小麦/玉米轮作条件下秸秆还田钾素效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验于2008年10月-2011年10月在中国农业科学院国际高新技术园区国家测土施肥中心实验室试验基地(河北省廊坊市)进行。本研究试验处理设秸秆还田配施钾肥(NPK+St),施用钾肥(NPK)、秸秆还田(NP+St)、对照(NP)4个处理,试验为随机区组设计。通过3年6季的试验,在我国华北平原冬小麦/夏玉米轮作条件下,研究秸秆还田和施钾肥对作物产量的影响、作物—土壤系统钾素表观平衡和秸秆还田替代化学钾肥比率。同时,从试验区取0~20cm土样,应用不同的浸提剂提取土壤不同形态钾素,研究不同形态钾素在土壤的动态平衡;通过加入不同浓度的外源钾素研究土壤对外源钾素固定能力;通过采取振荡平衡法,利用0.01mol/LCaCl2和0.01mol/L草酸为浸提介质研究土壤非交换性钾释放规律。主要结论如下:
     与NP处理相比,NPK+St、NPK和NP+St处理均有明显的增产效应,NPK+St处理的效果最好,小麦产量为4148.0kg/hm~2,与对照相比增产13.3%,玉米产量为6416.1kg/hm~2,与对照相比增产17.4%。施钾在小麦上增产318.9kg/hm~2,增产幅度为8.6%,在玉米上增产688.7kg/hm~2,增产幅度为12.4%,施钾在玉米上的增产效果优于小麦。秸秆还田在小麦上增产169.3kg/hm~2,增产幅度为4.5%,在玉米上增产259.8kg/hm~2,增产幅度为4.5%。小麦季玉米秸秆还田的替钾率在25.2%,玉米季小麦秸秆还田的替钾率在20.3%。秸秆还田配施钾肥处理的钾肥回收率、农学效率、偏生产力均大于施用钾肥处理。
     与NP处理相比,NPK+St、NPK和NP+St处理均可提高土壤水溶性钾、非特殊吸附钾、特殊吸附钾、非交换性钾含量,对土壤矿物钾以及全钾含量影响不大。NPK+St、NPK和NP+St处理也可提高土壤水溶性钾、非特殊吸附钾在速效钾中的比例,增加土壤速效钾和非交换钾在全钾中的比例。NPK+St处理下土壤各形态钾素与试验开始相比均有提高,NPK、NP+St和NP处理的土壤各形态钾素均有下降,NP处理下降幅度较大。
     秸秆还田和施钾肥可提高作物钾素吸收总量,除NPK+St处理外,其它各处理的钾素支出总量均高于钾高投入量,造成土壤钾素不同程度的亏缺,NP处理的亏缺量最大。NP处理3年的K2O亏缺总量为720.1kg/hm~2,NPK处理的土壤钾素也有相当数量的亏缺,3年的K2O亏缺总量为497.8kg/hm~2,NP+St处理土壤钾素3年的K2O亏缺量为63.5kg/hm~2,而NPK+St处理的土壤钾素有盈余,3年的K2O盈余量为248.9kg/hm~2。钾素表观平衡系数除NPK+St外,均小于1,NPK+St、NPK、NP+St处理的表观平衡系数分别为1.26、0.42、0.92。
     在外源钾加入浓度400~3600mg/L的范围内,秸秆还田和施钾肥可显著降低土壤对外源钾素的固定量,土壤固钾量随外源加入钾素浓度的增加而增加,但固钾率下降。在同一浓度外源钾加入水平下,NPK+St处理土壤固钾量最低,NPK和NP+St处理次之,NP处理土壤固钾量最高。NPK+St处理土壤固钾量与试验开始相比下降,而NPK、NP+St和NP处理土壤固钾量与试验开始相比增加,NP处理固钾量增加幅度较大。秸秆还田和施钾肥可能通过影响土壤速效钾含量、缓效钾含量、有机质、土壤K+饱和度(KSR)和阳离子代换量(CEC)的变化而改变土壤对外源钾素的固定能力。
     在0.01mol/L CaCl2和0.01mol/L草酸两种浸提剂中土壤非交换性钾的释放特征基本相似,各处理土壤的最大释放量也表现为:NPK+St>NPK>NP+St>NP。土壤非交换性钾最大释放量与试验前相比,NPK+St处理在241小时最大释放量在两种浸提剂中分别增加了9.2mg/kg和21.5mg/kg,NPK处理与NP+St处理变化不明显,而NP处理241小时最大释放量在两种浸提剂中分别减少8.8mg/kg和61.5mg/kg。用一级反应方程可以较好的对土壤非交换性钾的释放进行描述,各处理土壤在两种浸提中非交换性钾释放速率参数大小表现为:NPK+St>NPK>NP+St>NP(0.01mol/LCaCl2浸提剂)和NPK+St> NP+St> NPK>NP(0.01mol/L草酸浸提剂),钾素投入较高的处理土壤非交换性钾释放量较大,释放速率也大,土壤的钾素供应能力较强。NP处理土壤最大释放量和释放速率较小,土壤供钾能力较弱。
The experiments were conducted from October2008to October2011in the experiment station ofNational Laboratory of Soil Testing and Fertilizer Recommendation of Chinese Academy ofAgricultural Sciences, which is located in Langfang city of Hebei Province. Four treatments weredesigned as a randomized complete block with three replications. Treatment1: no straw returned and noapplication of chemical potassium fertilizer (denoted as NP); treatment2: no straw returned andapplication of chemical potassium fertilizer (represented by NPK); treatment3: crops straw returned andno application of chemical potassium fertilizer (represented by NP+St); and treatment4: crops strawreturned and application of chemical potassium fertilizer (represented by NPK+St). Under the summercorn and winter wheat rotation system in North China Plain, a field experiment with six crops seasonsand three rotation systems was carried out to investigate the effects of crops straw returned to soil andapplication of chemical potassium fertilizer on the crops yield, K balance in soil-crops system, and theratio of chemical K replacement by straw. Meanwhile, the topsoil of0~20cm in the experiment wassampled to extract different forms of K by several solutions and study the distribution characteristics ofthe different forms of K in soil; to study the fixation ability of different concertrations of additive K; andto study the release characteristics of nonexchangeable K by the method of centrafiuge-balance with0.01mol/L CaCl2and0.01mol/L oxalic acid extractant. The main results as following:
     Compared with treatment NP, there were significant yield increasing in treatments NPK+St, NPKand NP+St, the optimal treatment was NPK+St, the yield of winter wheat and summer corn were4148.0and6416.1kg/hm~2, which increased by13.3%and17.4%in contrast to treatment NP, respectively.Application of potassium fertilizer could increase wheat and corn yield by318.9and688.7kg/hm~2, andthe yield increment was8.6%and12.4%in wheat and corn season respecitively. Generally speaking,the yield increase of corn was greater than that of wheat. Crops straw returned to soil could increasewheat and corn yield by169.3and259.8kg/hm~2, and the yield increment was4.5%and4.5%in wheatand corn season, respecitively. The ratio of chemical K replacement by corn straw was25.2%in wheatseason, and that by wheat straw was20.3%in corn season. Compared with treatment NPK, there hadhigher recovery efficiency, agronomic efficiency and partial factor productivity from applied K intreatment NPK+St.
