深季节冻土区重载汽车荷载下路基动力响应与永久变形
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国冻土面积分布广泛,冻融循环与重载汽车荷载是诱发季节冻土地区公路路基病害且由此引发路面破坏的两大主要原因。国内外关于季节冻土区重载汽车荷载下路基动力响应、长期重载汽车荷载下路基稳定性方面的研究罕有开展,公路路基病害机理认识不足。加之我国正处于高等级公路建设新时期,占国土面积超过一半的季节冻土地区内分布着纵横交错的国道、省道,如何有效评价季节冻土区(特别是深季节冻土区)高等级公路路基的稳定性与长期服役性能,有效降低路面、路基病害的发生且减轻运行维护难度,是制约我国寒区公路发展的瓶颈之一,也是我们面临的一大工程技术难题。
     鉴于此,本论文以深季节冻土地区高等级公路路基建造与运营维护为应用背景,采用室内试验、现场监测、理论分析、数值模拟相结合的技术手段,特别针对冻融循环与重载汽车荷载双重联合作用,开展重载汽车荷载下路基冻土与融土的动力参数、重载汽车-面层-基层-路基动力相互作用、重载汽车荷载下路基动力响应、长期重载汽车荷载下路基永久变形等科学问题研究,主要研究内容与取得的成果如下。
     (1)针对季节冻融循环与重载汽车荷载作用特点,基于低温动三轴试验研究了不同的含水量、冻融循环次数、荷载频率、负温、围压等条件下路基冻土动力参数;同时,基于常规动三轴试验研究了不同的含水量、冻融循环次数、荷载频率等条件下路基融土动力参数。以等效线性化模型描述冻土与融土的动应力~动应变关系,在经典双曲线模型基础上,提出了改进的Hardin双曲线模型以拟合冻土与融土的骨干曲线,分别研究了不同因素对最大剪切模量、最终剪应力幅值、最大阻尼比,以及剪应变幅值与剪切模量、阻尼比曲线的影响。
     (2)针对公路交通系统特点,在合理假设基础上,建立了深季节冻土区重载汽车-面层-基层-路基动力相互作用简化分析模型,包括典型重载汽车行驶振动简化分析模型、面层-基层-路基动力相互作用简化分析模型、春融期面层-基层-路基动力相互作用简化分析模型、正常期面层-基层-路基动力相互作用简化分析模型。以路面不平度作为重载汽车-面层-基层-路基系统的附加激励,轮胎点接触模型和改进弹性滚子模型作为轮胎与路面的接触关系,实现了重载汽车-面层-基层-路基的动力相互作用,并采用Wilson-θ逐步积分法求解动力体系方程。
     (3)在第(2)项理论基础上,开发了深季节冻土区重载汽车-面层-基层-路基动力相互作用简化计算程序DATPS,并采用前人试验结果和数值结果验证了计算程序的可靠性和理论模型的正确性。进而研究了重载汽车荷载下行车因素与道路因素对轮胎接地压力、路面动位移、基层顶面压应力的影响,并获取了基层顶面动压应力荷载时程。
     (4)针对深季节冻土区高等级公路典型路基,采用现场动应力监测手段,研究了三轴重载汽车在不同的整车质量、行驶速度时行车迹线下路基内动压应力传播规律和分布特性。采用有限单元法,基于虚功原理,将重载汽车-面层-基层-路基动力相互作用简化分析模型计算的基层顶面压应力时程作为荷载输入,建立了基层-路基-场地粘弹性动力有限元分析模型,并验证了数值模型的可靠性。进而分析了不同的汽车类型、后轴轴重、行车速度、路面不平度等级、路基融化厚度对正常期和春融期路基内动应力分布规律的影响。
     (5)基于常用长期循环荷载下土体永久应变模型,提出了冻融循环与重载汽车荷载联合作用下路基融土永久应变模型,根据三轴固结不排水压缩试验和长期重载汽车荷载下动三轴试验确定该模型参数。以应力比为关联,结合上述第(4)项研究成果,研究了不同的汽车类型、后轴轴重、行车速度和路基融化厚度对路基永久变形发展的影响,据此提出了深季节冻土区长期重载汽车荷载下路基永久变形预测公式。
The frozen soil are widely distributed in China, freeze-thaw cycle and heavy truck load are main causes of subgrade diseases causing pavement destroyed in these regions. However, there are few researches on the dynamic responses of pavement and subgrade induced by heavy truck and stability evaluation of long-term heavy truck load in seasonally frozen soil regions at home and abroad. Additonnaly, our country is in the new periods of highway constructions and many of them are distributed in seasonally frozen regions (especially in deep seasonally frozen regions), so the effective evaluation of long-term performance and stability of subgrade in these regions and the control of subgrade and pavement diseases are the bottlenecks of highway development and the technical problems faced by scientific workers.
     Therefore, employing laboratory test, field monitoring, theoretical analysis and numerical simulation, especially according to the coupling effect of seasonal freeze-thaw action and heavy truck load, this paper investigated dynamic parameters of the frozen and thaw soil induced by heavy truck load, dynamic interaction of heavy truck-surface course-base course-subgrade, dynamic responses of subgrade induced by heavy truck load, and permanent deformation of subgrade induced by long-term heavy truck load. The main contents and results are as fellows.
     (1) According to the features of freeze-thaw cycles and heavy truck load, adopting the low temperature dynamic triaxial test, the paper investigated the effects of water content, numbers of freeze-thaw cycle, loading frequency, negative temperature and confining pressure on dynamic parameters of the frozen soil. Meanwhile, the effects of water content, numbers of freeze-thaw cycle, and loading frequency on dynamic parameters of the thawed soil by employing the normal triaxial test were studied. In the paper, the relationships between dynamic stress and strain were described by equivalent linearization model, the backbone curves of the frozen and thaw soil were fitted by improved Hardin Hyperbolic Model, and the effects on the maximum shear modulus, maximum damping ratio, the relationships between shear strain and shear modulus and damping ratio were studied.
     (2) According to the characteristics of highway traffic system, the dynamic interaction simplified analysis models of heavy truck-surface course-base course-subgrade in seasonally frozen regions based on some reasonable hypothesis were developed, which included typical heavy truck model in highway, surface course-base course-subgrade dynamic model, surface course-base course-subgrade dynamic model in spring thawing and normal periods. The dynamic interaction of heavy truck model and surface course-base course-subgrade model was realized by taking surface roughness as systematic excitation and taking tire point contact model and improved elastic roller model as contact. Finally, dynamic equations of system were solved using Wilson-θmethod.
