不整合面型铀矿流体系统数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球气候变化的加剧,核能受到越来越多的重视。当前,加拿大和澳大利亚的古元古代的沉积盆地中发育的不整合面型铀矿占据全球铀市场份额的30%多,但是他们的成矿机制却依然不是十分清楚。盆地中成矿流体的运移模式是什么?铀源是什么?流体运移的驱动力是什么?这些问题都需要进一步的研究。数值模拟可以整合已有的大量的地质、地球物理和地球化学数据,从而提供新的认识。在本论文中,作者利用有限元和有限差分技术,设计了大量的数值模拟实验来研究与不整合面型铀矿有关的成矿流体系统。首先,基于来自Athabasca盆地,Thelon盆地和Kombolgie盆地的地质、地球物理及地球化学数据,建立了一系列的概念模型。以这些概念模型为基础,进行了大量的数值实验来揭示流体流动、热传输、地形起伏和构造变形等过程的相互作用及其对成矿的影响。FEFLOW和FLAC被用来求解与这些过程相关的控制方程,比如质量守恒方程,动量守恒方程,和能量守恒方程等。根据本研究的需要,作者也对FEFLOW和FLAC的功能做了相应的扩展和改进。论文取得的主要研究结果如下:
     1.热液对流在砂岩层中广泛发育。在典型的水文地质条件下,模拟了地热梯度介于25到35度/千米之间的流体流动,发现热液对流在有效孔隙度相对较高的砂岩层中广泛出现。热液对流对温度场扰动明显,最高可达40度,在上升流附近,温度升高,而在下降流附近,温度降低。具体的流体形态和流体速度受水文地质属性,地热梯度,地层几何特征及砂岩层厚度等的影响。较高的地热梯度会加速流体运移,但是盆地规模的基本对流模式不变。在盆地最边缘砂岩层低于1千米的地方,没有热液对流发育。空隙介质厚度是雷诺数重要的控制参数,当厚度变小时,雷诺数会降低,当其降低超过临界值时,对流便不会产生。在同一个对流环内部,流体的流动速度由外向内逐渐降低。高透水砂岩和盖层及基底之间的转换带为流体快速运移区,从而有利于矿体发育,这种特点与大部分矿床发育于基底不整合面是一致的。此外,有些研究者认为砂岩层被相对低透水单元的分隔会限制自由对流的产生,而根据本论文研究,当高透水的砂岩层被较薄的低透水单元隔离时,虽然流体运移速度会降低,但是自由对流依然发育。
     2.地形起伏对盆地流体系统的运移模式影响明显,但它不是不整合面型铀矿流体系统的主要驱动力。当潜水面坡度较小时,流体流动被自由热对流所控制,但是随着坡度的加大,流体流动逐渐会被地形起伏控制。在坡度低于0.001时,整个流体系统会显示出混合对流的特点,在盆地中部,透水性砂岩厚的地方依然被自由热对流所控制,而盆地边缘却以地形驱动流为主。当地形起伏变为主要的流体驱动机制时,流体的属性(温度,压强,组分)通常会在流体流动方向上展现渐变和不对称的特征。比如,补给带的温度会降低,而泄水区的温度会升高。如果地形起伏是第一驱动力,那么矿床通常只在盆地的一侧发育。美国科罗拉多高原的板状铀矿(Tabular uranium deposits)便是在这种成矿流体作用下形成的。但是,对于不整合面型铀矿而言,矿体在盆地边缘成辐射状分布,没有明显的非对称特征。因此,地形起伏应该不是不整合面型铀矿系统中主要的流体驱动机制。
     3.在不考虑机械变形对流体压力影响的前提下,断层对流体运移的影响主要取决于不同断层之间的连通性和断层是否出露地表。当三条相互孤立的宽400米的盲断层被加入到盆地尺度的概念模型中时,盆地规模的流体流动没有明显的变化。但是,断层的加入会打破已有的压力平衡,从而提高流体运移速度,但是经过10万年左右的时间,这种扰动会逐渐消失。当这些断层贯穿盖层并且被高透水性的砂岩连通时,对流模式将发生明显变化,断层一般会成为不同对流环的边界,从而成为优先的上升和下降流通道。地表流体能够沿着断层进入盆地流体系统,盆地流体也能够沿着断层溢出至盆地浅部。
     4.基底不整合面(带)为氧化还原界面和典型的高速流体运移区。基底不整合面(带)的厚度从几厘米到几百米不等。由于盆地规模模型网格精度的限制,比较薄的基底不整合面(带)无法模拟。当一个厚250米的基底不整合面(带)被加入概念模型时,对200米/年,400米/年和1000米/年的水平导水率分别进行了敏感度测试。当独立的高透水率的基底不整合面(带)被加入概念模型时,盆地规模的自由热对流仍然发育,但是新加入的不整合面(带)为流体流动速度最高和流体通量最大区域。
     5.构造运动中发生的机械变形会导致流体压力场变化,进而引发混合对流;在应力变化强烈的区域,变形驱动流为主,而在应力变化比较弱的区域,自由热对流依旧是主要的流体运移模式,具体的流体形态取决于应变速率及其各水文地质单元的属性。在相同的应力场下,不同地层表现出不同的压力场的演化,进而引发存在于不同层组之间的压力梯度。当断层或者其它的构造连接这些这些不同的水文地质单元时,跨越不同单元的流体流动将产生。在伸展变形过程中,整个系统的流体压力会降低,但是基底中压力降低的速度要比其它水文地质单元要快,所以盆地中的氧化性流体会被“吮吸”到基底中,从而有助于形成在基底中发育的矿体。挤压变形中,基底中的压力上升速度比上覆地层要快,基底中的还原性流体将被挤压到上面的砂岩层中,这种流体运移模式有助于在砂岩层中发育矿体。这种构造背景和矿床发育位置之间的对应关系被大部分已经发现的矿体所支持。澳大利亚的Kombolgie盆地形成后,经历了一些列的伸展变形构造,而在此盆地中的大部分矿体是发育在基底中的。加拿大Althabasca盆地的情况相对复杂,66个相对研究程度比较高的矿床中,32个是在基底中发现的,其它的34个跨越基底或者在离基底不整合面附近的砂岩里面,这也许是这些盆地经历了相对更复杂的构造过程的结果。
     6.当盐度变化和溶质迁移被耦合进系统后,盆地规模流体运移模式和热液自由对流相似,对流环广泛发育于高透水砂岩层中。但是,借助FEFLOW6里面新的数据可视化技术,发现了跨越基底不整合面的流体运移。砂岩和基底中典型的流体运移速度分别为3.5米/年和2.5×10-6米/年,虽然流体流动速度相差若干数量级,但是这种现象为从基底中析出铀提供了一种可能的机制。通过溶质运移模拟发现,伴随着热盐对流,铀元素能够从基底通过平流(advection),离子扩散(ion diffusion)和机械散布(mechanical dispersion)慢慢迁移到盆地。主要的迁移方式为伴随流体流动的平流。
     7.当没有强烈的构造运动时,在典型的水文地质条件下,热盐对流可以穿透到基底不整合面1-2千米以下。假设在基底中部有一个铀源,铀元素能够在热盐对流的作用下逐步迁移到沉积盆地中去。反之,如果初始铀源区被放在高渗透性的砂岩中,经过500万年铀元素也可以慢慢迁移到基底不整合面以下2千米以内。铀源区的相对位置对铀传输的效率也有很大影响。在盆地边缘,基底不整合面坡度较大的地方,铀迁移的效率和速度要比铀源区在盆地中间的情况下高,因为不整合面坡度的增加会提高流体流动速度。基于这些结果,在含有不整合面型铀矿的这些古元古代的盆地里面,热盐对流可以引起跨越基底不整合面的广泛的流-流交互和流-岩交互,并且热盐对流可以从基底中提取足够的铀,从而为形成大规模的不整合面型铀矿提供铀源。