     In contrast to treatment NP, treatments NPK, NP+St and NPK+St significantly increased watersoluble K, nonspecific adsorption K, nonexchangeable K, mineral K and total K content; however, therewas no significant effect on specific adsorption K. The available K, slow-release K and total K in tillagesoil with crops straw returned to soil or potassium fertilizer application were significantly higher thanthose in treatment NP, and which increased with the growing seasons. Compared with the basic soil atbeginning of this experiment, soil available K content in treatment NP keeps declining. Crops strawreturned to soil and application of chemical potassium fertilizer could decrease the ratio of mineral Kaccount for total K in soil. In comparation with the application of potassium fertilizer, crops straw returned to soil significantly increased the ratio of water soluble K, nonspecific adsorption K,nonexchangeable K and mineral K account for total K.
     Crops straw returned to soil and application of chemical potassium fertilizer significantly increasedtotal K absorption, except the treatment NPK+St, some other treatments with lower K input had lowtotal K absoption and caused soil K deficiency, espspecially in treatment NP. Deficit of K in soil withtreatment NP was the highest, the total deficit of K2O was720.1kg/hm~2after three years; however,there was still deficit of K2O in soil with treatment NPK, which was497.8kg/hm~2after three years;treatment NP+St could nearly maintain soil K balance, only had deficit of K2O by63.5kg/hm~2; soil Kwas surplus in treatment NPK+St, which was248.9kg/hm~2of K2O. The indexes of K balance were1.26,0.42and0.92in treatment NPK+St, NPK and NP+St, respectively, which indicated that except fortreatment NPK+St, indexes of K balance in other treatments were less than1.
     After3years crops growing, when the concentrations of additive K were ranged from400to3600mg/L, crops straw returned to soil or application of chemical potassium could significantly decreasedthe amounts of additive K fixed in soil, and the fixation ability of K increased with the concentration ofadditive K increase, whearas the proportion of fixation decreased. At the same concentration of additiveK, the K fixation amounts were in the following order: NPK+St     There were similar characteristics of soil nonexchangeable K release in two extraction solution of0.01mol/L CaCl2and0.01mol/L loxalic acid, the maximal amounts of soil nonexchangeable K releasehad the trendicy of NPK+St>NPK>NP+St>NP. Compared with the basic soil, there was significantdifference in all treatments, the maximal amount of soil nonexchangeable K release in treatmentNPK+St was found after241hours in two extraction solutions, which increased by9.2and21.5mg/kg,respectively; there was little change in treatment NPK and NP+St; however, the maximal amount of soilnonexchangeable K release in treatment NP after241hours with two extraction solutions decreased by8.8and61.5mg/kg, respectively. Soil nonexchangeable K release could be well discribled by first-orderrelease kinetic equations. According to different K input treatments, the parameters of release rate ofnonexchangeable K in two different extraction solutions were NPK+St>NPK>NP+St>NP or NPK+St>NP+St> NPK>NP, and the release amounts and rates of nonexchangeable K, and soil K supplyingability were greater in high K input treatment. The release amounts and rates of nonexchangeable Kwere small in treatment NP, and soil K supplying ability was very limited.
引文
1白由路,杨俐苹,金继运.测土配方施肥原理与实践[M].北京,中国农业出版社,2007:31.
    2白由路.高价格下我国钾肥的应变策略[J].中国土壤与肥料2009(3):1~4
    3鲍士旦,史瑞和.土壤钾素供应状况的研究I,江苏省几种土壤的供钾状况与禾谷类作物(大麦)对钾吸收能力之间的关系[J].南京农学院学报,1982(1):59~66
    4鲍士旦,于军.钾耗竭后土壤对铵钾离子的固定竞争[J].土壤,1994,26(6):301~304.
    5毕于运,高春雨,王亚静,等.中国秸秆资源数量估算[J].农业工程学报,2009,25(12):211~217
    6蔡晓布,钱成,张永青,等.秸秆还田对西藏中部退化土壤环境的影响[J].植物营养与肥料学报,2003,9(4):411~415
    7曹国良,张小曳,王丹,等.中国大陆生物质燃烧排放的污染物清单[J].中国环境科学,2005,25(4):389~393
    8曹国良,张小曳,王亚强,等.中国区域农田秸秆露天焚烧排放量的估算[J].科学通报,2007,52(15):1826~1831
    9陈防,鲁剑巍,万运帆,等.长期施钾对作物增产及土壤钾素含量及形态的影响[J].土壤学报,2000,37(2):233~241.
    10陈防.长期施钾对土壤钾素固定释放特性的影响[D].武汉.华中农业大学博士学位论文,1997
    11程明芳,金继运,黄绍文.我国北方主要土壤非交换性钾释放速率的研究[J].土壤学报,1999,36(5):218~224
    12程明芳,金继运,林葆.土壤对施入钾的固定能力研究[J].土壤通报,1995,26(3):125~127
    13崔德杰,刘永辉,隋方功,等.长期定位施肥对土壤钾素形态的影响[J].莱阳农学院学报,2005.22(3):165~167.
    14戴志刚.秸秆养分释放规律及秸秆还田对作物产量和土壤肥力的影响[D].武汉:华中农业大学硕士学位论文,2009
    15董玉良,劳秀荣,毕建杰,等.麦玉轮作体系中秸秆钾对土壤钾库平衡的影响[J].西北农业学报,2005,14(3):173~176
    16杜立宇,李延东,梁成华.不同施肥处理对保护地土壤非交换钾释放能力的影响[J].河南农业科学,2008(6):54~57
    17杜守宇,田恩平,温敏,等.秸秆覆盖还田的整体功能效应与系列化技术研究[J].干早地区农业研究,1994,12(2):88~94
    18杜振宇,周健民,王火焰,等.钾在潮土肥际微域中的迁移与转化[J].水土保持学报,2009,23(2):19~22.