     (3) Based on the theory of the second term, the program DATPS was developed for investigating the dynamic interaction of heavy truck- surface course-base course-subgrade in deep seasonally frozen regions, and the validation of the model and reliability of program were verified by the test and simulated results. The effects of driving factors and road factors on tire ground pressure and pavement dynamic displacement were investigated by program DATPS, and the time histories of dynamic compressive stress time histories of top base were obtained.
     (4) The propagation law and distribution characteristic of dynamic compressive stress of the subgrade soil induced by the three axles heavy truck with different speed and weight were studied by field monitoring. Based on principle of virtual work, taking the dynamic compressive stress time history caculated by simplified model of the dynamic interaction of heavy truck-surface course-base course-subgrade model as the input of load, viscoelastic dynamic finite element models of base course-subgrade-ground verified by the field monitoring data were built. Then the effects of traffic type, rear axle load, running speed, highway grade and thawing depth on distribution law of subgrade dynamic stress during normal and spring thawing periods were analyzed by numerical simulation method.
     (5) Consided the freeze-thaw cycle and heavy truck load, the permanent strain model were established and the model parameters obtained by the consolidated undrained triaxial test and dynamic triaxial test under cyclic load. Refered to stress ratio as a link and based on the fourth term, the effect of traffic type, rear axles load, running speed and subgrade thickness on the permanent deformation induced by long-term heavy truck load were investigated by the numerical method. Hereby, the prediction formula of subgrade permanent deformation induced by long-term heavy truck load was established.
引文
1曾凡奇,黄晓明.超载对沥青路面的影响[J].交通运输工程学报, 2004, 4(3): 8-10.
    2徐学祖,王家澄,张立新,等.冻土物理学[M].北京:科学出版社, 2001: 9-11.
    3王晓春,张倬元.寒区工程与冻融力学[J].地学前缘, 2000, 7(增): 99-104.
    4杨利民,李晓东,张波,等.深季节冻土区地基土的冻胀性[J].低温建筑技术, 2003, (96): 62-63
    5黑龙江省寒地建筑科学研究院. JGJ 118-98,冻土地区建筑地基基础设计规范[S].北京:中国建筑工业出版社, 1998: 24.
    6齐吉琳,程国栋, Pieter P. A..冻融作用对土工程性质影响的研究现状分析[J].地球科学进展, 2005, 20(8): 887-894.
    7 Samang L., Miura N., Sakai A.. Long-Term Measurements of Traffic Load Induced Settlement of Pavement Surface in Saga Airport Highway, Japan[J]. Journal Teknik Sipil, 2005, 12(4): 275-286.
    8 Leroueil S., Tardif J., Roy M., et al. Effects of Frost on the Mechanical Behavior of Champlain Sea Clays[J]. Canadian Geotechnical Journal, 1991, 28(5): 690-697.
    9张克绪,谢君斐.土动力学[M].北京:地震出版社, 1989: 199-200.
    10 Broms B. B., Yao Y. C.. Shear Strength of a Soil after Freezing and Thawing[J]. Journal of the Soil Mechanics and Foundations Division, 1964, 90(4): 1-26.
    11 Ogata N., Kataoka T., Komiya A.. Effect of Freezing-Thawing on the Mechanical Properties of Soil[C]. Proceedings of the 4th International Symposium on Ground Freezing, Sapporo, Japan. 1985: 5-7.
    12 Graham J., Au V. C. S.. Effects of Freeze-Thaw and Softening on a Natural Clay at Low Stresses[J]. Canadian Geotechnical Journal, 1985, 22: 69-78
    13 Formanek G. E., McCool D. K., Papendick R. I.. Freeze Thaw and Consolidation Effects on Strength of a Wet Silt Loam[J]. Transactions of the American Society of Agricultural Engineers, 1984, 27(6): 1749-1752.
    14 Alkire B. D., Mrrsion J. M.. Change in Soil Structure due to Freeze-Thaw and Repeated Loading[J]. Transportation Research Record, 1983, 918: 15-22.
    15 Berg R. L., Bigl S. R., Stark J. A., et al. Resilient Modulus Testing of Materialsfrom Mn/ROAD, Phase 1[R]. US Army Cold Regions Research and Engineering Laboratory, CRREL Report, 96-19, 1996: 1-20.
    16 Simonsen E., Janoo V. C., Isacsson U.. Resilient Properties of Unbound Road Materials during Seasonal Frost Conditions[J]. Journal of Cold Regions Engineering, 2002, 16(1): 28-50.
    17 Simonsen E., Isacsson U.. Soil Behavior during Freezing and Thawing Using Variable and Constant Confining Pressure Triaxial Tests[J]. Canadian Geotechnical Journal, 2001, 38(4): 863-875.
    18 Tsarapov M. N.. Strength Capacity Evolution in Thawing Soil[J]. Moscow University Geology Bulletin, 2007, 62(6): 393-396.
    19 Ishikawa T., Ozaki Y., Miura S.. Influence of Freeze-Thaw Action on Mechanical Behavior of Crushable Volcanic Coarse-Grained Soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, JSCE, 2008, 64(3): 712-717.
    20 Ishikawa T., Miura S.. Influence of Freeze-Thaw Action on Mechanical Behavior of Unsaturated Crushable Volcanic Soil[C]. Proceedings of 5th International Conference on Unsaturated Soils, Barcelona, 2010: 549-554.
    21 Yamaki M., Miura S., Yokohama S.. Effect of Freeze-Thaw Sequence on Deformation Properties of Crushable Volcanic Soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, JSCE, 2009, 65(1): 321-333.
    22 Sahaphol T., Miura S.. Shear Moduli of Volcanic Soil[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(2): 157-165.
    23齐吉琳,张建明,朱元林.冻融作用对土结构性影响的土力学意义[J].岩石力学与工程学报, 2003, 22(增2): 2690-2694.
    24 Qi Jilin, Ma Wei, Song Chunxia. Influence of Freeze-Thaw on Engineering Properties of a Silty Soil[J]. Cold Regions Science and Technology, 2008, 53(3):
    397-404.