     8.从水动力学角度来看,基底可以作为铀源区。对于不整合面型铀矿铀源的争议,已经持续了几十年。根据当前广泛认可的成岩热液模型,矿床形成需要氧化性的盆地流体与还原性的基底流体或矿物在不整合面附近进行交互。铀元素必须由氧化性的盆地流体从盆地充填物或者基底中的副矿物(accessory minerals)或者以前形成的铀矿物里萃取。如上所述,高透水的砂岩中自由对流发育,如果有足够的副矿物,例如锆石和独居石,那么在合适的物理化学条件下,从盆地中萃取大量的铀元素是有可能的。同时,这些古元古代砂岩中缺少有机质和Fe2+,所以流体的氧化性可以很好的维持。但是,好多研究者认为从锆石中提取铀矿物的条件并不满足,而独居石含量又不够,所以铀源应该在其它区域。另一方面,基底中的太古代的花岗岩,淡色花岗岩,伟晶岩等铀矿物含量很高,并且易于萃取。但是,以前的认识认为,由于基底极低透水性的影响,从基底中萃取大量铀元素是不可能的。而我们的模拟结果说明,从水动力学角度来看,盆地流体可以渗入到盆地基底中并且返回盆地,所以基底是有可能作为铀源区的。
Although the unconformity-related uranium deposits hosted by Paleoproterozoic sedimentary basins in Canada and Australia currently supply more than30percent of global uranium, their genetic models are still uncertain. A series of numerical experiments based on the finite element and finite difference modeling have been carried to investigate ore-forming fluid system related to uranium mineralization. We constructed conceptual models by integrating important hydrogeological features shared by the Athabasca, Thelon and Kombolgie basins. Based on these conceptual models, various numerical scenarios were designed to investigate the interaction among fluid flow, heat transport, topographic relief and tectonic deformation. Equations governing these processes were solved by FEFLOW and FLAC.
     The modeling suggests that buoyancy-driven thermohaline convection develops in the thick sandstone sequence at any geothermal gradient of25-35℃/km during periods of tectonic quiescence. Thermohaline convection may penetrate into the basement for up to1-2km below the basal unconformity when typical hydrological parameters for these Proterozoic hydrogeological units are used. Fluid flow velocities in the sandstone sequence are several orders of magnitude larger than those in the basement. If a uranium source (a pore fluid with500mg/1U) is assumed to be located in the center of the basin below the unconformity, uranium is able to gradually spreads into the sandstone aquifer through thermohaline convection. If the uranium source is initially located at the centre of the aquifer, a uranium plume develops and percolates down to2km below the unconformity at5m.y.. The location of the uranium source also affects the solute transport efficiency. A uranium source located around the sloping basal unconformity, either in the basin fill or basement, close to the basin margin, leads to a wider uranium plume than if it is located near the center of the basin. Given appropriate hydrological conditions, thermohaline convection could have caused widespread interaction of basinal brines with basement rocks or basement-derived fluids in uranium-bearing Proterozoic basins, and that enough uranium could have been leached from the uranium-rich basement to form large, high-grade unconformity-related uranium deposits.
