基于CAE的垂直循环立体车库结构设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分析停车危机产生的原因及影响,介绍垂直循环立体车库的特点,研究基于CAE的垂直循环立体车库的结构设计方法。
     首先对市场上93款主流车型参数进行统计分析,确定垂直循环立体车库收容车辆参数及相应的轴距变化范围。确定垂直循环立体车库设计内容及设计流程,选用有限元分析、优化设计、运动仿真等CAE技术,进行CAE研究。制定CAE研究方案,设立三种分析情况,对比现有企业生产的产品,进行载车底板有限元分析,说明密肋结构载车底板的性能和特点;确定链传动优化设计思路,分析优化设计的影响因素及运动仿真验证方法。
     在吊篮设计中,设计了密肋结构的载车底板,并利用COSMOSWorks进行三种模型的有限元对比分析。研究结果表明在分析范围内,同等重量的车型,轴距越小,底板受力变形越严重。三种分析模型中,密肋结构载车底板变形挠度最小,最大变形位移为0.72mm。密肋结构载车底板安全系数最高,安全系数大于3,所用钢板材料厚度最小,车轮踏压区钢板厚3mm,非踏压区钢板仅厚1mm,整体重量较轻。由此可见,密肋结构的载车底板应用到工程实践中具有明显的降低重量,提高刚度和强度的效果。
     在输送链条的设计中,简化吊篮模型,分阶段讨论吊篮不干涉条件。运用优化理论与方法,确定设计变量,结合链板强度、设备安装尺寸、链轮分度圆直径与齿数的关系等条件,建立约束条件,确定基于吊篮不干涉条件链传动优化函数。利用MATLAB优化工具箱进行求解,针对链轮齿数进行圆整处理,最终确定链条设计参数:链条节距P=630mm,链轮齿数z=11,节圆半径R=1118.1mm,T链板外伸量C=400mm,吊篮回转半径L=1518.1mm。
     利用COSMOSMotion建立运动模型,设定约束、碰撞,施加作用力,进行吊篮运动仿真,验证吊篮运动不干涉,证明基于吊篮运动不干涉条件的链传动优化设计结果可行。
     通过本课题的研究,可以提高立体车库结构的强度、刚度等指标,合理设计车库车库结构,对立体车库的推广使用有重大的意义。
This articles analyses the reason and effect of parking crisis. The characteristic of erected circular mechanical garage and the study of structure design base on CAE is described in it.
     Firstly,It is analyzed that the external form dimension of 93 kinds pop car, and the confine dimension of vehicle decided. The structure design content and flow is set down. The technologies of CAE is applied in the study, such as finite element method, optimum design and motion simulation. The research scheme is worked out, Three kinds models are set up to comparative analysis in finite element analyse with three kinds instance. It explains the function and characteristic of multi-ribbed plate. The thought of optimum designs is ascertained, the influencing factor of the optimum designs and the method of motion simulation are analysed.
     Secondly, in the hanging basket design, the multi-ribbed plate is design and three kinds models finite element method comparative analysis is carried out by COSMOS-Works. The result of study is indicated that the wheelbase is more shorter, the deformation of floor carring vehicle is more higher with the same vehicle weight in analyse range, that the deformation of multi-ribbed plate is the shortest in three kinds models, the maximal deformation displacement is 0.72mm, and that the multi-ribbed plate is the strongest because of its assurance coefficient is more than 3, however, the thickness of steel floor in multi-ribbed plate is minimal, the thickness of steel floor is 3mm in the area that vehicle wheel rolled, the rest is only 1mm. So it has lighter weight. Thus it can be seen that there is obvious effect of reducing weight and increasing rigidity and intensity when the multi-ribbed plate is used in engineering.
     Thirdly,in the transport chain design, the hanging basket model is simplified.basing on the theory of optimum design, design variable is choiced, the constraint is confirmed with some condition,such as instensity of chain plank, equipment setting dimension, the relation of pitch circle diameter and sprocket tooth number and so on. The optimum design function base on the nonintervention condition of hanging basket movement is set up. It is solved by MATLAB. The sprocket tooth number is rounded and the chain parameter is finally obtained, pitch P=630mm, sprocket tooth number z=11, pitch circle radius R=1118.1mm, outside stretches amounts of chain T-plank C=400mm, gyration radius of hanging basket L=1518. 1mm.