    25 Wang Dayan, Ma Wei, Niu Yonghong, et al. Effects of Cyclic Freezing and Thawing on Mechanical Properties of Qinghai-Tibet Clay[J]. Cold Regions Science and Technology, 2007, 48(1): 34-43.
    26苏谦,唐第甲,刘深.青藏斜坡黏土冻融循环物理力学性质试验[J].岩石力学与工程学报, 2008, 27(增): 2990-2994.
    27毛雪松,侯仲杰,王威娜.基于含水量和冻融循环的重塑土回弹模量试验研究[J].岩石力学与工程学报, 2009, 28(增2): 3585-3590.
    28 Liu Jiankun, Wang Tianliang, Tian Yahu. Experimental Study of the Dynamic Properties of Cement-and Lime-Modified Clay Soils Subjected to Freeze-Thaw Cycles[J]. Cold Regions Science and Technology, 2010, 61(1): 29-33.
    29于琳琳,徐学燕,邱明国,等.冻融作用对饱和粉质黏土抗剪性能的影响[J].岩土力学, 2010, 31(8): 2448-2452.
    30董晓宏,张爱军,连江波.反复冻融下黄土抗剪强度劣化的试验研究[J].冰川冻土, 2010, 32(4): 767-772.
    31许强,吴礼舟,张莲花.冻融循环作用下非饱和黏土的抗剪强度试验[J].成都理工大学学报(自然科学版), 2011, 38(3): 334-338.
    32陈炜韬,王明年,王鹰,等.含盐量及含水量对氯盐盐渍土抗剪强度参数的影响[J].中国铁道科学, 2006, 27(4): 1-5.
    33冯勇,何建新,刘亮,等.冻融循环作用下细粒土抗剪强度特性试验研究[J].冰川冻土, 2008, 30(6): 1013-1017.
    34邴慧,何平.冻融循环对含盐土物理力学性质影响的试验研究[J].岩土工程学报, 2009, 31(12): 1958-1964.
    35 Altun, S., Sezer, A., Erol, A.. The Effects of Additives and Curing Conditions on the Mechanical Behavior of a Silty Soil[J]. Cold Regions Science and Technology, 2009, 56(2-3): 135-140.
    36 Zaimoglu A. S.. Freezing-Thawing Behavior of Fine-Grained Soils Reinforced with Polypropylene Fibers[J]. Cold Regions Science and Technology, 2010, 60(1): 63-65.
    37 Ghazavi M., Roustaie M.. The Influence of Freeze-Thaw Cycles on the Unconfined Compressive Strength of Fiber-Reinforced Clay[J]. Cold Regions Science and Technology, 2010, 61(2-3): 125-131.
    38 Hazirbaba K.. California Bearing Ratio Improvement and Freeze-Thaw Performance of Ine-Grained Soils Treated with Geofiber and Synthetic Fluid[J]. Cold Regions Science and Technology, 2010, 63(1-2): 50-60.
    39马巍,徐学祖,张立新.冻融循环对石灰粉土剪切强度特性的影响[J].岩土工程学报, 1999, 21(2): 158-160.
    40魏海斌,刘寒冰,宫亚峰,等.动荷载下粉煤灰土冻融损伤特性试验[J].哈尔滨工业大学学报, 2009, 41(10): 110-113.
    41魏海斌,刘寒冰,高一平,等.冻融循环对粉煤灰土动强度的影响[J].吉林大学学报(工学版), 2007(3): 329-333.
    42 Liu Jiankun, Peng Liyun. Experimental study on the unconfined compression of a thawing soil[J]. Cold Regions Science and Technology, 2009, 58(1-2): 92-96.
    43王天亮,刘建坤,田亚护.冻融作用下水泥及石灰改良土静力特性研究[J].岩土力学, 2011, 32(1): 193-198.
    44戴文亭,魏海斌,刘寒冰,等.冻融循环下粉质黏土的动力损失模型[J].吉林大学学报(工学版), 2007, 37(4): 790-793.
    45 Zhang Y. Impact of Freeze-Thaw on Liquefaction Potential and Dynamic Prosperities of Mabel Creek Silt[D]. Ph.D. Dissertation, University of Alaska Fairbanks, 2009: 78-152.
    46 Viklander P.. Permeability and Volume Changes in Till due to Cyclic Freeze-Thaw[J]. Canadian Geotechnical Journal, 1998, 35(3): 471-477.
    47 Fryba L. Vibration of Solids and Structures under Moving Loads[M]. Thomas Telford, 1999.
    48 Cebon D.. Handbook of Vehicle-Road Interaction[M]. Swets & Zeitlinger Publishers, 1999.
    49 Gillespie T. D., Karamihas S.M., Cebon D., et al. Effects of Heavy Vehicle Characteristics on Pavement Response and Performance[R]. The University of Michigan Transportation Research Institute, 1992: 95-129.
    50 Liu C., Gazis D.. Surface Roughness Effect on Dynamic Response of Pavement[J]. Journal of Transportation Engineering, 1999, 125(4): 332-337.
    51 Liu C., McCullougn F., Oey H. S.. Response of Rigid Pavements due to Vehicle-Road Interaction[J]. Journal of Transportation Engineering 2000, 126(3): 237-42.
    52 Kim S. M., McCullough B.F.. Dynamic Response of Plate on Viscous Winkler Foundation to Moving Loads of Varying Amplitude[J]. Engineering Structures, 2003, 25(9): 1179-88.
    53 Kim S. M.. Stability and Dynamic Response of Rayleigh Beam-Columns on an Elastic Foundation under Moving Loads of Constant Amplitude and Harmonic Variation[J]. Engineering Structures, 2005, 27(6): 869-880.
    54 Darestani M. Y., Mostafa, Thambiratnam D. P., et al. Dynamic Response of Concrete Pavement under Vehicular Loads[C]. Proceeding of IABSE Symposium:Response to Tomorrow’s Challenges in Structural Engineering, Budapest, Hungary. 2006, 104-105.
    55 Darestani M. Y., Thambiratnam D. P., Nataatmadja A., et al. Structural Response of Concrete Pavements under Moving Truck Loads[J]. Journal of Transportation Engineering, 2007, 133(12): 670-676.