     Reactivating of preexisting basement structures and the generating of new faults suppress free convection and led to deformation-dominated fluid flow or mixed convection, depending on strain rates. During compressive deformation, reduced brines in the basement may be forced out along fractured zones and encounter uranium-bearing fluids in the clastic sequence to form sandstone-hosted deposits. By contrast, basement-hosted deposits are likely to form during extension, when oxidized basinal brines flow into faulted structures to interact with reduced minerals or fluids in the basement. The rate of pressure accumulation and dissipation is different in various geological units depending on their hydrogeological properties and strain rates, and this different cause fluid migration across adjacent sequences. Thus, the combined effect of thermohaline convection and tectonic deformation leads to the development of unconformity-related uranium deposits at interactions of the basal unconformity with faults or sheared zones.
引文
[1]Vujic, J., D.P. Antic, and Z. Vukmirovic, Environmental impact and cost analysis of coal versus nuclear power:The U.S. case. Energy,2012. in press(0):p.1-12.
    [2]OECD, Uranium 2007:Resources, Production and Demand.2008, the OECD Nuclear Energy Agency and the International Atomic Energy Agency p.424.
    [3]Kyser, K. and M. Cuney, Unconformity-related uranium deposits, in Recent and not-so-recent developments in uranium deposits and implications for exploration, M. Cuney and K. Kyser, Editors.2009, Mineralogical Association of Canada (MAC) and the Society for Geology Applied to Mineral Deposits (SGA):Quebec. p.161-219.
    [4]Jefferson, C.W., et al., Unconformity-associated uranium deposits of the Athabasca basin, Saskatchewan and Alberta, in EXTECH Ⅳ:Geology and Uranium Exploration and TECHnology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta, C.W. Jefferson and G. Delaney, Editors.2007, Geological Survey of Canada. p.23-67.
    [5]Plant, J., et al., Uranium ore deposits-products of the radioactive earth, in Uranium: Mineralogy, Geochemistry and the Environment, P.C. Burns and R. Finch, Editors. 1999, Mineralogical Society of America. p.255-319.
    [6]Cuney, M., et al. What parameters control the high grade-large tonnage of the Proterozoic unconformity related uranium deposits? in Uranium Geochemistry 2003. 2003. Nancy, France:International Conference.
    [7]Hoeve, J., et al., Athabasca Basin unconformity-type uranium deposits:A special class of sandstone-type deposits?, in Uranium in the Pine Creek Geosyncline, S. Ferguson and A.B. Goleby, Editors.1980, International Atomic Energy Agency:Vienna. p.575-594.
    [8]Hoeve, J. and D. Quirt, Mineralization and host rock alteration in relation to clay mineral diagenesis and evolution of the Middle-Proterozoic, Athabasca Basin, Northern Saskatchewan, Canada. Technical Report. Vol.187.1984, Saskatoon: Saskatchewan Research Council.202.
    [9]Kyser, T.K., et al., Diagenetic fluids in Paleo- and Meso-Proterozoic sedimentary basins and their implications for long protracted fluid histories, in Fluids and Basin Evolution, K. Kyser, Editor.2000, Mineralogical Association of Canada:Calgary, p. 225-262.
    [10]Raffensperger, J.P. and G. Garven, The formation of unconformity-type uranium ore-deposits.1. Coupled groundwater-flow and heat-transport modeling. American Journal of Science,1995.295(5):p.581-636.
    [11]Hiatt, E.E., et al., Basin evolution, diagenesis and uranium mineralization in the Paleoproterozoic Thelon Basin, Nunavut, Canada. Basin Research,2010.22(3):p. 302-323.
    [12]Gandhi, S.S., Significant unconformity-associated uranium deposits of the Athabasca Basin, Saskatchewan and Alberta, and selected related deposits of Canada and the world; Geological Survey of Canada, Open File 5005; Saskatchewan Industry and Resources, Open File 2007-11, CD-ROM.2007.
    [13]Banerjee, D.C. Uranium exploration in the Proterozoic Basins in India-Present status and future strategy, India. in Developments in uranium resources, production, demand and the environment.2005. Vienna:International Atomic Energy Agency.
    [14]Velichkin, V., et al., Geology and Formation Conditions of the Karku Unconformity-Type Deposit in the Northern Ladoga Region (Russia). Geology of Ore Deposits,2005. 47(2):p.87-112.
    [15]Lindsay, J.F., Basin dynamics and mineralisation, McArthur Basin, northern Australia. Australian Journal of Earth Sciences,2001.48(5):p.703-720.
    [16]Feltrin, L., J. McLellan, and N. Oliver, Modelling the giant, Zn-Pb-Ag Century deposit, Queensland, Australia. Computers and Geosciences,2009.35(1):p.108-133.
    [17]Garven, G., The role of regional fluid flow in the genesis of the Pine Point Deposit, Western Canada sedimentary basin. Economic Geology,1985.80(2):p.307-324.
    [18]Garven, G., Genesis of stratabound ore deposits in the midcontinent basins of North America.1. The role of regional groundwater flow:Reply. American Journal of Science,1994.294:p.760-760.
    [19]Oliver, N.H.S., et al.,100th Anniversary Special Paper:Numerical Models of Extensional Deformation, Heat Transfer, and Fluid Flow across Basement-Cover Interfaces during Basin-Related Mineralization. Economic Geology,2006.101(1):p. 1-31.
    [20]Yang, J., R.R. Large, and S.W. Bull, Factors controlling free thermal convection in faults in sedimentary basins:implications for the formation of zinc-lead mineral deposits. Geofluids,2004.4(3):p.237-247.
    [21]Yang, J., S. Bull, and R. Large, Numerical investigation of salinity in controlling ore-forming fluid transport in sedimentary basins:Example of the HYC deposit, Northern Australia. Mineralium Deposita,2004.39(5-6):p.622-631.
    [22]Yang, J., et al., Numerically quantifying the relative importance of topography and buoyancy in driving groundwater flow. Science China Earth Sciences,2010.53(1):p. 64-71.