    19范钦桢.铵对土壤钾素释放、固定的影响[J].土壤学报,1993,30(3):246~251
    20范钦祯,谢建昌.长期肥料定位试验中土壤钾素肥力的演变[J].土壤学报,2005,42(4):591~599
    21范仲学,王志芬,张凤云.覆盖对土壤物理性状与小麦产量的影响[J].小麦研究,2003,24(3):18~20
    22封克,般士学,张山泉.矿物钾在作物营养中的意义[J].土壤通报,1992,23(2):58~60
    23高利伟,马林,张卫峰,等.中国作物秸秆养分资源数量估算及其利用状况[J].农业工程学报,2009,25(7):173~179
    24高茂盛.秸秆还田对隔茬冬小麦抗性生理及土壤肥力的影响[D].杨凌:西北农林科技大学硕士学位论文,2007
    25高祥照,马文奇,崔勇,等.我国耕地土壤养分变化与肥料投入状况[J].植物营养与肥料学报,2000,6(4):363~369
    26高亚军,黄东迈,朱培立,等.稻麦轮作条件下长期不同土壤管理对氮素肥力的影响[J].土壤学报,2000,37(4):456~463
    27巩杰.旱作麦田秸杆覆盖的生态综合效应研究[D].兰州,甘肃农业大学硕士论文.2002
    28顾爱星,张艳.秸秆覆盖法对土壤微生物区系的影响[J].新疆农业大学学报2005,28(4):64~68.
    29郭建华,韩宝文,邢竹.耗竭土壤钾素的固定及对棉花钾素营养的作用[J].华北农学报,2003,18(1):94~96
    30韩真.葡萄砧木钾吸收动力学及不同土壤类型供钾能力研究[D].泰安,山东农业大学硕士论文.2011
    31何平安,李荣.中国有机肥料养分志[M].中国农业出版社.北京.1999.
    32何园球,黄小庆.红壤农业生态系统养分循环、平衡和调控研究[J].土壤学报,1998,35(4):501~509
    33洪春来,魏幼璋,黄锦法,等.秸秆全量直接还田对土壤肥力及农田生态环境的影响研究[J].浙江大学学报(农业与生命科学版),2003,29(6):627~633
    34侯志研,杜桂娟,孙占祥,等.玉米秸秆还田培肥效果的研究[J].杂粮作物,2004,24(3):166~167
    35黄东迈,朱培立.有机无机态肥料氮在水田和旱地的残留效应[J].中国科学,1982(10):907~912
    36黄绍文,金继运,程明芳,等.北方主要土壤对当季作物的供钾能力[J].土壤肥料,1999,(3):3~7
    37黄绍文,金继运,王泽良,等.北方主要土壤钾形态及其植物有效性研究[J].植物营养与肥料学报,1998,4(2):156~164
    38黄绍文,金继运.我国北方一些土壤对外源钾的固定[J].植物营养与肥料学报,1996,(2):131~138
    39姜岩.未腐解有机物与土壤培肥[M].长春:吉林科学技术出版社,2005:33~48
    40姜子绍,宇万太.农田生态系统中钾循环研究进展[J].应用生态学报,2006,17(3):545~550
    41蒋梅茵,罗家贤.土壤中钾的固定与释放[A].熊毅,陈家坊.土壤胶体(第三册)[C].北京:科学出版社,1990,442~486.
    42蒋梅茵.土壤含钾矿物中钾的固定与释放[J].土壤通报,1982,3:44~49
    43金海洋,姚政.秸秆还田对土壤生物特性的影响研究[J],上海农业报.2006,22(1):39~41.
    44金继运,高广领,王泽良,等.不同土壤钾素释放动力学及其供钾特征的研究[J].植物营养与肥料学报,1994,1:40~48
    45金继运,李家康,李书田.化肥与粮食安全[J],植物营养与肥料学报,2006,12(5):601~609
    46金继运,刘荣乐.土壤肥力与肥料[M].北京.中国农业科技出版社,1998,219~221
    47金继运.土壤钾素研究进展[J].土壤学报,1993,30(1):94~101
    48金继运.我国北方土壤缺钾和钾肥应用的发展趋势[A].中国农业科学院土壤肥料研究所/加拿大钾磷研究所.北方土壤钾素和钾肥效益[C].北京.中国农业科技出版社,1994.1~5
    49孔宏敏,何圆球,吴大付,等.长期施肥对红壤旱地作物产量何土壤肥力的影响[J].应用生态学报,2004,15(5):782~786
    50劳秀荣,孙伟红,王真,等.秸秆还田与化肥配合施用对土壤肥力的影响[J].土壤学报,2003,40(4):619~623
    51李逢雨.秸秆还田养分释放规律及稻草化感作用研究[D].雅安,四川农业大学硕士论文2007:2~3
    52李贵桐,赵紫娟,黄元仿,等.秸秆还田对土壤氮素转化的影响[J].植物营养与肥料学报,2002,8(2):162~167
    53李家康,林葆,梁国庆.中国化肥使用前景的剖析[A].农田养分平衡与管理[M].南京.河海大学出版社.2000:53~72
    54李建和,陈克文,刘淑欣.不同类型土壤N, K的转化特征[J].福建农业大学学报,1997,263(1):77~81
    55李秋梅,陈新平,张福锁,等.冬小麦—夏玉米轮作体系中磷钾平衡的研究[J].植物营养与肥料学报,2002,8:152~156
    56李生秀.我国土壤-植物营养研究的进展[J].中国土壤学会第十次全国会员代表大会暨第五届海峡两岸土壤肥料学术交流研讨会论文集(面向农业与环境的土壤科学综述篇).2004,126~141
    57李小坤.水旱轮作条件下根区与非根区土壤钾素变化及固定释放特性研究[D]武汉:华中农业大学博士论文,2009
    58李小坤;鲁剑巍;吴礼树.水旱轮作体系中的钾素循环与平衡[J].中国土壤学会第十一届全国会员代表大会暨第七届海峡两岸土壤肥料学术交流研讨会论文集(下).2008:327~333
    59李新举,张志国,邓基先,等.免耕对土壤生态环境的影响[J].山东农业大学学报,1998,29(4):520~526
    60李学垣.土壤化学[M].北京:高等教育出版社,2001,55~99
    61李玉田.我国钾化肥使用的历史、现状和对策[J].北京农业科学,1992,10(4):30~35
    62李玉影,吴英,刘双权,等.钾对春小麦产量及品质的影响[J].土壤肥料.2002,(2):33~35
    63李宗新,董树亭,胡昌浩,等.有机无机肥互作对玉米产量及耕层土壤特性的影响[J].玉米科学,2004,(3):100~102
    64梁成华,魏丽萍,罗磊.土壤固钾与释钾机制研究进展[J].地球科学进展,2002,17(5):679~684
    65廖育林,郑圣先,聂军,等.不同类型生态区稻-稻种植制度中钾肥效应及钾素平衡研究[J].2008,39(3):612~618
    66廖育林.长期施用化肥和稻草下红壤性水稻土钾素肥力演变规律的研究[D].长沙,湖南农业大学博士论文,2010
    67林清火,罗微,林钊沐.砖红壤地区早地土壤肥料养分淋失研究进展[J].热带农业科学,2003,23(1):61~66
    68林荣新.有机肥防治油菜缺硼效果的研究[J].浙江农业科学,1985,(2):88~91
    69林心雄,文启孝.秸秆利用对土壤肥力的影响[J].中国土壤科学的现状与展望.南京.江苏科学技术出版社,1991,122~131
    70林忠辉,陈同斌,周立祥.中国不同区域化肥资源利用特征与合理配置[J].资源科学,1998,20(5):26~31
    71刘代欢.长期定位施肥对设施蔬菜栽培土壤钾素供应特征影响研究[D].沈阳,沈阳农业大学博士论文,2009
    72刘刚,修万红.秸秆覆盖对桑园土壤微生物年变化的影响[J].蚕业科学,2003,29(2):185~188.