    56 Beskou N. D., Theodorakopoulos D. D.. Dynamic Effects of Moving Loads on Road Pavements: A Review[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(4): 547-567.
    57 Saad B., Mitri H., Poorooshasb H.. Three-Dimensional Dynamic Analysis of Flexible Conventional Pavement Foundation[J]. Journal of Transportation Engineering, 2005, 131(6): 460-469.
    58杨方廷,余群.车辆运动引起路面动力反应的研究[J].农业工程学报, 1996, 12(2): 49-53.
    59候芸,孙四平,郭忠印.移动荷载下刚性路面响应的参数影响分析[J].同济大学学报, 2003, 31(l): 31-35.
    60周华飞,蒋建群.刚性路面在运动车辆作用下的动力响应[J].土木工程学报, 2006, 39(8): 117-125.
    61张文斌,王祁,马松林,等.刚性路面动态应变响应的变换域分析[J].交通运输工程学报, 2007, 7(4): 48-53.
    62 Cao Changyong, Wong Winggun, Zhong Yang, et al. Dynamic Response of Rigid Pavements due to Moving Vehicle Load with Acceleration[C]. Pavements and Materials: Modeling, Testing, and Performance, 2008: 64-71.
    63 Li Mingliang, Zhong Yang, Cao Xinming. Dynamic Response of Rigid Pavements under Moving Multi-Load[C]. International Conference on Transportation Engineering, Cheng Du, 2007: 955-960.
    64 Lv Pengmin, Tian Runli, Liu Xiaojun. Dynamic Response Solution in Transient State of Viscoelastic Road under Moving Load and Its Application[J]. Journal of Engineering Mechanics, 2010, 133(2): 168-173.
    65姚海林,卢正,刘干斌,等.黏弹性地基上路面板载多轮荷载作用下的响应分析[J].岩土力学, 2009, 30(2): 367-372.
    66 Siddharthan R. V., Zafir Z., Norris G. M.. Moving Load Response of Layered Soil, I: Formulation[J]. Journal of Engineering Mechanics, 1993, 119(10): 2052-2071.
    67 Siddharthan R. V., Zafir Z., Norris G. M.. Moving Load Response of Layered Soil, II: Verification and Application[J]. Journal of Engineering Mechanics, 1993, 119(10): 2072-2089.
    68 Zafir Z., Siddharthan R. V., Sebaaly P. E.. Dynamic Pavement-Strain Histories from Moving Traffic Load[J]. Journal of Transportation Engineering, 1994, 120(5): 821-842.
    69 Siddharthan R. V., Yao Jian, Sebaaly P. E.. Pavement Strain from Moving Dynamic 3D Load Distribution[J]. Journal of Transportation Engineering, 1998, 124(6): 557-566.
    70 Raj V. Siddharthan, Peter E. Sebaaly, Magdy El-Desouky, et al. Heavy off-Road Vehicle Tire-Pavement Interactions and Response[J]. Journal of Transportation Engineering, 2005, 131(3): 239-247.
    71张洪亮,胡长顺,许伟清.移动荷载下柔性路面的动力响应[J].长安大学学报(自然科学版), 2005, 25(5): 6-10.
    72董泽蛟,曹丽萍,谭忆秋,等.移动荷载作用下沥青路面三向应变动力响应模拟分析[J].土木工程学报, 2009, 42(4):133-139.
    73卢正,姚海林,骆行文,等.矩形移动荷载作用下路面-双层地基系统三维振动分析[J].岩土力学, 2009, 30(11): 3493-3499.
    74卢正,姚海林,罗海宁,等.双参数黏弹性地基基础上上连续配筋混凝土路面振动参数分析[J].岩土力学, 2008, 29(8): 2177-2182.
    75卢正,姚海林,吴莎.黏弹性地基板载矩形变速荷载作用下的振动分析[J].岩土力学, 2010, 31(11): 3613-3618.
    76 Cai Yuanqiang, Cao Zhigang, Sun Honglei, et al. Dynamic Response of Pavements on Poroelastic Half-Space Soil Medium to a Moving Traffic Load[J]. Computers and Geotechnics, 2009, 36(1-2): 52-60
    77 Hardy M. S. A., Cebon D.. Response of Continuous Pavements to Moving Dynamic Load[J]. Journal of Engineering Mechanics, 1993, 119(9): 1762-1780.
    78 Wu Chih-Ping, Shen Pao-Anne. Dynamic Analysis of Concrete Pavement Subjected to Moving Loads[J]. Journal of Transportation Engineering, 1997, 122(5): 367-372.
    79 Lin Jeng-Hsiang, Weng Cheng-Chiang. Analytical Study of Probable Peak Vehicle Load on Rigid Pavement[J]. Journal of Transportation Engineering, 2001,127(6): 471-476.
    80 Shi X. M., Cai C. S.. Simulation of Dynamic Effects of Vehicles on Pavement Using a 3D Interaction Model[J]. Journal of Transportation Engineering, 2009, 135(10): 736-744.
    81邓学钧,孙璐.车辆-地面结构系统动力学[M].北京:人民交通出版社, 2000.
    82 Sun L., Deng X.. Dynamic Analysis of Infinite Beam under The Excitation of Moving Line Loads[J]. Applied Mathematics and Mechanics, 1998, 19(4): 367-373.
    83 Sun L., Greenberg B.. Dynamic Response of Linear Systems to Moving Stochastic Sources[J]. Journal of Sound Vibration, 2000, 229(4): 957-972.
    84 Sun Lu. Dynamic Displacement Response of Beam-Type Structures to Moving Line Loads[J]. International Journal of Solids and Structures, 2001, 38(49): 8869-8878.
    85 Sun Lu, Luo Fei quan. Nonstationary Dynamic Pavement Loads Generated by Vehicle Travelling at Varying Speed[J]. Journal of Transportation Engineering, 2007, 133(4): 252-263.
    86陶向华,黄晓明.人-车-路相互作用三质量车辆模型分析[J].交通运输工程学报, 2004, 4(3): 11-15.
    87刘大维,李国政,陈焕明,等.车辆随机动载作用下路面动态响应研究[J].农业机械学报, 2011, 42(2): 28-33.
    88李韶华.重载汽车-路面-路基耦合系统动力学研究[D].北京:北京交通大学博士学位论文, 2008: 69-86.