    [23]Yang, J., et al., Three-dimensional numerical modeling of salinity variations in driving basin-scale ore-forming fluid flow:Example from Mount Isa Basin, northern Australia. Journal of Geochemical Exploration,2010.106(1-3):p.236-243.
    [24]Skirrow, R.G., et al., Uranium Mineral Systems:Processes, exploration criteria and a new deposit framework.2009, Geoscience Australia Record 2009/20. p.44.
    [25]Shock, E.L., D.C. Sassani, and H. Betz, Uranium in geologic fluids:Estimates of standard partial molal properties, oxidation potentials, and hydrolysis constants at high temperatures and pressures. Geochimica Et Cosmochimica Acta,1997.61(20):p. 4245-4266.
    [26]Fredrickson, J.K., et al., Reduction of U (Ⅵ) in goethite (α-FeOOH) suspensions by a dissimilatory metal-reducing bacterium. Geochimica Et Cosmochimica Acta,2000. 64(18):p.3085-3098.
    [27]Sherman, D.M., C.L. Peacock, and C.G. Hubbard, Surface complexation of U (Ⅵ) on goethite (α-FeOOH). Geochimica et Cosmochimica Acta,2008.72(2):p.298-310.
    [28]Wyborn, L.A.I., C.A. Heinrich, and A.L. Jaques, Australian Proterozoic mineral systems: Essential ingredients and mappable criteria, in AusIMMPublication Series 5/94.1994. p.109-115.
    [29]Walshe, J.L., D.R. Cooke, and P. Neumayr. Five questions for fun and profit:A mineral system perspective on metallogenic epochs, provinces and magmatic hydrothermal Cu and Au deposits.2005:Springer.
    [30]Alexandre, P., et al., Geochronology of unconformity-related uranium deposits in the Athabasca Basin, Saskatchewan, Canada and their integration in the evolution of the basin. Mineralium Deposita,2009.44:p.41-59.
    [31]Lewry, J.F. and T.I.I. Sibbald, Thermotectonic evolution of the Churchill Province in northern Saskatchewan. Tectonophysics,1980.68(1-2):p.45-82.
    [32]Hiatt, E.E. and T.K. Kyser, Sequence stratigraphy, hydrostratigraphy, and mineralizing fluid flow in the Proterozoic Manitou Falls Formation, eastern Athabasca Basin, Saskatchewan, in EXTECH Ⅳ:Geology and Uranium EXploration and TECHnology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta, C.W. Jefferson and G. Delaney, Editors.2007, Geological Survey of Canada. p.489-506.
    [33]Gall, Q., T.D. Peterson, and J.A. Donaldson, A proposed revision of early Proterozoic stratigraphy of the Thelon and Baker Lake basins, Northwest Territories, in Current Research Part C.1992, Geological Survey of Canada. p.129-137.
    [34]Hiatt, E.E., K. Kyser, and R.W. Dalrymple, Relationships among sedimentology, stratigraphy, and diagenesis in the Proterozoic Thelon Basin, Nunavut, Canada: Implications for paleoaquifers and sedimentary-hosted mineral deposits. Journal of Geochemical Exploration,2003.80:p.221-240.
    [35]Palmer, S.E., T.K. Kyser, and E.E. Hiatt, Provenance of the Proterozoic Thelon Basin, Nunavut, Canada, from detrital zircon geochronology and detrital quartz oxygen isotopes. Precambrian Research,2004.129(1-2):p.115-140.
    [36]Overton, A., Seismic reconnaissance survey of the Dubawnt Group, districts of Keewatin and MacKenzie, in Current Research, Part B.1979, Geological Survey of Canada. p.397-400.
    [37]Renac, C., et al., Comparison of diagenetic fluids in the Proterozoic Thelon and Athabasca Basins, Canada:Implications for protracted fluid histories in stable intracratonic basins. Canadian Journal of Earth Sciences,2002.39:p.113-132.
    [38]Hiatt, E.E., et al., Early quartz cements and evolution of paleohydraulic properties of basal sandstones in three Paleoproterozoic continental basins:Evidence from in situ δ18O analysis of quartz cements. Chemical Geology,2007.238:p.19-37.
    [39]Polito, P.A., T.K. Kyser, and M.J. Jackson, The role of sandstone diagenesis and aquifer evolution in the formation of uranium and zinc-lead deposits, southern McArthur Basin, Northern Territory, Australia. Economic Geology,2006.101:p.1189-1209.
    [40]Cathles, L. and J. Adams, Fluid flow and petroleum and mineral resources in the upper (< 20 km) continental crust. Society of Economic Geologists,2005.100:p.77-110.
    [41]Deming, D. and J. Nunn, Numerical simulations of brine migration by topographically driven recharge. Journal of Geophysical Research,1991.96(B2):p.2485-2499.
    [42]Garven, G., et al., Genesis of stratabound ore deposits in the Midcontinent basins of North America.1. The role of regional groundwater flow. American Journal of Science, 1993.293:p.497-497.
    [43]Makhoukhi, S., et al., Modelling of an MVT deposit:Touissit-Bou Beker district (eastern Morocco). Journal of Geochemical Exploration,2000.69:p.109-113.
    [44]Druschel, G.K., et al., Geochemical modeling of ZnS in biofilms:an example of ore depositional processes. Economic Geology and the Bulletin of the Society of Economic Geologists,2002.97(6):p.1319-1329.
    [45]Garven, G., et al., Coupled heat and fluid flow modeling of the Carboniferous Kuna Basin, Alaska:implications for the genesis of the Red Dog Pb-Zn-Ag-Ba ore district. Journal of Geochemical Exploration,2003.78-79(sp):p.215-219.