    73刘会玲,陈亚恒,段毅力,等.土壤钾素研究进展[J].河北农业大学学报,2002,25(增刊):66~68
    74刘金华.吉林省黑土钾素释放、固定动力学研究[D].长春,吉林农业大学硕士论文,2006
    75刘荣乐,金继运,吴荣贵,等.我国北方土壤—作物系统内钾素循环特征及秸秆还田与施钾肥的影响[J].植物营养与肥料学报,2000,6(2):123~132
    76刘巽浩,高旺盛,朱文珊.秸秆还田的机理与技术模式[M].北京.中国农业出版社,2001,3~5
    77鲁如坤,刘鸿翔,闻大中,等.我国典型地区农业生态系统养分循环和平衡研究Ⅱ.农田养分支出参数[J].土壤通报,1996,27(4):151~154
    78鲁如坤,刘鸿翔,闻大中,等.我国典型地区农业生态系统养分循环和平衡研究I.农田养分支出参数[J].土壤通报,1996,27(4):145~151
    79鲁如坤,时正元,施建平.我国南方6省农田养分平衡现状评价和动态变化研究[J].中国农业科学,2000,33(2):63~67
    80吕彪,秦嘉海,赵芸晨.麦秸覆盖对盐渍土肥力及作物产量的影响[J].土壤,2005,37(1):52~55
    81吕美蓉,李增嘉,张涛,等.少免耕与秸秆还田对极端土壤水分及冬小麦产量的影响[J].农业工程学报,2010,26(1):41~44
    82罗家贤,包梅芬.几种粘土矿物和土壤的钾固定[J].土壤学报,1988,25(4):377~386
    83罗永.四川丘陵区玉米高产高效及最佳养分管理技术研究[D].雅安,四川农业大学硕士论文,2011
    84马永良,师宏奎,张书奎,等.玉米秸秆整株全量还田土壤理化性状的变化及其对后茬小麦生长的影响[J].中国农业大学学报,2003,8(增刊):42~46
    85孟凡乔,吴文良,辛德惠.高产农田土壤有机质、养分的变化规律与作物产量的关系[J].植物营养与肥料学报,2000,6(4):370~374
    86牛灵安,秦耀生,郝晋珉,等.曲周试区秸秆还田配施氮磷肥的效应研究[J].土壤肥料,1998(6):32~35
    87农业部科学技术司,中国南方农业中的钾[M].北京:农业出版社.1991
    88彭浩,邵明安,张兴昌.黄土区土壤钾素径流流失机理研究进展[J].土壤与环境,2002
    89钱成,蔡晓布.秸秆还田对西藏中部退化农田土壤水分的影响[J].土壤通报,2003,34(6):586~588
    90钱宏兵.稻麦秸秆直接还田技术的研究[J].土壤肥料,1998,(2):26-28
    91钱晓晴,彭永欣,封克,等.沿江高沙土钾的固定与释放[J].土壤通报,1996,27(4):168~169
    92强学彩.秸秆还田量的农田生态效应研究[D],北京,中国农业大学硕士论文.2003
    93沈善敏.长期土壤肥力试验的科学价值[J].植物营养与肥料学报,1995,1(1):1~9
    94沈善敏.中国土壤肥力[M].北京:中国农业出版社,1998:32~35
    95史吉平,张夫道,林葆.长期施用氮磷钾化肥和有机肥对土壤氮磷钾养分的影响[J].土壤肥料,1998.(1):7~10
    96史建文,鲍士旦,史瑞和.耗竭条件下层间钾的释放及耗竭后土壤的固钾特性[J].土壤学报,1994,31(1):42~49
    97孙传范,曹卫星,戴廷波.土壤作物系统中氮肥利用率的研究进展[J].土壤,2001,33(2):64~69
    98孙克刚,李锦辉,姚健,等.不同施肥处理对作物产量及土体NO3-累积的长期定位试验[J].土壤肥料,1999(6):18~20
    99孙伟红,劳秀荣,董玉良,等.小麦—玉米轮作体系中秸秆还田对产量及土壤钾素肥力的影响[J].作物杂志,2004,4:14~16
    100索东让,王托和,李多忠.河西走廊富钾土壤钾肥效应及钾素平衡的长期定位研究[J],中国生态农业学报,2002.10(3):90~92.