    89 Sebaaly P., Tabatabaee N., Kulakowski B., et al. Instrumentation for Flexible Pavement-Field Performance of Selected Sensors, Volume I[R]. Final Report No. FHWA-RA-91-094, 1992: 3-27.
    90 Brown S. F.. Soil Mechanics in Pavement Engineering[J]. Geotechnique, 1996, 46(3): 383-426.
    91 Hyodo M., Yasuhara K., Murata H.. Deformation Analysis of the Soft Clay Foundation of Low Embankment Road under Traffic Loading[C]. Proceeding of the 31st Symposium of Japanese Society of Soil Mechanics and Foundation Engineering, 1996: 27-32.
    92 Hyodo M., Yasuhara K.. Analytical Procedure for Evaluation Por-Water Pressure and Deformation of Saturated Clay Ground Subjected to Traffic Loads[C]. Proceeding 6th Conference of Numerical Method in Geomechanics. Rotterdam, Balkema, 1998, 653-658.
    93 Mateos A. Modeling the Structural Response of Flexible Pavement from Full Scale Test Track Experimental Data[D]. Ph.D. Dissertation, Technical University of Madrid, 2003.
    94 Timm D. H., Priest A. L., McEwen T. V.. Design and Instrumentation of the Structural Pavement Experiment at the NCAT Test Track[R]. NCAT Report 04-01, 2004: 5-64.
    95 Immanuel S., Timm D. H.. Measured and Theoretical Pressures in Base and Subgrade Layers under Dynamic Truck Loading[C]. Proceedings of Airfield and Highway Pavements Specialty Conference: Airfield and Highway Pavement: Meeting Today's Challenges with Emerging Technologies. 2006, 155-166.
    96凌建明,王伟,邬洪波.行车荷载作用下湿软路基残余变形的研究[J].同济大学学报, 2002, 30(11): 1315-1320.
    97崔伯华,颜治平,谭祥韶.某高速公路路基汽车动荷载下的动响应测试初探[J].河海大学学报, 2005, 33(增): 108-110.
    98查文华,洪宝宁,徐毅.交通荷载下低路堤高速公路路面路基振动测试与分析[J].公路工程, 2007, 32(4): 113-117.
    99王晅,张家生,杨果岳,等.重载作用下公路路基及基层动应力测试研究[J].振动与冲击, 2007, 26(6): 169-173.
    100王卫强,刘维正,赵燕.交通荷载作用下低路堤结构应力响应试验分析[J].公路交通科技(应用技术版), 2007, (2): 38-40.
    101赵俊明,刘松玉,石名磊,等.交通荷载下低路堤动力特性试验研究[J].东南大学学报(自然科学版), 2007, 37(5): 921-925.
    102王平安,王杰贤,刘跟收.精密仪器工作台的隔振设计[J].西安建筑科技大学学报(自然科学版), 1999, 31(3): 263-266.
    103梁铁成,李桐林,董瑞春.公路车辆产生振动波的衰减研究[J].吉林大学学报(地球科学版), 2003, 33(3): 382-386.
    104刘奉喜,刘建坤,房建宏,等.车辆载荷作用下岩盐公路振动衰减分析[J].公路, 2004, (4): 24-28.
    105卢正.交通荷载作用下公路结构动力响应及路基动强度设计方法研究[D].武汉:中国科学院武汉岩土力学研究所博士学位论文, 2009: 117-142.
    106 Cole J., Huth J.. Stresses Produced in a Half-Plane by Moving Loads[J]. Journal of Applied Mechanics, 1958, 25: 433-436.
    107 Eason G.. The Stresses Produced in a Semi-Infinite Solid by a Moving Surface Force[J]. International Journal of Engineering and Science, 1965, 2(6): 581-609.
    108 Payton R. G.. Transient Motion of an Elastic Half-Space due to a Moving Surface Line Load[J]. International Journal of Engineering and Science, 1967, 5(1): 49-79.
    109 Bruke, Kingsburs. Three-Dimensional Analysis of Traffic-Induced Ground Vibration[J]. Journal of Geotechnical Engineering, 1991, 117(8): 1413-1434.
    110 Jones D. V., Petyt M.. Ground Vibration in the Vicinity of a Strip Load: A Two-Dimensional Model[J]. Journal of Sound and Vibration, 1991, 147(1): 155-166.
    111 Jones D. V., Petyt M.. Ground Vibration in the Vicinity of a Rectangular Load on a Half-Space[J]. Journal of Sound and Vibration, 1993, 166(1): 141-159.
    112 de Barros F. C. P., Luco, J. E.. Response of a Layered Viscoelastic Half-Space to a Moving Point Load[J]. Wave Motion, 1994, 19(2): 189-210.
    113 Jones D. V., Petyt M. Peplow A. T., et al. Ground Vibration in the Vicinity of a Moving Harmonic Rectangular Load on a Half-Space[J]. European Journal of Mechanics A/Solids, 1998, 17(1): 153-166.
    114 Hong Han, Thien Cheong Ang. Analytical Modeling of Traffic-Induced Ground Vibration[J]. Journal of Engineering Mechanics, 1998, 124(8): 921-928.
    115 Lefeuve-Mesgouez G., Mesgouez A., Peplow A. T.. Ground Vibration in the Vicinity of a High-Speed Moving Harmonic Strip Load[J]. Journal of Sound and Vibration, 2000, 231(5): 1289-1309.
    116 Lefeuve-Mesgouez G., Peplow A.T., Le Houédec D.. Surface Vibration due to a Sequence of High Speed Moving Harmonic Rectangular Loads[J]. Soil Dynamic and Earthquake Engineering, 2002, 22(6): 459-473.
    117 Lombaert G., Degrande G., Clouteau D.. Numerical Modeling of Free Field Traffic-Induced Vibrations[J]. Soil Dynamic and Earthquake Engineering, 2000, 19(7): 473-488.
    118 Lombaert G., Degrande G.. Experimental Validation of a Numerical Prediction Model for Free Field Traffic Induced Vibrations by Insitu Experiments[J]. SoilDynamic and Earthquake Engineering, 2001, 21(6): 485-497.
    119 Huang H. H., Yang Y. B.. Elastic Waves in Visco-Elastic Half-Space to Generated by Various Vehicle Loading[J]. Soil Dynamics and Earthquake Engineering, 2001, 21(1): 1-17.
