary of Flotation, Amsterdam: Elsevier,1984.
    [63]卢寿慈著.浮选原理[M].北京:冶金工业出版社,1989:322-330.
    [64] Sutherland K L. Physical chemistry of flotation XI: kinetics of the flotation process [J]. JournalPhysical Chemistry,1948,(52):394-398.
    [65] Gaudin A M. Flotation [M]. New York: MC Graw-Hill,1957.
    [66] Weber W, Paddok D. Interceptional and gravitational collision efficiencies for single collectors atintermediate Raynolds numbers [J]. Journal Colloid and Interface Science,1983,94:328-325.
    [67] Yoon R H, Luttrell G H. The effect of bubble size on fine particle flotation [J]. Mineral Processingand Extractive Metallurgy Review,1989,5:101-122.
    [68] Schulze H J, Radoec B, Geidel. The Investigations of collision process between particles and gasbubbles in flotation-A theoretical analysis [J]. International Journal of Mineral Processing,1989,27:263-278.
    [69] Schubert H, Bischofberger C. On the optimization of ydrodynamics in flotation process. Proceedingsof ⅫIMPC, Warszawa,1979,(2):1261-1287.
    [70] Yoon R H. The role of hydrodynamic and surface forces in bubble–particle interaction [J].International Journal of Mineral Processing,58(1):129-143, Feb2000.
    [71]张一敏.固体物料分选理论与工艺[M].冶金工业出版社.2007:207-220.
    [72] Deriaguin B V, Dukin S S, Rulyov N N. Microflotation [M]. Moscova: Khimija,1986.
    [73] Nguyen Van A. On the sliding time in flotation [J]. International Journal of Mineral Processing,1993,37:1-25.
    [74] Dai Z. Fornasiero D, Ralston J. Particle-bubble collision models-a review [J]. Advances in Colloidand Interface Science,2000,85,231-256.
    [75] Luttrell G H, Adel G T, Yoon R H. Hydrodymics and mathematical modeling of fine coal flotation.Proceedings of XVI IMPC,1991,1791-1802.
    [76] Evans L F. Bubble-mineral attachment in flotation [J]. Industrial and Engineering Chemistry,1954,46:2420-2429.
    [77] Trahar W J, Warre L J. The floatability of very fine particles-a review [J]. International Journal ofMineral Processing,1976,3,103-131.
    [78] John Ralston, Daniel Fornasiero, Robert Hayes. Bubble-particle attachment and detachment inflotation [J]. International Journal of Mineral Processing,1999,56:133-16.
    [79] Broussaud A. Advanced computer methods for mineral processing: their function and potentialimpact on engineering practices. Proceedings of XVI IMPC,1991,17-32.
    [80] Gregory J. Journal Colloid and Interface Science,1981,83,138-145.
    [81]陈子鸣,茹青.贫连生体浮选机理及粗选用浮选机发展方向的探讨[J].北京矿冶研究总院学报.1993,2(2):24-28.
    [82]程宏志,蔡昌凤,张孝军等.浮选微观动力学和数学模型.煤炭学报.1998,23(5):545-548.
    [83]曾克文.浮选槽内矿浆紊流强度对浮选影响的理论及应用研究[D].长沙:中南大学,2001:54-82.
    [84]陈清如,刘炯天.中国洁净煤[M].中国矿业大学出版社,2009:500-520.
    [85]谢冬梅,崇立芹,煤用浮选机的使用现状及技改措施探讨[J].煤炭加工与综合利用,2006(3):16-19
    [86] Sampaio C H, A liaga W, Villanueva M. Rougher flotation of copper minerals in columns [J].Minerals Engineering,2005,18(7):731-733.
    [87]李玄怀.浮选柱的研究和应用[J].科技情报开发与经济,2004,14(10):346~350.
    [88] Marthese M M, Urive-Salas A, Finch J A. Hydrodynamics of a do down flow column. Proceedings ofXⅧ IMPC, Dresden,1993,813-822.
    [89] Finch J A, Dobby G S. Column flotation. A selected review, Part I [J]. International Journal ofMineral Processing,1991,33:343-354.
    [90] Luttrell G H, Yoon R H A. flotation column simulator based on hydrodynamic principles [J].International Journal of Mineral Processing,1991,33:355-368.
    [91] Petruk W, Lastra R. Evaluation of the recovery of liberated and unliberated chalcopyrite by flotationcolumns in a copper cleaner circuit [J]. International Journal of Mineral Processing,1993,40:137-149.
    [92] Huls B J, Lachance C D, Dobby G S. Bubble generation sessment for an industrial flotation column[J]. Minerals Engineering,1991,4:37-42.