    101谭德水,金继运,黄绍文,等.不同种植制度下长期施钾与秸秆还田对作物产量和土壤钾素的影响[J].中国农业科学,2007
    102谭德水,金继运,黄绍文,等.长期施钾与秸秆还田对华北潮土和褐土区作物产量及土壤钾素的影响[J].植物营养与肥料学报,2008,14(1):106~112
    103谭德水,金继运,黄绍文,等.灌淤土区长期施钾对作物产量与养分及土壤钾素的长期效应研究[J].中国生态农业学报,2009,29(9):4967~4975
    104谭德水,金继运,黄绍文,等.华北与西北地区典型土壤固钾能力差异研究[J].土壤,2009
    105谭德水.长期施钾对北方典型土壤钾素及作物产量、品质的影响[D].北京,中国农业科学院研究生院博士论文.2007
    106汤树德.秸秆还田原理及其应用[M].北京:北京农业大学出版社,1993
    107唐启义,DPS数据处理系统[M].北京:科学技术出版社,2010:771-775
    108唐旭.小麦—玉米轮作土壤磷素长期演变规律研究[D].北京,中国农业科学院研究生院博士论文.2009
    109田秀英.国外的长期肥料试验研究[J].渝西学院报.2002,15(1):14~17
    110汪金平,何园球,柯建国,等.南方双季稻田秸秆厢沟腐熟还田免耕土壤生态效应研究[J].南京农业大学学报,2004,27(2):21~24
    111王爱玲,高旺盛,洪春梅.华北灌溉区秸秆焚烧与直接还田生态效应研究[J].中国生态农业学报,2003,11(10):142~144
    112王波,张耀明,鲍士旦.不同土壤不同粒级颗粒供钾能力的研究[J].苏州大学学报(自然科学版),2004,20(1):77~81
    113王德芳,姚炳贵,高宝岩,等.津郊潮土长期定位试验中施钾效应研究[J].2003,9(1):20~22
    114王海玲.农田黑土钾库演化规律的研究[D].长春,吉林农业大学硕士论文.2008
    115王宏庭,金继运,刘荣乐.山西省几种典型土壤供钾能力评价[J].植物营养与肥料学报,2002,8(2):144~151
    116王宏庭,金继运,王斌,等.山西褐土长期施钾和秸秆还田对冬小麦产量和钾素平衡的影响[J].植物营养与肥料学报,2010,16(4):801~808
    117王经权,周健民,钦绳武,等.三种施肥模式对石灰性土壤培肥的影响[J].土壤学报,2002.39(6):844~852
    118王敬国.植物营养的土壤化学[M].北京:北京农业大学出版社.1995:107~120
    119王丽娜.黄麻秸秆还田及施用有机肥时滨海盐土的改良试验[D].南京:南京林业大学硕士论文.2009
    120王明娣.秸秆腐解对褐土酶活性及磷锌镉关系的影响[D].郑州,河南农业大学硕士论文,2010
    121王石军.发展我国钾肥工业的几点思考[J].化肥工业,1996.26(1):12~14
    122王薇.不同施肥制度土壤腐殖质、磷钾肥力特征及其对作物产量的影响[D].山东农业大学硕士论文,2008
    123王文忠,徐生瑞.施钾对两种土壤钾素动态变化影响的研究[J].土壤通报,2001,32(3):120~122
    124王亚静,毕于运,高春雨.中国秸秆资源可收集利用量及其适宜性评价[J].中国农业科学,2010,43(9):1852~1859
    125尉芹.土壤钾转化、烟株钾吸收及烟碱累积的水热耦合效应与特征参数研究[D].杨凌,西北农林科技大学博士论文,2004
    126文启孝.我国土壤有机质和有机肥料研究现状[J].土壤学报,1989,26(3):255~261
    127闻杰,王聪翔,侯立白,等.秸秆还田对农田土壤风蚀影响的试验研究[J].土壤学报,2005,42(4):678~681
    128吴菲.玉米秸秆连续多年还田对土壤理化性状和作物生长的影响[D].北京:中国农业大学硕士学位论文,2005
    129吴建国.高产冬小麦地上器官钾素营养的累积、分配与运转的研究[J].土壤通报,1992,(2):18~21
    130吴婕.川中丘陵稻田两熟制区秸秆覆盖还田对土壤肥力的影响研究[D].雅安,四川农业大学硕士论文.2006
    131吴巍,张宽,王秀芳,等.钾肥对玉米的增产增收效果与利用率[J].玉米科学,1998,1:61~65
    132奚振邦,王寓群,杨佩珍.中国现代农业发展中的有机肥问题[J].中国农业科学,2004,37(12):1874~1878.
    133谢建昌,杜承林.土壤钾素的有效性及其评定方法研究[J].土壤学报,1988,25(2):132~134
    134谢建昌,周健民,Hardter R.钾与中国农业[M].南京:河海大学出版社2000:142~155
    135谢建昌,周健民.我国土壤钾素研究和钾肥使用的进展[J].土壤,1999,31(5):244~254
    136谢建昌.土壤钾素研究的现状与展望[J].土壤学进展,1981,9(1):1~16
    137谢文,郑元红,胡娟,等.毕节地区小麦秸秆覆盖还田试验研究[J].贵州农业科学,2002,30(5):17~20
    138刑世和,周碧青.不同提取方法土壤非交换性钾释放动力学及其速率的研究[J].植物营养与肥料学报,2000,6(3):273~279
    139熊明彪,舒芬,宋光煜,等.多年定位施肥对紫色土钾素形态变化的影响[J].四川农业大学学报,2001,19(1):44~47
    140徐国华,鲍士旦,史瑞和.生物耗竭土壤的层间钾自然释放及固钾特性[J].土壤,1995,27(4):182~185
    141徐国华,鲍士旦,史瑞和.土壤钾素供应状况的研究Ⅳ-禾谷类及豆类作物对土壤层间钾的利用[J].南京农业大学学报,1991:47~52
    142徐明岗,梁国庆,张夫道.中国土壤肥力演变[M].北京:中国农业科学出版社,2006
    143徐明岗,文石林,李菊梅,等.红壤特性与高效利用[M].北京:中国农业科学技术出版社,2005
    144徐培智,解开治,陈建生,等.稻秆还田配伍不同促腐剂对稻田土壤肥力及其水稻产量的影响[J].中国土壤学会第十一届二次理事扩大会议暨学术会议论文集.2009:460~469
    145徐琪,杨林章,蓝华元,等.中国稻田生态系统[M].北京:中国农业出版社,1998:105~138
    146徐晓燕,马毅杰,张瑞平,等.外源钾对三种不同土壤钾转化影响的研究[J].土壤通报,2005,36(1):58~61
    147徐晓燕,马毅杰.土壤矿物钾的释放及其在植物营养中的意义[J].土壤通报,2001.(32)4:173~176.
    148徐祖样.连续秸秆还田对作物产量和土壤养分的影响[J].浙江农业科学,2003,(1):35~36.