    120钟阳,王哲人,郭大智.求解多层弹性半空间轴对称问题的传递矩阵法[J].土木工程学报, 1992, 25(6): 37-43.
    121钟阳,孙林.轴对称半空间层状弹性体系动态反应的理论解[J].中国公路学报, 1998, 11(2): 24-29.
    122颜可珍,夏唐代,姜爱华.交通荷载作用下地基中瑞利波的传播特性[J].岩石力学与工程学报, 2004, 25(增): 414-417.
    123张昀青.移动荷载作用下半无限体的动力响应解[J].岩土力学, 2004, 25(6): 955-957
    124蒋建群,周华飞,张土乔.弹性半空间体在移动集中荷载作用下的稳态响应[J].岩土工程学报, 2004, 26(4): 440-444.
    125谢卫平.移动荷载引起的土变形计算[J].岩土工程学报, 2004, 26(3): 318-322.
    126汤连生,徐通,林沛元,等.交通荷载下层状道路系统动应力特征分析[J].岩石力学与工程学报, 2009, 28(增2): 3876-3884.
    127卢正,姚海林,骆行文,等.公路交通荷载作用下分层地基的三维动响应分析[J].岩土力学, 2009, 30(10): 2965-2970.
    128张玉红,汤卓文,王长林.移动荷载作用下土体动力响应的参数影响分析I:粘弹性半空间[J].西安建筑科技大学学报(自然科学版), 2010, 42(5): 621-624.
    129 Cao Y. M., Xia H., Lombaert G.. Solution of Moving-Load-Induced Soil Vibrations Based on the Betti-Rayleigh Dynamic Reciprocal Theorem[J]. Soil Dynamics and Earthquake Enginnering, 2010, 30(6): 470-480.
    130 Theodorakopoulos D. D.. Dynamic Analysis of Poroelastic Half-Plane Soil Medium under Moving Loads[J]. Soil Dynamic and Earthquake Engineering, 2003, 23(7): 521-533.
    131 Theodorakopoulos D. D., Chassiakos A. P., Beskos D. E.. Dynamic Effects of Moving Load on a Poroelastic Soil Medium by an Approximate Method[J]. International Journal of Solids and Structures, 2004, 41(7): 1801-1822.
    132 Lu Jianfei, Jeng Dongsheng. A Half-Space Saturated Poro-Elastic MediumSubjected to a Moving Point Load[J]. International Journal of Solids and Structures, 2007, 44 (2): 573-586.
    133 Lefeuve-Mesgouez G., Mesgouez A.. Ground Vibration due to a High-Speed Moving Harmonic Rectangular Load on a Poroviscoelastic Half-Space[J]. International Journal of Solids and Structures, 2008, 45(11-12): 3353-3374.
    134 Ouyang Huajiang. Moving-Load Dynamic Problems: A Tutorial (With a Brief Overview)[J]. Mechanical Systems and Signal Processing, 2011, 25(6): 2039-2060.
    135郑灶锋,蔡袁强,徐长节.稳态荷载下轴对称呈层饱和粘弹性地基动力响应[J].岩石力学与工程学报, 2005, 24(13): 2380-2385.
    136刘干斌,汪鹏程,陈运平,等.运动荷载附近有限层厚软土地基的振动研究[J].岩土力学, 2006, 27(9): 1067-1612.
    137 Jin B., Yue Z. Q., Tham L. G.. Stresses and Excess Pore Pressure Induced in Saturated Poroelastic Halfspace by Moving Line Load[J]. Soil Dynamic and Earthquake Engineering, 2004, 24(1): 25-33.
    138陈远国,金波.移动简谐荷载作用下多孔介质的动力响应[J].中国科学G辑. 2008, 38(3): 250-259.
    139 Xu Bin, Lu Jianfei, Wang Jianhua. Dynamic Response of a Layered Water-Saturated Half Space to a Moving Load[J]. Computers and Geotechnics, 2008, 35(1): 1-10
    140 Lu Zheng, Yao Hailin, Liu Ganbin. Thermomechanical Response of a Poroelastic Half-Space Soil Medium Subjected to Time Harmonic Loads[J]. Computer and Geotechnics, 2010, 37(3): 343-350.
    141 Adersen L., Nielsen S. R. K.. Boundary Element Analysis of the Steady-State Response of an Elastic Half-Space to a Moving Force on Its Surface[J]. Engineering Analysis with Boundary Elements, 2003, 27(1): 23-38
    142 Francois S., Lomgaert G., Degrande G.. Local and Global Shape Functions in a Boundary Element Formulation for the Calculation of Traffic Induced Vibrations[J]. Soil Dynamics and Earthquake Enginnering, 2005, 25(11): 839-856.
    143 Lak M. A., Degrande G., Lombaert G.. The Effect of Road Unevenness on the Dynamic Vehicle Response and Ground-Borne Vibrations due to Road Traffic[J]. Soil Dynamics and Earthquake Enginnering, 2011, 31(10): 1357-1377.
    144蔡袁强,刘飞禹,徐长节,等.交通荷载下加筋道路弹粘塑性有限元分析[J].浙江大学学报(工学版), 2006, 40(10): 1743-1748.
    145丁凯,金波.移动荷载作用下地基动力分析的有限元方法[J].力学季刊, 2006, 27(4): 648-654.
    146杨佳松,金波.移动荷载下多孔饱和地基的动力有限单元法[J].力学季刊, 2009, 30(1): 101-108.
    147 Zhai Wei, Song Erxiang. Three Dimensional FEM of Moving Coordinates for the Analysis of Transient Vibrations due to Moving Loads[J]. Computers and Geotechnics, 2010, 37(1): 164-174.
    148 Qiu Yanjun. Permanent Deformation of Subgrade Soils Laboratory Investigation and Application in Mechanistic-Based Pavement Design[D]. Ph.D. Dissertation, University of Arkansas, 1998: 95.
    149 Barksdale R. D.. Laboratory Evaluation of Rutting in Base Course Materials[C]. Proceeding of the 3rd international conference on the structural design of asphalt pavement, University of Michigan, 1972: 161-174.
    150 Monismith C. L., Ogawa. N., Freeme C. R.. Permanent Deformation Characteristics of Subgrade Soils due to Repeated Loading[J]. Transporation Research Record, 1975, (537): 1-17.