    [93] J. A. Finch, G. S. Dobby. Column flotation [M]. Pergamon Press,1989:5-7.
    [94] Afranio Franco Machado. Growing interest in column flotation for minerals [J]. Filtration&Separation,1991,28(1):11-18.
    [95]姜子伟,黄波.射流浮选柱充气机理的研究[[J].煤炭学报,1995,(6):20-23.
    [96]何廷树,陈炳辰.新型细粒浮选机的研制和现场分流试验[[J].金属矿山,1996(7):34-36.
    [97]赵振才,许宏林,吕方润.静态浮选塔内的流态研究[J].有色金属(选矿部分),1992,(3):18-20.
    [98] Cordes H. Development of pneumatic flotation cells to their present day status [J]. AufbereitungsTechhik,1997,38:69-82.
    [99] Bromley E H, Egasn J R, Sharp G R. Column flotation at Cominco. Proceedings of column'91,1991,Sudbury, Ontario,585-594.
    [100] Xu M, Uribe-Salas A, Finch J A. Maxium gas and bubble surface rates in column flotation [J].International Journal of Mineral Processing,1991,32:233-250.
    [101] J. A. Finch, G. S. Dobby. Column flotation [M]. Pergamon Press,1989:1-4.
    [102]皇甫京华.双射流浮选柱结构设计及其流场数值模拟的研究[D].中国矿业大学(北京校区),博士学位论文,1998.
    [103]刘炯天,欧泽深,高敏.旋流器浮选柱的研究[J].选煤技术,1993,12(5):60-63.
    [104]刘炯天,欧泽深.詹姆森型浮选柱的研究[J].选煤技术,1995(1):26-29.
    [105]霍尔.浮选柱进入成熟期[J].国外金属矿选矿.1993,5(10):45-48.
    [106] G. J. Jameson, E. V. Manlapig. Applications of the Jameson flotation cell [C]. Column Flotation’91:Canada Cominco Engineering Services Ltd,1991:673-687.
    [107] R. Clayton, G. J. Jameson, E. V. Manlapig. The development and application of the Jameson cell [J].Minerals Engineering,1991,4(1):925-933.
    [108] G. J. Harbort, B. R. Jackson, E. V. Manlapig. Recent advances in jameson flotation cell technology[J]. Minerals Engineering,1994,7(2):319-332.
    [109]陶长林.詹姆森浮选柱-浮选工艺的一大突破[J].中国矿业,1995,4(1):43-48.
    [110]何绪文,肖宝清.浮选柱在细粒煤分选中的发展与应用[J].国外金属矿选矿,1996,7:12~15
    [111]周凌锋,傅联海,张强.高效细粒浮选柱[J].有色金属.2007,59(2):55-58.
    [112] Weber Me, Paddock D. Interceptional and gravitational collsion efficiencies for single collectors atintermediate Reynolds numbers [J]. Journal of Colloid Science,1994,3(5):327-335.
    [113] Schneider J C, Weert G Van. Design of operation of the hydrochem fydrochem flotation column [J].Column Flotation,1999,11(7):287-292.
    [114] Lahey, A E. Microcel-TM flotation column modeling, Coal Preparation,1998,19(1-2):83-113.
    [115]支同祥.浮选柱研究现状与应用前景[J].中国煤炭,1999,25(9):9-13.
    [116] Gopalakreshnan Y S, Pacquet E, Miller J D. Development of air-sparged hydrocyclone-A swirl-flow flotation column [C]. column flotaion’88: Society of mining engineers, INC, litlleton, Colorado,1988:305-314.
    [117] Miller J D. Gopalakrishnan Y S. Development of the air-Sparged hydrocyc1one. Column Flotation.l988.305-313.
    [118] I. Bilgesu, T. P. Meloy, M. C. Williams. Packed column froth flotation—escalator model andplugging [J]. International Journal of Mineral Processing,1998,53(1):59-74.
    [119] Yang D C. A New Packed Column Flotation System [C]. Column Flotation’88: Society of miningengineers, INC, Littleton, Colorado, l988:257-260.
    [120] Durney, T E Fine coal flotation using the flotaire column flotation cell [J]. Society of miningengineers of AIME,1990:4-55.
    [121]彭寿清.浮选柱的发展和应用[J].湖南有色金属,1998,14(2):14-15.
    [122] Rubinstin J, Badericor V. New aspects in the theory and praetice of column Flotation. Proceeding ofthe XIX IMPC,3:113~116.
    [123]杨琳琳.环形充气浮选机的研制[D].昆明:昆明理工大学.2008:43-63.
    [124]周晓华,赵朝勋,刘炯天.浮选柱研究现状及发展趋势[J].选煤技术,2003(6):51-55.