    [46]Yang, J., et al., Basin-scale numerical modeling to test the role of buoyancy-driven fluid flow and heat transfer in the formation of stratiform Zn-Pb-Ag deposits in the northern Mount Isa basin. Economic Geology,2006.101(6):p.1275-1292.
    [47]Yang, J., Finite element modeling of transient saline hydrothermal fluids in multifaulted sedimentary basins:implications for ore-forming processes. Canadian Journal of Earth Sciences,2006.43(9):p.1331-1340.
    [48]de Veslud, C.L.C., et al.,3D modeling of uranium-bearing solution-collapse breccias in Proterozoic sandstones (Athabasca Basin, Canada)-Metallogenic interpretations. Computers & Geosciences,2009.35(1):p.92-107.
    [49]Cimbala, J. and Y. Cengel, Fluid Mechanics:Fundamentals and Applications.2006, McGraw-Hill, New York.
    [50]Diersch, H.J.G., FEFLOW finite-element subsurface flow and transport simulation system-reference manual.2009, Berlin:DHI-WASY GmbH.292.
    [51]Garven, G. and J. Raffensperger, Hydrogeology and geochemistry of ore genesis in sedimentary basins, in Geochemistry of Hydrothermal Ore Deposits, H.L. Barnes, Editor.1997, John Wiley and Sons:New York. p.125-189.
    [52]Magri, F., Derivation of the coefficients of compressibility, thermal expansion and fluid density difference ratio for reproducing aqueous NaCl density, in FEFLOW Finite Element Subsurface Flow & Transport Simulation System-White Papers.2010, DHI-WASY GmbH:Berlin. p.97-104.
    [53]Yang, J., R.R. Large, and S.W. Bull, Factors controlling free thermal convection in faults in sedimentary basins:Implications for the formation of zinc-lead mineral deposits. Geofluids,2004.4:p.237-247.
    [54]Zhao, C., et al., Finite element modelling of rock alteration and metamorphic process in hydrothermal systems. Communications in Numerical Methods in Engineering,2001. 17(12):p.833-843.
    [55]Diersch, H.J.G. and O. Kolditz, Coupled groundwater flow and transport:2. Thermohaline and 3D convection systems. Advances in Water Resources,1998.21(5): p.401-425.
    [56]Oliver, N.H.S., et al., Numerical models of extensional deformation, heat transfer, and fluid flow across basement-cover interfaces during basin-related mineralization. Economic Geology,2006.101:p.1-31.
    [57]Palmer, S.E., T.K. Kyser, and E.E. Hiatt, Provenance of the Proterozoic Thelon Basin, Nunavut, Canada, from detrital zircon geochronology and detrital quartz oxygen isotopes. Precambrian Research,2004.129:p.115-140.
    [58]Miller, A.R., G.L. Cumming, and D. Krstic, U-Pb, Pb-Pb, and K-Ar isotopic study and petrography of uraniferous phosphate-bearing rocks in the Thelon Formation, Dubawnt Group, Northwest Territories, Canada. Canadian Journal of Earth Sciences, 1989.26(5):p.867-880.
    [59]Tindimugaya, C. Regolith importance in groundwater development. in WEDC Conference.1995. Kampala, Uganda:Water, Engineering and Development Centre.
    [60]Derome, D., et al., A detailed fluid inclusion study in silicified breccias from the Kombolgie sandstones (Northern Territory, Australia):inferences for the genesis of middle-Proterozoic unconformity-type uranium deposits. Journal of Geochemical Exploration,2003.80(2-3):p.259-275.
    [61]Hiatt, E.E., et al., Basin evolution, diagenesis and uranium mineralization in the Paleoproterozic Thelon Basin, Nunavut, Canada. Basin Research,2009:p.1-22.
    [62]Plant, J.A., et al., Uranium ore deposits-products of the radioactive Earth. Reviews in Mineralogy and Geochemistry,1999.38(1):p.255-319.
    [63]Raffensperger, J.P. and G. Garven, The formation of unconformity-type uranium ore deposits:1. Coupled groundwater flow and heat transport modeling. American Journal of Science,1995.295:p.581-636.
    [64]Cui, T., J. Yang, and I.M. Samson, Numerical modeling of hydrothermal fluid flow in the Paleoproterozoic Thelon Basin, Nunavut, Canada. Journal of Geochemical Exploration,2010.106(1-3):p.69-76.
    [65]Cox, S.F., M.A. Knackstedt, and J. Braun, Principles of structural control on permeability and fluid flow in hydrothermal systems. Reviews in Economic Geology, 2001.14:p.1-24.
    [66]Sibson, R.H., Seismogenic framework for hydrothermal transport and ore deposition, in Reviews in Economic Geology, J.P. Richards and R.M. Tosdal, Editors.2001, Society of Economic Geologists:Boulder. p.25-50.
    [67]Ord, A. and N.H.S. Oliver, Mechanical controls on fluid flow during regional metamorphism:Some numerical models. Journal of Metamorphic Geology,1997.15: p.345-359.
    [68]McLellan, J.G., N.H.S. Oliver, and P.M. Schaubs, Fluid flow in extensional environments:Numerical modelling with an application to Hamersley iron ores. Journal of Structural Geology,2004.26:p.1157-1171.
    [69]Zhang, Y, et al., Fault-related dilation, permeability enhancement, fluid flow and mineral precipitation patterns:Numerical models, in The Internal Structure of Fault Zones:Implications for Mechanical and Fluid-Flow Properties, C.A.J. Wibberley, et al., Editors.2008, Geological Society:London, p.239-255.
    [70]Feltrin, L., J.G. McLellan, and N.H.S. Oliver, Modelling the giant, Zn-Pb-Ag Century deposit, Queensland, Australia. Computers & Geosciences,2009.35:p.108-133.