    151 George B., Rober V. W., Allen W. M.. Permanent Displacement of Sand with Cyclic Loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1984, 110(11): 1606-1623.
    152 Gidel G., Hornych P., Chauvin J., et al. A New Approach for Investigating the Permanent Deformation Behavior of Unbound Granular Material using the Repeated Load Triaxial Apparatus[J]. Bulletin Des Laboratories des Ponts et Chaussees, 2001, 6(8): 5-21.
    153 Niemunis A., Wichtmann T., Triantafyllidis T. A.. High-Cycle Accumulation Model for Sand[J]. Computers and Geotechnics 2005, 32(4): 245-263.
    154 Wichtmann T., Niemunis A., Triantafyllidis T.. Strain Accumulation in Sand due to Cyclic Loading: Drained Triaxial Tests[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(12): 967-979.
    155 Wichtmann T., Niemunis A., Triantafyllidis T.. On the Influence of the Polarization and the Shape of the Strain Loop on Strain Accumulation in Sand under High-Cyclic Loading[J]. Soil Dynamics and Earthquake Engineering, 2007,27(1): 14-28.
    156 Wichtmann T., Niemunis A., Triantafyllidis T.. Strain Accumulation in Sand due to Cyclic Loading: Drained Cyclic Tests with Triaxial Extension[J]. Soil Dynamics and Earthquake Engineering, 2007, 27(1): 42-48.
    157 Wichtmann T., Niemunis A., Triantafyllidis T.. Strain Accumulation in Sand due to Drained Cyclic Loading: on the Effect of Monotonic and Cyclic Preloading (Miner’s Rule) [J]. Soil Dynamics and Earthquake Engineering, 2010, 30(8): 736-745.
    158 Khogali W. E. I., Mohamed E. H. H.. Novel Approach for Characterization of Unbound Material[C]. 83rd Annual TRB Meeting of the Transportation Meeting Board, Washington, D. C., National Research Council, 2004: 210-223.
    159 Uzan J.. Permanent Deformation in Flexible Pavements[J]. Journal of Transportation Engineering, 2004, 130(1): 6-13.
    160 Puppala A. J., Saride S., Chomtid S.. Experimental and Modeling Studies of Permanent Strains of Subgrade Soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(10): 1379-1389.
    161 Karg C., Francois S., Haegeman W.. Elasto-Plastic Long-Term Behavior of Granular Soils: Experimental Investigation[J]. Soil Dynamics and Earthquake Engineering, 2009, 29 (1): 155-172.
    162周建,龚晓南.循环荷载作用下饱和软粘土应变软化研究[J].土木工程学报, 2000, 33(5): 75-79.
    163蒋军.循环荷载作用下粘土应变速率试验研究[J].岩土工程学报, 2002, 24(4): 528-531.
    164唐益群,黄雨,叶为民,等.地铁列车荷载作用下隧道周围土体的临界动应力比和动应变分析[J].岩石力学与工程学报, 2003, 22(9): 1566-1570.
    165王军,蔡袁强.循环荷载作用下饱和软黏土应变累积模型研究[J].岩石力学与工程学报, 2008, 27(2): 331-338.
    166陈颖平,黄博,陈云敏.循环荷载作用下结构性软黏土的变形和强度特性.岩土工程学报[J], 2005, 27(9): 1065-1071.
    167陈颖平,黄博,陈云敏.循环荷载作用下软黏土不排水累积变形特性[J].岩土工程学报, 2008, 30(5): 764-768.
    168高启聚,郭忠印,丛林,等.重复荷载作用下粘性路基土的永久变形预估[J].同济大学学报(自然科学版), 2008, 36(11): 1521-1525.
    169张勇,孔令伟,郭爱国,等.循环荷载下饱和软黏土的累积塑性应变试验研究[J].岩土力学, 2009, 30(6): 1542-1548.
    170刘添俊,莫海鸥.长期循环压缩荷载下饱和软黏土的应变速率特性[J].中国公路学报, 2009, 22(1): 17-22.
    171刘建坤,肖军华,杨献永,等.提速条件下粉土铁路路基动态稳定性研究[J].岩土力学, 2009, 30(2): 399-405.
    172肖军华,刘建坤.循环荷载下粉土路基土的变形性状研究[J].中国铁道科学, 2010, 31(1): 1-8.
    173吴敏哲,张柯,胡卫兵,等.地铁行车荷载作用下饱和黄土的累积塑性应变[J].西安建筑科技大学学报(自然科学版), 2011, 43(2): 316-322.
    174 Li D., Selig E. T.. Cumulative Plastic Deformation for Fine-Grained Subgrade Soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1996, 122(12): 1006-1013.
    175 Li D., Selig E. T.. Method for Railroad Track Foundation Design. II: Applications[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(4): 323-329.
    176 Chai J. C., Miura N.. Traffic-Load-Induced Permanent Deformation of Road on Soft Subsoil[J]. Journal of Geotechnical Engineering Division, 2002, 128(11): 907-916.
    177 Kim I. T.. Permanent Deformation Behavior of Airport Flexible Pavement Base and Subbase Courses[D]. Ph.D. Dissertation, University of Illinois at Urbana-Champaign, 2005: 177-199.
    178 El-Badawy S. M. A.. Development of a Mechanistic Constitutive Model for the Repeated Load Permanent Deformation Behavior of Subgrade Pavement Materials[D]. Ph.D. Dissertation, Arizona University, 2006: 240-305.
    179 Gr?be P. J., Clayton C. R. I.. Effects of Principal Stress Rotation on Permanent Deformation in Rail Track Foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(4): 555-565.
    180姚兆明,黄茂松.考虑主应力轴旋转角影响的饱和软黏土不排水循环累积变形[J].岩石力学与工程学报, 2011, 30(2): 391-399.
    181姚兆明,黄茂松,张宏博.长期循环荷载下粉细砂的累积变形特性[J].同济大学学报(自然科学版), 2011, 39(2): 204-208.
    182钟辉虹,黄茂松,吴世明,等.循环荷载作用下软黏土变形特性研究[J].岩土工程学报, 2002, 24(5): 629–632.
    183黄茂松,李进军,李兴照.饱和软粘土的不排水循环累积变形特性[J].岩土工程学报, 2006, 28(7): 891-895.