     Finally, the movement medo of hanging basket movement is designed by COSMOS-Motion. After constraint and collision is set up, motion simulation is carried through to validate the nonintervention of hanging basket movement. It prove the success of optimum design base on the nonintervention condition of hanging basket movement.
     The article concludes that the erected circular mechanical garage with reasonablely structure can be schemed out availably with high strength and high rigidity .It is important to popularize mechanical tridimensional garage.
引文
1白忠喜.城市停车难与机械式立体立体车库.绍兴文理学院学报.2005,25(8):1
    2欧阳亮,杨晓光.2006上半年中国经济景气形势分析.中国科学院预测研究中心.2006:3
    3李振良.智能立体车库的研究.武汉大学硕士论文.2005:1
    4闫宏伟,潘宏侠.立体停车库在中国的发展前景.建筑机械化.2004,(3):49
    5潘家华,胡怀国.中国汽车工业发展的环境影响分析.中国社会科学研究院可持续发展研究中心.不祥:1
    6中华人民共和国2005年国民经济和社会发展统计公报.中华人民共和国国家统计局.2006
    7中华人民共和国2006年国民经济和社会发展统计公报.中华人民共和国国家统计局.2007
    8王新平.智能车库的托板车控制和管理研究.北京科技大学硕士论文.2005:2
    9杨运平,李硕,徐丽华.我国大城市停车问题分析与对策.2005,31(17)16-17
    10H.Allen.Awanson.The Influence of Central Business District Employmentand Parking Supply on Parking Rates.ITE Journal.2004,(8):28-30
    11许建和.南方住区地下停车库设计研究.湖南大学硕士论文.2004
    12中国重型机械工业协会立体车库管理委员会.机械式立体停车库.北京:海洋出版社,2001.9
    13彭斌.升降横移式立体停车库的结构设计与控制.兰州理工大学硕士论文.2003
    14National Parking Association.Automated Parking Takes Its Place in the United States.Parking.2003,(1/2):22-25
    15Kenneth Orski.Best space scenario.Traffic Technology International.2003,(3/4):54-56
    16Bill Francis.How to Select an Operator for Your Parking Facility.Parking Today.2004,(i)
    17Gene Martin,Lena Singer.Style on Schedule.Modern Steel Construction.2005,(3)
    18J.Harrison Ellinwood.Lowe's Knows Parking.Modern Steel Construction.2005,(1)
    19Sherri Alams.Robotics Make Parking Cars Easier And Safer.Emerging Technology.6(1)
    20Bob Diddlebock.These Garages Are Full Of Technology.Context.2000,(12):20-21
    21Gerhard Haag and Larry Byrnes.Automated Parking:Two-Year Report Card.Parking.2004,(9):38-41
    22徐培万.立体停车库的发展及市场前景.国外科技动态.2000,(5):30
    23薄晓鸣,张清.试论立体立体车库发展前景.太原科技.2000,(1):29
    24任翔.我国大中城市机动车停放设施研究.城市车辆.2003,(4):23-24
    25邹竹.基于静态交通规划的立体停车库设计及其控制系统应用研究.同济大学硕士论文.2004:1-3
    26李志辉,沈利华.机械立体车库设计概论——“机械立体停车库设计”讲座之二.中国电梯.2003,14(5):50-51
    27荆友录.电梯升降式立体停车库的研究与设计.山东科技大学硕士论文.2003
    28颜黄苹,胡国清.立体停车库发展综述.重庆工业高等专科学校学报.2000,(3)