    [71]Schaubs, P. and L. Fisher, The effects of deformation and permeability variation in controlling the formation of uranium deposits in the Alligator Rivers region, Northern Territory, Australia. Journal of Geochemical Exploration,2009.101(1):p.89.
    [72]Betts, P.G., D. Giles, and B.F. Schaefer, Comparing 1800-1600 Ma accretionary and basin processes in Australia and Laurentia:Possible geographic connections in Columbia. Precambrian Research,2008.166:p.81-92.
    [73]Rainbird, R.H. and W.J. Davis, U-Pb detrital zircon geochronology and provenance of the late Paleoproterozoic Dubawnt Supergroup:Linking sedimentation with tectonic reworking of the western Churchill Province, Canada. Geological Society of America Bulletin,2007.119:p.314-328.
    [74]Ramaekers, P. and O. Catuneanu, Development and sequences of the Athabasca Basin, Early Proterozoic, Saskatchewan and Alberta, Canada, in The Precambrian Earth: Tempos and Events, P.G. Eriksson, et al., Editors.2004, Elsevier:Amsterdam, p.705-723.
    [75]Mercadier, J., et al., Migration of brines in the basement rocks of the Athabasca Basin through microfracture networks (P-Patch U deposit, Canada). Lithos,2010.115:p. 121-136.
    [76]Cuney, M.L. World-class unconformity-related uranium deposits:Key factors for their genesis, in the Eighth Biennial SGA Meeting.2005. Beijing:Springer.
    [77]Fridleifsson, I.B., et al. The possible role and contribution ofgeothermal energy to the mitigation of climate change. in IPCC Scoping Meeting on Renewable Energy Sources. 2008. Luebeck, Germany.
    [78]Snelling, A.A., Koongarra uranium deposits, in Geology of the mineral deposits of Australia and Papua New Guinea, F.E. Hughes, Editor.1990, Australasian Institute of Mining and Metallurgy:Melbourne, p.807-812.
    [79]Bruneton,P.,Geology of the Cigar Lake uranium deposit(Saskatchewan,Canada),in Economjc Minerals of Saskatchewan,C.F.Gilboy and L.W.Vigrass,Editors.1987, Saskatchewan Geological Society Special Publication 8.p.99-119.
    [80]Pfifiner,O.A.and J.G.Ramsay,Constraints geological strain rates:Arguments from finite strain states ofnaturally deformed roeks.Joumal of Geophysical Research,1982. 87(B1):p.311-321.
    [81]Campbell-Stone,E.A.Realistic geologic strain rates.in 2002 GSA Annual Meeting. 2002.Denver Geological Society ofAmerica.
    [82]Garven,G.and R.A.Freeze,Theoretical analysis of the role of groundwater flow in the genesis ofstratabound ore deposits:1.Mathematical and numerical model.American Journal of Science,1984.284:p.1085-1124.
    [83]Olier,N.H.S.and P.D.Bons,Mechanismss of fluid flow and fluid-rock interaction in fossil metamorphic hydrothermal systems inferred from vein-wallrock patterns, geometry and microstructure.Geofluid,2001.1:p.137-162.
    [84]Cox,S.F.,Coupling between deformation,fluid pressures,and fluid flow in ore-producing hydrothermal systems at depth in the crust.Economic Geology,2005. 100th Anni:p.39-75.
    [85]Aydin,A.and M.Antonellini,Effect of faulting on fluid flow in porous sandstones: Petrophysical properties.American Association of Petroleum Geologists Bulletin, 1994.78:p.355-377.
    [86]Ayain,A.,Fractures,faults,and hydrocarbon entrapment,migration and flow.Marine and Petroleum Geology,2000.17:p.797-814.
    [87]Caine,J.S.,J.P Evans,and C.B.Forster,Fault zone architecture and permeability structure.Geology,1996.24(11):p.1025-1028.
    [88]Fossen,H.,et al.,Deformation bands in sandstone:A review.Journal of Geological Society,2007.164(4):p.755-769.
    [89]Rawling, G.C., L.B. Goodwin, and J.L. Wilson, Internal architecture, permeability structure, and hydrologic significance of contrasting fault-zone types. Geology,2001. 29(1):p.43-46.
    [90]Barnicoat, A.C., H.A. Sheldon, and A. Ord, Faulting and fluid flow in porous rocks and sediments:Implications for mineralisation and other processes. Mineralium Deposita, 2009.44:p.705-718.
    [91]Kotzer, T.G. and T.K. Kyser, Petrogenesis of the Proterozoic Athabasca Basin, northern Saskatchewan, Canada, and its relation to diagenesis,hydrothermal uranium mineralization and paleohydrogeology. Chemical Geology,1995.120(1-2):p.45-89.
    [92]Lorilleux, G., et al., Polyphase hydrothermal breccias associated with unconformity-related uranium mineralization (Canada):From fractal analysis to structural significance. Journal of Structural Geology,2002.24:p.323-338.
    [93]Hobbs, B.E., W.D. Means, and P.F. Williams, An outline of structural geology.1976, New York:Wiley.571.
    [94]Ord, A., Deformation of rock:A pressure-sensitive, dilatant material. Pure and Applied Geophysics,1991.137:p.337-366.
    [95]FLAC:Fast Lagrangian analysis of continua, user's guide, version 5.0.2005, Itasca Consulting Group, Inc.:Minnesota. p.3058.
    [96]Oliver, N.H.S., et al., Mary Kathleen metamorphic-hydrothermal uranium-rare earth element deposit:ore genesis and numerical model of coupled deformation and fluid flow. Australian Journal of Earth Sciences,1999.46(3):p.467-484.
    [97]Rutqvist, J., et al., A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. International Journal of Rock Mechanics and Mining Sciences,2002.39(4):p.429-442.