    184张宏博,黄茂松,宋修广.循环荷载作用下粉细砂累积变形的等效黏塑性本构模型[J].水利学报, 2009, 40(6): 651-658.
    185姜岩,雷华阳,郑刚,等.循环荷载下结构性软土变形预测[J].交通运输工程学报, 2011, 11(1): 13-18.
    186彭丽云,刘建坤.正融粉质粘土在循环荷载作用下的变形特性研究[J].岩土工程学报, 2010, 32(4): 567-572.
    187 Zhu Zhanyuan, Ling Xianzhang, Chen Shijun, et al. Experimental Investigation on the Train-Induced Subsidence Prediction Model of Beiluhe Permafrost Subgrade along the Qinghai-Tibet Railway in China[J]. Cold Regions Science and Technology, 2010, 62 (1): 67-75.
    188朱占元.青藏铁路列车行驶多年冻土场地路基振动反应与振陷预测[D].哈尔滨:哈尔滨工业大学博士学位论文, 2009: 21-58.
    189焦贵德,赵淑萍,马巍.冻融循环后高温冻结粉土在循环荷载下的动力特性试验研究[J].土木工程学报, 2010, 43(12): 107-113.
    190李进军,黄茂松,王育德.交通荷载作用下软土地基累积塑性变形分析[J].中国公路学报, 2006, 19(1): 1-5.
    191边学成,曾二贤,陈云敏.列车交通荷载作用下软土路基的长期沉降[J].岩土力学, 2008, 29(11): 2990-2996.
    192董亮,蔡德钩,叶阳升,等.列车循环荷载作用下高速铁路路基累积变形预测方法[J].土木工程学报, 2010, 43(6): 100-108.
    193交通部公路科学院. JTG E-40-2007,公路土工试验规程[S].北京:人民交通出版社, 2007: 21-23.
    194尚守平,刘方成,杜运兴,等.应变累积对黏土动剪切模量和阻尼比影响的试验研究[J].岩土力学, 2006, 27(5): 683-688.
    195 Ling Xianzhang, Zhu Zhanyuan, Zhang Feng, et al. Dynamic Elastic Modulus for Frozen Soil from the Embankment on Beiluhe Basin along the Qinghai-Tibet Railway[J]. Cold Regions Science and Technology, 2009, 57(1): 7-12.
    196 Zhu Zhanyuan, Ling Xianzhang, Wang Ziyu, et al. Experimental Investigation of the Dynamic Behavior of Frozen Clay from the Beiluhe Subgrade along the QTR[J]. Cold Regions Science and Technology, 2011, 69(1): 91-97.
    197 Hardin B. O., Drnevich V. P.. Shear Modulus and Damping in Soils Design Equations and Curves[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(7): 667-692.
    198 Chamberlain E., Groves C., Perham R. The Mechanical Behavior of Frozen Earth Materials under High Pressure Triaxial Test Conditions[J]. Geotechnique, 1972, 22: 469-483.
    199吕彭民,董忠红.车辆-沥青路面系统力学分析[M].北京:人民交通出版社, 2010: 135-143.
    200翟婉明.车辆-轨道耦合动力学[M].北京:科学出版社, 2007: 12-88.
    201曹志远.板壳振动理论[M].北京:中国铁道出版社, 1989: 32-69.
    202 GB/T 7031-2005,机械振动道路路面谱测量数据报告[S].北京:中国标准出版社, 2005: 12-17.
    203刘献栋,邓志党,高峰.公路路面不平顺的数值模拟方法研究[J].北京航空航天大学学报, 2003, 29(9): 843-846.
    204管迪华,范成建.用于不平路面车辆动力学仿真的轮胎模型综述[J].汽车工程, 2004, 26(2): 162-167.
    205 Guo Konghui. Tire Roller Contact Model for Simulation of Vehicle Vibration Input[J]. Society of Automotive Engineering (SAE 932008), 1993, 991: 45-51.
    206郭孔辉,刘青,丁国峰.载荷和胎压对轮胎包容特性的影响[J].农业工程学报, 1998, 14(3): 53-55.
    207郭孔辉,刘青,丁国峰.轮胎包容特性分析及其在汽车振动系统建模中的应用[J].汽车工程, 1999, 21(2): 65-80.
    208 Yang Shaopu, Li Shaohua, Liu Yongjie. Dynamics of Vehicle-Pavement Coupled System Based on a Revised Flexible Roller Contact Tire Model[J]. Science in China Series E: Technological Sciences, 2009, 52(3): 721-730.
    209解放2010产品型谱. http://truck.faw.com.cn/truck/2010xingpu/n1.jsp. 2010.
    210张锋,冯德成,凌贤长,等.春融期重载车辆-路面-路基垂向动力分析模型[J].中国公路学报, 2011, 24(4): 7-14.
    211张锋,冯德成,凌贤长.季节冻土区车-路耦合作用下路面动力响应数值模拟研究[J].中国科技论文在线学报, 2010, 5(10): 797-802.
    212 Niekerk A. A., Scheers J., Muraya P., et al. The Effect of Compaction on the Mechanical Behavior of Mix Granulate Base Course Materials and on Pavement Performace[C]. Unbound Aggregates in Road Construction, Dawson(ed.) Balkema, Rotterdam, 2000: 125-136.
    213 Paute J. L., Hornych P., Benaben J. P.. Repeated Load triaxial Testing of Granular Materials in the French Network of Laboratories des Ponts et Chaussees Flexible Pavement[C]. Flexible Pavements, Proc., Eur. Symp. Euroflex 1993, A. G. Correia, ed., Balkema, Rotterdam, Netherlands, 1996: 53-64.
    214沈珠江.基于有效固结应力理论的粘土土压力公式[J].岩土工程学报, 2000, 22 (3): 353-356.
    215徐春华,徐学燕,邱明国,等.不等幅值循环荷载下冻土残余应变研究及其CT分析[J].岩土力学, 2005, 25(4): 572-576.
    216 Werkmeister S., Dawson A. R., Wellner F. Permanent Deformation Behavior of Granular Materials and the Shakedown Concept[J]. Transportation Research Record 1757, 2001: 75-81.
    217 Lekrap F., Dawson A. Modeling Permanent Deformation Behavior of Unbound Granular Materials[J]. Construction and Building Materals, 1998, 12(1): 9-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700