    [125]彭寿清.浮选柱的发展和应用[J].湖南有色金属,1998,14(2)17-19.
    [126] Kirnarsky A, Sbitnev M. The state-of-the-art in coal slimes reparation [J]. Mine planning andequipment seleetion. Strakos,1997:767-770.
    [127]谢领辉,谢广元,王宏.浮选柱串联处理高浓度煤泥水效果初探[J].2009(3):92-94.
    [128]陈清如,刘炯天.中国洁净煤[M].中国矿业大学出版社,2009:465-475.
    [129]王全强.改善难浮煤泥浮选效果的途径探讨[J].选煤技术,2005,(2):38-40.
    [130] M. Polat, H. Polat. Physical and chemical interactions in coal flotation [J]. Mineral Processing,2003(72)199-213.
    [131] Kejian Ding, Janusz S, Laskowski. Coal reverse flotation. Part I: Separation of a mixture ofsubbituminous coal and gangue minerals [J]. Minerals Engineering,2006,(19):72-78.
    [132] Xinqian Shu, Zuna Wang, Jingqiu Xu. Separation and preparation of macerals in Shenfu coals byflotation [J]. Fuel,2002,(81):495-501.
    [133]程宏志,路迈西,石焕等.振荡法提高浮选选择性的作用机理[J].煤炭学报,2007,32(5):531-534.
    [134]蔡璋,蒋荣立,罗时磊等.极细粒煤泥分选新方法-选择性絮凝[J].中国矿业大学学报,1993,22(1):54-61.
    [135]王怀法,湛含辉,杨润全.高灰极难选煤泥的絮凝浮选试验研究[J].选煤技术,2001,1:17-19.
    [136]崔广文,张继柱,扶祥通等.煤泥粒度组成对浮选影响的研究[J].选煤技术,2007(4):20-22.
    [137] Jameson, GJ. Advances in fine and coarse particle flotation [J]. Canadian Metallurgical Quarterly,2010,49(4):328-330.
    [138] Ata S, et al. Collection of hydrophobic particles in the froth phase [J]. International Journal ofMineral Processing,2002(64):101-102.
    [139]陶有俊,刘文礼,路迈西.细粒煤浮选数学模型的研究[J].中国矿业大学学报,1999,28(5):425-428.
    [140] Lynch A J. Mineral and coal flotation circuits their simulation and control [M]. Amsterdam: ElsevierPress,1981:64-68.
    [141] Moxon N T, Nicol K, Bensley C N, et al. Chemical variables in coarse coal flotation [J]. CoalPreparation,1993,(12):15-26.
    [142]周凌锋,张立明,甘正如.浮选柱强化细粒分选的研究[J]有色金属(选矿部分),2004,(4):34-35.
    [143] Weber Me, Paddock D. Interceptional and gravitational collsion efficiencies for single collectors atintermediate Reynolds numbers [J]. Journal of Colloid Science,1994,3(5):327-335.
    [144] Schneider J C, Weert G Van. Design of operation of the hydrochem fydrochem flotation column [J].Column Flotation,1999,11(7):287-292.
    [145]王加强,史新忠,单光明等. FXZ静态浮选柱与浮选机分选高灰细泥的效果对比[J].煤炭加工与综合利用,2007(3):22-24.
    [146] Hans Joachim Schulze, Werner Stockelhuber. Coagulation and Flocculation [M]. Taylor&FrancisGroup,2005:456-517.
    [147] J. A. Finch, G. S. Dobby. Column flotation [M]. Pergamon Press,1989:37-73.
    [148]张敏.柱浮选充填及流体动力学研究[D].徐州:中国矿业大学,2007:23-27.
    [149] G. H. Luttrell. Hydrodynamic studies and mathematical modeling of fine coal flotation [D]. Virgina:Virgina Polytechnic Institute and State University,1986:26-65.
    [150] Sculze H J. Physico-chemical Elementary of Flotation [J]. Amsterdam: Elsevier,1984
    [151] Tatu Miettinen, John Ralston, Daniel Fornasiero. The limits of fne particle fotation [J]. MineralsEngineering,2010,23:420–437.
    [152] Zongfu Dai, Daniel Fornasiero, John Ralston. Particle bubble collision models-a review [J].Advances in Colloid and Interface Science.2000,85:231-256.
    [153] H. J. Schulze. Flotation as a heterocoagulation process: possibilities of calculating the probability offlotation [C]. Coagulation and Flocculation. Marcel Dekker, New York, l993:321-353.
    [154] R. H. Roon.矿粒-气泡作用中的流体动力和表面力[J].国外金属矿选矿,1993(6):5-11.
    [155] J. A. Finch, G. S. Dobby. Column flotation [M]. Pergamon Press,1989:37-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700