    149薛泉宏,马博虎,尉庆丰.陕西几种土壤非交换钾释放动力学研究[J].西北农业大学学报,1999
    150闫湘,金继运,何萍,等.提高肥料利用率技术研究进展[J].中国农业科学,2008,41(2):450~459.
    151严小龙,张福锁.植物营养遗传学[M].中国农业出版社,北京,1997.
    152颜丽,宋杨,贺靖,等.玉米秸秆还田时间和还田方式对土壤肥力和作物产量的影响[J].土壤通报,2004,35(2):143~148
    153杨剑虹,王成秋,代亨林,等.土壤农化分析与环境监测[M].中国大地出版社,北京.2008:71
    154姚源喜,刘树堂,郇恒福.长期定位施肥对非石灰性潮土钾素状况的影响[J].植物营养与肥料学报,2004,10(3):241~244
    155曾木祥,张玉洁.秸秆还田对农田生态环境的影响[J].农业环境与发展,1997,(1):1~7
    156张夫道,张淑香,赵秉强,等.不同土壤不同种植制度下土壤肥力与肥料效益演变研究[J].植物营养与肥料学报,2002,8(增刊):9~15
    157张福锁,王激清,张卫峰,等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤通报,2008,45(5):915~924
    158张会民,徐明岗,张文菊,等.长期施肥条件下土壤钾素固定影响因素分析[J].科学通报,2009:2574~2580
    159张会民.长期施肥下我国典型农田土壤钾素演变特征及机理[D].杨凌,西北农林科技大学,2007
    160张坤民,朱达,张世秋.可持续发展在中国[M].北京:中国环境科学出版社.1996:35~40
    161张明亮.山东桓台麦套玉米机械化秸秆还田模式[J].作物杂志,1999(6):33~34
    162张淑香,吕庭宏,杨建林,等.旱塬农区秸秆还田对土壤理化性质的影响[J].中国土壤与肥料.1999,(4):15~17
    163张漱茗,闫华,刘光栋,等.山东主要土壤供钾能力和非交换性钾释放的研究[J].植物营养与肥料学报,1999,5(1):26~31
    164张雯,侯立白,张斌,等.辽西地区垄作和平作保护性耕作方式比较研究[J].中国农学通报,2005,21(7):175~178
    165张毅.秸秆覆盖对烟田土壤的改良作用及对烟叶品质的影响[D].郑州,河南农业大学硕士论文.2008
    166张振江.长期麦秆直接还田对作物产量与土壤肥力的影响[J].土壤通报,1998,29(4):154~155
    167张振江.麦秸还田培肥土壤增产效应分析[J].干旱地区农业研究,1991,(1):52~57
    168赵兰坡.施用作物秸秆对土壤的培肥作用[J].土壤通报,1996,27(2):76~78
    169郑昭佩,刘作新,魏义长,等.水肥管理对半干旱丘陵区土壤有机质含量的影响[J].水土保持学报,2002,16(4):102~104
    170中国农业科学院土壤肥料研究所,加拿大磷钾肥研究所北京办事处,北方的土壤钾素和钾肥效益[M].北京:中国农业科技出版社.1994:1~5
    171钟杭,张勇勇,林潮澜,等.麦稻秸秆全量整草免耕还田方法和效果[J].土壤肥料,2003,(3):34-37
    172周凌云.麦田秸秆覆盖节水效应研究[J].生态农业研究.1996,4(3):49~52
    173周六凤.不同种植方式下红壤和黄褐土的供钾能力与施钾效果研究[D].武汉,华中农业大学硕士论文,2009
    174周米平,刘金华,杨靖民,等.吉林省黑土非交换性钾的释放动力学研究[J].吉林农业大学学报,2008,30(1):59~63
    175周瑞华.化肥配施秸秆对冬小麦/夏玉米轮作土壤的培肥效应研究[D].郑州,河南农业大学硕士论文.2010
    176周艺敏,黄峰,王正样,等.天津地区农田土壤钾素状况及不同施肥措施对钾素的调控作用[J].第三届中国国际农业科技年会.1999:533~539.
    177朱洪勋,张翔,孙春河,等.长期施肥对小麦、玉米的增产效应及其对土壤养分的影响[J].土壤通报,1997,28(4):160~163
    178朱杰.直播稻田土壤耕作深度和秸秆还田的生态效应研究[J].南京,南京农业大学硕士学位论文,2006
    179朱永官,罗家贤.我国南方某些士壤对钾素的固定及其影响因素[J].土壤,1993(2):64~67.
    180朱永官.我国南方主要类型土壤中钾素化学的研究[D].南京:中国科学院南京土壤研究所硕士学位论文,1992
    181朱兆良.农田生态系统中化肥的去向和氮素管理[M].中国土壤氮素,南京:江苏科学技术出版社,1992.228~245
    182邹娟,冬油菜施肥效果及土壤养分丰缺指标研究[D].武汉,华中农业大学博士论文,2010
    183邹娟,鲁剑巍,陈防,等.长江流域油菜氮磷钾肥料利用率现状研究[J].作物学报,2011:729~734
    184Abedin M M,Blume H P,Bhuiya Z H,et al.Water and nutrient dynamics of a paddy soil ofBangladesh[J].Plant Nutr Soil Sci.,1991,154:93~99
    185Albert L. Irrigated Corn Yield and Nitrogen Accumulation Response in a Comparison of No-till andConventional Till: Tillaged Surface-Residue Variables[J]. Agronomy Journal,1998,90:630~637
    186Alice M.Crop sequence and surface residues effects on the performance of no-tillage corn growthon a poorly drained soil[J].Agronomy journal,1999,91(3):368~373
    187Anthony Whitbread,Graeme Blair,Yothin Konboon,et al.Managing crop residues, fertilizers and leaflitters to improve soil C, nutrient balances, and the grain yield of rice and wheat cropping systemsin Thailand and Australia[J].Agriculture,Ecosystems and Environment,2003,100:251~263
    188Avnimelech Y. Organic residues in modern agriculture.in:eds.Y Chen and YAvnimeleched. TheRole of Organic Matter in Modern Agriculture[J].Martinus Nijhoff, Dordrecht,1986.1~10
    189Bacon S C, Lanyon L E, Schlander R M. Plant nutrient flow in the managed pathways of anintensive dairy farm[J]. Agron. J.,1990,82:755~761
    190Barber R G. Potassium fixation in some Kenyan soils [J]. Journal of SoilScience,1979,(30):785~792
    191Bertsch P M, Thomas G W Potassium status of temperate region soils. in: Munson R D (ed)Potassium in Agriculture[J]. Madison, Wisconsin, USA,1985:131~162.