    [98]Ord, A. and N.H.S. Oliver, Mechanical controls on fluid flow during regional metamorphism:some numerical models. Journal of Metamorphic Geology,1997. 15(3):p.345-359.
    [99]Carman, P.C., Flow of gases through porous media.1956, New York:Academic Press. 182.
    [100]Bear, J., Dynamics of fluids in porous media. Dover books on physics and chemistry. 1988, New York:Dover Publications.764.
    [101]Ju, M. and J. Yang, Preliminary numerical simulation of tectonic deformation-driven fluid flow:Implications for ore genesis in the Dachang district, South China. Journal of Geochemical Exploration,2010.106(1-3):p.133-136.
    [102]Nelson, P.H., Permeability-porosity relationships in sedimentary rocks. The Log Analyst,1994.35:p.38-62.
    [103]Garven, G. and R.A. Freeze, Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits:2. Quantitative results. American Journal of Science,1984.284:p.1125-1174.
    [104]Freeze, R.A. and J.A. Cherry, Groundwater.1979, Englewood Cliffs, N. J.:Prentice Hall.604.
    [105]Davidson, A., Late Paleoproterozoic to mid-Neoproterozoic history of northern Laurentia:An overview of central Rodinia. Precambrian Research,2008.160(1-2):p. 5-22.
    [106]Gandhi, S.S., Significant unconformity-associated uranium deposits of the Athabasca Basin, Saskatchewan and Alberta, and selected related deposits of Canada and the world. Geological Survey of Canada, Open File 5005,2007.
    [107]Richard, A., et al., Giant uranium deposits formed from exceptionally uranium-rich acidic brines. Nature Geoscience,2011.5(1):p.1-5.
    [108]Fayek, M. and T.K. Kyser, Characterization of multiple fluid-flow events and rare-earth-element mobility associated with formation of unconformity-type uranium deposits in the Athabasca Basin, Saskatchewan. The Canadian Mineralogist,1997. 35(3):p.627-658.
    [109]Richard, A., et al., An evaporated seawater origin for the ore-forming brines in unconformity-related uranium deposits (Athabasca Basin, Canada):Cl/Br and δ37Cl analysis of fluid inclusions. Geochimica Et Cosmochimica Acta,2011.75:p.2792-2810.
    [110]Annesley, I.R. and C. Madore, Leucogranites and pegmatites of the sub-Athabasca basement, Saskatchewan:U protore?, in Mineral Deposits:Processes to Processing, C.J. Stanley, Editor.1999, A.A. Balkema:Balkema. p.297-300.
    [111]Hecht, L. and M. Cuney, Hydrothermal alteration of monazite in the Precambrian crystalline basement of the Athabasca Basin (Saskatchewan, Canada):implications for the formation of unconformity-related uranium deposits. Mineralium Deposita, 2000.35(8):p.791-795.
    [112]Richard, A., et al., Brine-rock interaction in the Athabasca basement (McArthur River U deposit, Canada):consequences for fluid chemistry and uranium uptake. Terra Nova,2010.22(4):p.303-308.
    [113]Boiron, M.C., M. Cathelineau, and A. Richard, Fluid flows and metal deposition near basement cover unconformity:Lessons and analogies from Pb-Zn-F-Ba systems for the understanding of Proterozoic U deposits. Geofluids,2010.10(1-2):p.270-292.
    [114]Cui, T., J. Yang, and I.M. Samson, Tectonic deformation and fluid flow:Implications for the formation of unconformity-related uranium deposits. Economic Geology,2012. 107(1):p.147-163.
    [115]World Uranium Mining.2011 September 2011 [cited 2011 October 24]; Available from:http://www.world-nuclear.org/info/inf23.html.
    [116]Hajnal, Z., et al. Sedimentary-hosted mineral deposits:A high-resolution seismic survey in the Athabasca Basin. in Proceedings of Exploration 97:Fourth Decennial International Conference on Mineral Exploration.1997.
    [117]Kolditz, O., et al., Coupled groundwater flow and transport:1. Verification of variable density flow and transport models. Advances in Water Resources,1998.21(1):p.27-46.
    [118]Diersch, H.J.G. and O. Kolditz, Variable-density flow and transport in porous media: approaches and challenges. Advances in Water Resources,2002.25(8-12):p.899-944.
    [119]Magri, F., et al., Salinization problems in the NEGB:results from thermohaline simulations. International Journal of Earth Sciences,2008.97(5):p.1075-1085.
    [120]Magri, F., et al., Impact of transition zones, variable fluid viscosity and anthropogenic activities on coupled fluid transport processes in a shallow salt dome environment. Geofluids,2009.9(3):p.182-194.
    [121]Magri, F., et al., Salty groundwater flow in the shallow and deep aquifer systems of the Schleswig-Holstein area (North German Basin). Tectonophysics,2009.470(1-2):p. 183-194.
    [122]Ramaekers, F., Hudsonian and Helikian basins of the Athabasca region, northern Saskatchewan, in Proterozoic basins of Canada, F.H.A. Campbell, Editor.1981. p. 219-233.
    [123]Eaton, D.W. and F. Darbyshire, Lithospheric architecture and tectonic evolution of the Hudson Bay region. Tectonophysics,2010.480(1-4):p.1-22.
    [124]Plumb, K., Structure and tectonic style of the Precambrian shields and platforms of northern Australia. Tectonophysics,1979.58(3-4):p.291-325.
    [125]Miall, A.D., Principles of sedimentary basin analysis.3rd ed.2000, New York: Springer.616.