    29 Raju Nandwana.Design of Automated Parking in Structures.The Parking Professional.2006,(6):14-15
    30黄树波.城市建设应发展立体车库.辽宁建材.2004,(3):68
    31池续航,闫维庆.关于机械式车设备的分类与选用.中国电梯.2003,14(21):37-40
    32田广范.机械式立体车库的分类方式.城市车辆.2001,(1)
    33缪宁.智能立体停车库系统设计与应用研究.同济大学硕士论文.2005:10-12
    34宋传增,王玉太,姚树奎.机械式停车场的类型及特点.山东机械.2003,(2): 11-13
    35汪浩,余华.自动化立体停车库的类型、特点和应用.苏州职业大学学报.2004,15(4):90-92
    36何涛,杨竞,金鑫.ANSYA10.0/LS-DYNA非线性有限元分析实例指导教程.北京.机械工业出版社,2007.1:1-4
    37虞雷.基于有限元法实现立体车库载车板构件的规格化设计.苏州大学硕士论文.2005
    38王吉忠,高志斌.新型导轨链传动垂直循环停车装置.起重运输机械.2005,(8):20-22
    39王吉忠.垂直循环立体车库托架运动不干涉条件.机械.2005,32(3):22-23
    40王吉忠,赵金先.基于托架运动不干涉条件的立体车库链传动系统的设计.起重运输机械.2005,(10):8-10]
    41Steel Parking Structures:A 25-Year Perspective.Modern Steel Cconstruction.2002,(3)
    42John Cross.Structural Steel Makes Inroads Into Parking Market.Structure.2001,(7/8)
    43周智慧.立体停车库刚架结构CAE分析及其优化设计.苏州大学硕士论文.2005
    44王隆太.机械CAD/CAM技术.北京.机械工业出版社,2003.5:12
    45杨朝丽.计算机辅助工程(CAE)发展现状及其应用综述.昆明大学学报(综合版).2003,14(2):50-54
    46中国机械工程学会,中国机械设计大典编委会.中国机械设计大典.江西:江西科学技术出版社,2002.1
    47许明金,马明初.垂直升降式立体车库升降驱动机构设置形式.中国电梯.2005,16(1):61-64
    48赵贤敬,魏兆宏,王吉忠,孙显彬.垂直循环机械式立体车库传动系统的形式.起重运输机械.2003,(5):29-30
    49赵贤敬,魏兆宏,王吉忠,张中元.导轨链传动垂直循环式立体车库.青岛建筑工程学院学报.2004,25(3):76-77
    50James Doyle.Modern Experimental Stress Analysis:Completing The Solution Of Partially Specified Problems:John Wiley & Sons,Ltd,2004
    51Jim Butterworth.Finite Element Analysis of Structural Steelwork Beam to Column Bolted Connections.不祥
    52Peter Hunter.FEM/BEM NOTES.New Zealand:Department of Engineering Science,2001.2
    53叶修梓,陈超群.COSMOS基础教程:COSMOSWorks Designer.北京.机械工业出版社,2007.4:1-4
    54(美)洛根(Logan,D.L.)著,伍义生等译.有限元方法基础教程.北京:电子工业出版社,2003(8):15
    55庞士宗,朱志良,吴华阳.微机平台上CAD/CAE/CAM/PDM系统集成方案探讨(之二).计算机辅助设计与制造.1997,(4):40-43
    56简诚颖.Cosmos/works—工程师的设计分析工具.CAD/CAM与制造业信息化.2006,(2)
    57陈玉骥.带肋板单元及其在构造正交异性板分析中的应用.佛山科学技术学院学报(自然科学版).2006,24(2):6-9
    58张涛,刘土光,赵耀.加筋板大挠度弯曲变形分析.中国造船.2001,42(2):40-46
    59苏金明,张莲花,刘波.MATLABI具箱应用.北京.电子工业出版社,2004.1:109
    60孙靖良,梁迎春.机械优化设计.北京.机械工业出版社,2007.8(4):225
    61飞思科技产品研发中心.MATLAB7基础与提高.北京.电子工业出版社,2005.4:1-2
    62郭仁生,苏君,卢洪胜.优化设计应用.北京.电子工业出版社,2003.8:132
    63飞思科技产品研发中心.MATLAB6.5辅助优化计算与设计.北京.电子工业出版社,2003.1:30
    64宋小军.曲轴圆角滚压数控系统研究及基于Solidworks的运动仿真.西安理工大学硕士论文.2004
    65江红,陆利峰,魏峥.Solidworks动画演示与运动分析实例解析.北京.机械 工业出版社,2006.5:1-145

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700