    192Brazel A.J,Nickling W.G Dust storms and their relation to moisture in the Sonoran-Mojave desertregion of the South-western United State[J].Journal of Environmental Management,1987.24:279~291
    193Carey P L, Metherell A.K. Rates of release of non-exchangeable potassium in New Zealand soilsmeasured by a modified sodium tetraphenyl-boron method[J]. New Zealand Journal of AgriculturalResearch,2003.46(3):185~197.
    194Chandler W V. Nutrient uptake by corn[J]. North Carolina Agric Bull,1960,8:141~143.
    195Charles A.Water use and yield of Dryland Row Crops as Affected by Tillage[J].Agronomyjournal,1999,91(1):108~115
    196Cox A E,Joem B C. Release kinetics of non-exchangeable potassium in soils using sodiumtetraphenylboron[J].Soil Science,1997,162(8):588~598
    197Datta S C,Sastry T G. Potassium release in relation to mineralogy of silt and clays[J].Journal ofIndian Society of Soil Science,1993,41(3):452~458
    198Dhillon S K,Dhillon K S.Kinetics of release of potassium by sodium tetraphenyl boron from sometop soil samples of Red(Alfisols),Black(Vertisols)and Alluvial(Inceptisols and Entisols)soils ofIndia[J].Fertilizer Research,1992,32:135~138
    199Eagle A J, Bird J A, Horwath W R, et al. Rice yield and nitrogen utilization efficiency underalternative straw management practices. Agronomy Journal,2000,92:1096~1103
    200Ganeshamurthy A N,Biswas C R.Movement of potassium in an ustochrept soil profile in along-term fertilizer experiment [J].Journal of Agriculture Science,1983,102:393-397.
    201Gao G, Chang C. Changes in CEC and particle size distribution of soils associated with long-termannual applications of cattle feedlot manure[J].Soil cience,1996,161(2):115~120.
    202George Opoku. Modified no-tillage system for corn following wheat on clay soils[J].Agronomyjournal,1998,90(2):131~137
    203Ghuman B.S. Sur H.S. Tillage and residue management effects on soil properties and yields ofrainfed mare and wheat in a subhumid subtropical climate[J]. Soil&Tillage Research,2001,58:1~10
    204Gil-Sotres F, Rubio B. Kinetics and structural effects of the extraction of non-exchangeablepotassium from the clay fraction of soils of Galicia (NW Spain)[J]. Communications in SoilScience and Plant Analysis.1992.23(1-2):143~156.
    205Goulding K W T, The availability of potassium in soils to crops as measured by its release toacalcium-saturated canon exchange resin[J]. Journal of Agricultural Science, Cambridge,1984,103:265-275.
    206Gregory P J,Crowford D V, McGowen M. Nutrient relations of winter wheat. Agric Sci.,1979,93:485~494
    207Hagen L.J. A wind erosion prediction system to meet use needs[J].Soil Water Cons,1991.46(2):106~111
    208Hao M D,Fan J,Wei,et al.Effect of fertilization on soil fertility and wheat of land in the LoessPlateau[J],Pedospere,2005,15(2):189~195
    209Havlin J L, Westfall D G, Olsen S R. Mathematical models for potassium release kinetics incalcareous soils[J]. Soil Science Society of America Journal,1985,49:371~376.
    210Heckman JR, Sims JT, Beegle D Betal. Nutrient removal by corn grain garvest[J].Agron.J.,2003,95:587~591.
    211Holmqvist J, gaard A F, born I, et al. Application of the profile model to estimate potassiumrelease from mineral weathering in northern European agricultural soils. European Journal ofAgronomy.2003(20):149~163.
    212Hu H,Wang G H. Nutrient uptakes and use efficiency of irrigated rice in response to potassiumapplication. Pedosphere,2004,14(1):125~136
    213Humberto B C,Lal R,Post W M,Owens L B.Changes in long-term no-till corn growth and yieldunder different rates of stover mulch [J].Agron J,2006,98:1128~1136
    214Hundal L S, Pasricha N S.Non-exchangeable potassium release kinetics in illitic soil profiles[J].SoilScience,1993,156(1):34~41
    215Jagadish C. Tarafdar, Subhash C.et al. Influence of straw size on activity and biomass of soilmicroorganisms during decomposition[J].Eur. J. Soil Biol,2001.37:157~160
    216Jalali M, Zarabi. Kinetics of non-exchangeable potassium release and plant response in somecalcareous soils[J]. Journal of Plant Nutrition and Soil Science,2006(169):196~204.
    217John C.Growth Analysis of Soybean under No-tillage and Conventional Tillage Systems[J].Agronomy Journal,1999,91(6):928~933
    218Jouany C, Colomb B, Boss M. Long-term effects of potassium fertilization on yields and fertilitystatus of calcareous soils of south-west Prance [J].European Journal of Agnonomy,1996,(5):287~294.
    219Kononova M M, Aleksandrova I M Titova N A.Decomposition of silicates by organic substances inthe soil[J]. Soviet Soil Science (English Translation),1964,1005~1014.
    220Kuldip Kumar,Kuan M.Goh. Management practices of antecedent leguminous and non-leguminouscrop residues in relation to winter wheat yields, nitrogen uptake, soil nitrogen mineralization andsimple nitrogen balance[J].European Journal of Agronomy,2002,16:295~308
    221Lal R. World crop residues production and implications of its use as a biofuel[J]. EnvironmentInternational,2005,31:575~584
    222Liu Y J,Laird D A,Barak P.Release and fixation of ammonium and potassium under long-termfertility management[J].Soil Science Society of America Journal,1997,61:310~314
    223Magdi T. Abdelhamid, Takatsugu Horiuchi, et al. Composting of rice straw with oilseed rape cakeand poultry manure and.its effects on faba bean (Vicia faba L.) growth and soil properties[J].Bioresource Technology,2004,93:183~189
    224Mar Abdin.Yield and yield components of corn inter seeded with cover crops[J].Agronomy journal,1998.90(1):63~68
    225Martin H W, Sparks D L, Kinetics of non-exchangeable potassium release from two coastal plainsoils[J]. Soil Sci. Soc. Am J,1983,47:883~887
    226Mengel K, Kirkby E A. Potassium in crop production[J].Advances in Agronomy,1980,33:59~110
    227Nel P C. Barnard R O. Steynberg R E, et al. Trends in maize grain yields in a long-term fertilizertriai[J]. Field Crops Research,1996,(47):53~64.