    [126]Leighton, M.W. and D.R. Kolata, Selected interior cratonic basins and their place in the scheme of global tectonics:a synthesis, in Interior cratonic basins, M.W. Leighton, et al., Editors.1991, American Association of Petroleum Geologists:Tulsa, Okla. p. 729-798.
    [127]Ingram, F.T., V.A. Robinson, and R.A. Facer, Petroleum Prospectivity of the Clarence-Moreton Basin in New South Wales.1996, Sydney:Department of Mineral Resources. 132.
    [128]Dardour, A.M., D.R.D. Boote, and A.W. Baird, Stratigraphic controls on Palaeozoic petroleum systems, Ghadames Basin, Libya. Journal of Petroleum Geology,2004. 27(2):p.141-162.
    [129]Hassan, H.S. The Petroleum Geology of Libya.2009 [cited 2009; Available from: http://sepmstrata.org/Libya-Hassan/Ghadamis-Basin-Libya.html.
    [130]Watts, A.B., G.D. Karner, and M.S. Steckler, Lithospheric flexure and the evolution of sedimentary basins. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,1982. A 305:p.249-281.
    [131]Kharaka, Y.K. and J.S. Hanor, Deep fluids in the continents:I. Sedimentary basins, in Treatise on geochemistry, vol 5. Surface and ground water, weathering, and soils, H.D. Holland and K.K. Turekian, Editors.2003, Elsevier-Pergamon:Oxford, p.499-540.
    [132]Derome, D., et al., Mixing of Sodic and Calcic Brines and Uranium Deposition at McArthur River, Saskatchewan, Canada:A Raman and Laser-Induced Breakdown Spectroscopic Study of Fluid Inclusions. Economic Geology,2005.100(8):p.1529-1545.
    [133]Singhal, B.B.S. and R.P. Gupta, Applied hydrogeology of fractured rocks. Second ed. 2010:Springer.408.
    [134]Garven, G. and R.A. Freeze, Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits:2. Quantitative results. American Journal of Science,1984.284(10):p.1125-1174.
    [135]Gelhar, L.W., Stochastic subsurface hydrology from theory to applications. Water Resources Research,1986.22(9):p.135-145.
    [136]Emsley, J., Nature's building blocks:an AZ guide to the elements.2003:Oxford University Press, USA.560.
    [137]Hodge, V.F., K.H. Johannesson, and K.J. Stetzenbach, Rhenium, molybdenum, and uranium in groundwater from the southern Great Basin, USA:Evidence for conservative behavior. Geochimica Et Cosmochimica Acta,1996.60(17):p.3197-3214.
    [138]Weber Jr, F.F. and W.M. Sackett, Uranium geochemistry of Orca Basin. Geochimica Et Cosmochimica Acta,1981.45(8):p.1321-1329.
    [139]Kraemer, T.F. and Y.K. Kharaka, Uranium geochemistry in geopressured-geothermal aquifers of the U.S. Gulf Coast. Geochimica Et Cosmochimica Acta,1986.50(6):p. 1233-1238.
    [140]Davis, S.N., Porosity and permeability of natural materials, in Flow through porous media.1969, Academic Press:New York and London, p.53-89.
    [141]Stober, I. and K. Bucher, Hydraulic properties of the crystalline basement. Hydrogeology Journal,2007.15(2):p.213-224.
    [142]Card, C.D., et al., Basement rocks to the Athabasca Basin, Saskatchewan and Alberta. Bulletin-Geological Survey of Canada,2007.588:p.69-88.
    [143]Manning, C. and S. Ingebritsen, Permeability of the continental crust:Implications of geothermal data and metamorphic systems. Reviews of geophysics,1999.37(1):p. 127-150.
    [144]Shmonov, V., et al., Permeability of the continental crust:implications of experimental data. Journal of Geochemical Exploration,2003.78:p.697-699.
    [145]Ingebritsen, S.E., W.E. Sanford, and C.E. Neuzil, Groundwater in geologic processes. 2006:Cambridge University Press.536.
    [146]Bethke, C.M., A numerical model of compaction-driven groundwater flow and heat transfer and its application to the paleohydrology of intracratonic sedimentary basins. Journal of Geophysical Research. B,1985.90:p.6817-6828.
    [147]BJ(?)rlykke, K., Fluid flow in sedimentary basins. Sedimentary Geology,1993.86(1-2): p.137-158.
    [148]Hoeve, J. and T.I.I. Sibbald, On the genesis of Rabbit Lake and other unconformity-type uranium deposits in northern Saskatchewan, Canada. Economic Geology,1978. 73(8):p.1450-1473.
    [149]Nield, D.A. and A. Bejan, Convection in porous media.2006:Springer.546.
    [150]Mathieu, R., M. Cuney, and M. Cathelineau, Geochemistry of palaeofluids circulation in the Franceville basin and around Oklo natural nuclear reaction zones (Gabon). Journal of Geochemical Exploration,2000.69:p.245-249.
    [151]Mwenifumbo, C.J. and G.R. Bernius, Crandallite-group minerals:host of thorium enrichment in the eastern Athabasca Basin, Saskatchewan. BULLETIN-GEOLOGICAL SURVEY OF CANADA,2007.588:p.521-532.
    [152]Madore, C., I.R. Annesley, and K. Wheatley. Petrogenesis, age and uranium fertility of peraluminous leucogranites and pegmatites of the McClean Lake/Sue and Key Lake/P-Patch deposits area, Saskatchewan, in GeoCanada 2000:The Millennium Geoscience Summit 2000. Calgary:Geological Association of Canada-Minerological Association of Canada.
    [153]Simmons, C.T., A. Kuznetsov, and D. Nield, Effect of strong heterogeneity on the onset of convection in a porous medium:Importance of spatial dimensionality and geologic controls. Water Resources Research,2010.46(9):p. W09539.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700