    228Ningappa N,Vasuki N.Potassium fixation in acid soils of Karnakat[J].Journal of Indian Society ofSoil Science,1989,37:391~392
    229Olk DC.Cassman K G Carlson R M.Kinetics of potassium fixation in vermiclitic soils underdifferent moisture regimes[J].Soil Sci.soc.Am.J.,1995,59:423~429
    230Ordie R.Cropping and Tillage Systems for Dryland Grain Prduction in the southern High Plains[J].Agronomy Journal,1997,89(2):222~232
    231Pannu,R.P.S.,Y.Singh,and B.Singh, Effect of long-term application of organic materials andinorganic N fertilizers on potassium fixation and release characteristics of soil under rice-wheatcropping system[J].Potassium Research.,2003.19:1~10
    232Pearson W. Potassium supplying power of eight Alabama soils[J]. Soil Sci..1952,74:301~309.
    233Rapport B D, Axley Jh.Potassium Chloride for improved Urea fertilizer efficiency[J]. Soil Sci. soc.Am.J.,1984,48:399~401
    234Sadusky M C, Sparks D L, Noll M R, et al. Kinetics and mechanisms of potassium release fromsandy middle Atlantic coastal plain soils[J]. Soil Science Society of America Journal,1987,51:1460~1465.
    235Samuel L Tisdale,Werner L Nelson,James D Beaton.Soil Fertility and fertilizers[M].1985:213
    236Sardi K,Csitari G. Potassium fixation of different soil types and nutrient levels[J].Communicationsin Soil Science and Plant Analysis,1998,29(11/14):1843~1850
    237Schneider A.Release and fixation of potassium by a loamy soil as affected by initial water contentand potassium status of soil samples[J].European Journal of Soil Science,1997,48:263~271
    238Shaimukhametov M S H, Mamadaliev G N. The effect of long-term fertilization on the potassiumstatus and mineralogy of clay particles in typical Serozem [J].Eurasian Soil Science,2003,36(9):994~1002
    239Shaviv A.Potassium fixation characteristics of five southern California soils[J].Soil Science Societyof America Journal,1985,49:1105~1109
    240Shoji S, Kanno H. Use of polyolatin coatedrs fertilizes for increasing fertilizer efficiency andreducingnitrate leachiing and nitrous oxids emission[J]. Fert Res.1994,3:45~48
    241Simard R S, De Kimpe C R, Zizka J. Release of potassium and magnesium from soil fractions andits kinetics[J].Soil Science Society of America Journal,1992,56:1421~1428
    242Singh M, Tripathi A K, Reddy D D. Potassium balance and release kinetics of non-exchangeable Kin a typic Haplustert as influenced by cattle manure application under a soybean-wheat system[J].Australian Journal of Soil Research,2002,40:533~541.
    243Singh P. Some soil character and potash fixing power of paddy soils[J].Journal of Indian Society ofSoil Science,1975,23:123~124
    244Sommerfeldt T G, Chang C, Entz T. Long-term annual manure applications increase soil organicmatter and nitrogen and decrease carbon to nitrogen ratio[J].Soil Science Society of AmericaJournal,1988,52:1668~1672
    245Sparks D L, Liebhardt W C. Effect of long-term lime and s potassium application onquantity-intensity (Q/I) relationships in sandy soil[J]. Soil Science Society of America Journal,1981,45:786~790.
    246Srini D,Liu B F.Fixation and release of potassium at typical tobacco soil in India[J]. ForeignTobacco,1994,(1):22~27
    247Srinivasarao C H, Dattta S P, Rao A S,et al. Kinetics of non-exchangeable potassium release byorganic acids from mineralogically different soils[J].Journal of Indian Society of SoilScience,1997,45(4):728~734
    248Srinivasarao C H, Rupa A S, Ramesh q et al. Release kinetics of nonexchangeable potassium bydifferent extractants from soils of Varying mineralogy and depth[J]. Communications in SoilScience and Plant Analysis,2006,37:473~491.
    249Srinivasarao C H, Swarup A, Rao A S,et al. Kinetics of non-exchangeable potassium release from aTropaquept as influenced by long-term cropping, fertilisation and manuring [J].Australian Journalof Soil Research,1999,37:317~328
    250Srivastava S, Rupa T R, Swarup A et al. Effect of long-term fertilization and manuring on potassiumrelease properties in a Typic Ustochrept[J]. Journal of Plant Nutrition and Soil Science,2002,165:352-306.
    251Sun LM, Li CJ, He P, et al. Long-term application of K fertilizer and straw returning improve cropyield, absorptive capacity of K, and soil nutrient natural supplying capacity in North China [J].Front. Agric. China,2011,5(4):563~569
    252Surekha K, Padma A P, Reddy M N, et al. Crop residue management to sustain soil fertility andirrigated rice yields [J]. Nutr Cycl Agroecosys,2003,67:145~154
    253Whitbread A, Blair G, Yothin K. Managing crop residues, fertilizers and leaf litters to improve soilC, nutrient balances, and the grain yield of rice and wheat cropping systems in Thailand andAustralia [J]. Agrie Eeos Env,2003,100:251~263
    254Wilhelm W W, Johnson M F, Hatfield J L, et al. Crop and soil produetivity response to corn residueremoval: A review of the literature [J].Agron J,2004,96:l~17
    255Yadvinder-Singh, Bijay-Singly Ladha J.K, Khind C.S.et al. Effects of Residue Decomposition onProductivity and Soil Fertility in Rice-wheat rotation[J].Soil Science Society of America Journal,2004.68(3):854~864
    256Yadvinder-Singh,Bijay-Singh. Efficient management of primary nutrients in the rice-wheat system.In: Kataki P K. Ed. The Rice-Wheat Cropping System of South Asia: Efficient ProductionManagement. Food Products Press,An Imprint of the Haworth Press,2001,23~86.
    257Yang S M, Li F M,Suo D R,et al. Effect of long-term fertilization on soil productivity and nitrateaccumulation in Gansu Oasis[J]. Agricultural Sciences in China,2006.5(1):57~67
    258Zhou J M, Huang P M. Kinetics of monoammonium phosphate induced potassium release fromselected soils[J].Canadian Journal of Soil Science,1995,75(2):197~203
    259Zhu Y G, Luo J X. Release of soil non-exchangeable K by organic acids [J].Pedosphere,1993,3(3):269~276

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700