基于非局部信息的保边缘图像去噪研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像处理技术是电子封装设备(如无线射频识别(RFID:Radio Frequency Identification)封装设备)开发的关键技术。实际应用中,受环境、机械振动等因素的影响,数字图像在获取和传输过程中会不可避免地被噪声污染,严重影响视觉定位与RFID芯片的精密操作Pick-and-Place,进而影响整台设备的运行性能。传统的图像去噪方法在去除噪声的同时难以保存图像的边缘等细节特征,为此,本文系统地研究了脉冲噪声、高斯噪声以及两者混合噪声的保边缘图像去噪算法,并应用到自主开发的RFID设备及视觉软件平台FAMT_MV中。主要研究内容和创新性成果包括:
     (1)提出了基于八方向搜索的自适应加权均值脉冲噪声(EDS-AWM:Eight Directional Searching-Adaptive Weighted Mean)滤除方法,解决了中值类滤波方法的缺陷。论文深入分析了中值类脉冲噪声滤波方法的缺陷:1)在滤波阶段,通常选用未受污染的像素计算中值时,未考虑像素的分布均匀性;2)滤波的结果完全决定于一个中值像素,只考虑了局部像素之间的大小关系,而没有考虑像素与像素之间的其它关联性以及非局部信息。为此,论文提出了基于八方向的搜索方法:以被处理像素为中心,沿着八个不同的方向进行搜索,成功解决了像素分布的均匀性问题,同时引入了非局部的思想;引入了用于去除高斯噪声的加权均值滤波的思想,提出了基于空间相似性和灰度相似性的自适应权重计算,实现了对脉冲噪声的滤波。由于EDS-AWM在滤波过程中使用了更多的像素及其它相关信息,提高了算法的保边缘能力。
     (2)提出了基于权重对称技术和滑动平均的快速非局部均值高斯噪声滤除算法(FNLM:Fast Nonlocal-means),解决了非局部均值(NLM:Nonlocal-means)的效率问题。原始NLM效率低下,无法得到实际应用,基于此,论文提出了权重对称技术和滑动平均的加速方法,提高了算法的效率。考虑到算法在加速的同时会引起质量下降,论文提出的方法结合了改进权重函数,提高了算法对异常图像块的处理能力,降低了异常图像块对去噪质量的影响;并从统计学的角度,研究了残余图像的性质,从理论上证明残余图像中含有一定的结构信息,分析其对提高图像去噪质量的可行性,提出了一种可行的应用方案,使得算法的质量得到了进一步的提升。在相似性图像块的选取问题上,提出了基于结构相似性(SSIM:Structural Similarity)的选择方法,提高了选取的稳定性及对噪声的鲁棒性。
     (3)提出了基于稳健异常度比率和非局部均值的混合噪声滤除方法(ROR-NLM: Robust Outlyingness Ratio-Nonlocal-means),解决了噪声检测和NLM用于脉冲噪声去除的问题。论文首次提出了用于描述像素异常程度的稳健异常度比率(ROR:Robust Outlyingness Ratio)统计量,并根据ROR将图像中的像素分成四个不同的异常度水平,在每一个水平中采用不同的噪声检测方式,构建了全新的噪声检测框架。在检测的过程中,为了提高检测方法的精度以及对噪声密度的稳健性,论文引入了由粗到精和迭代的检测策略。由于NLM原始是用于高斯噪声的去除,通过引入参考图像,论文成功解决了将NLM应用于脉冲噪声去除中的问题,首次实现了NLM对脉冲噪声的去除,并结合提出的噪声检测方法构建了新的混合噪声去除框架ROR-NLM。
     (4)在RFID封装设备对图像处理技术的需求上,数字制造装备与技术国家重点实验室开发了统一的视觉软件平台FAMT_MV。将以上研究成果融于FAMT_MV中,并对RFID设备中的图像进行了实验验证,为在同一平台下实现不同图像处理技术的应用提供了技术支撑。
The image processing technology is one of the critical technologies in the electronic packaging equipments such as Radio Frequency Identification(RFID) equipments. In the practical applications, digital images could be contaminated by noise during image acquisition and transmission due to the environment, mechanical vibration and some other factors, and severely impede vision location and the precision operation(Pick-and-Place) of the chips. Then, the performance of the RFID equipments is affected. Traditional image denoising methods did not well preserve the details when removing the noise, to this end, this paper systematically studies the denoising algorithms about impulse noise, Gaussian noise, and mixed noise, and these developed algorithms are applied to the independent development RFID equipment and the vision software platform FAMT_MV. The major research works and contributions of the thesis are as follows:
     (1)A novel algorithm for removing impulse noise, i.e. Eight Directional Searching-Adaptive Weighted Mean(EDS-AWM), is proposed, and it solves the drawbacks of the median-based algorithms. This thesis deeply analyzes the drawbacks of the median-based algorithms:1)in the filtering stage, the median-based algorithms did not consider the uniformity of the distribution of the pixels which used for calculating the median; 2)the filtering result was absolutely from the median pixel, and only considered the size relations of the local pixels, did not take into account other relativity and nonlocal information. On the basis, the thesis proposes a new searching method based on eight directions, that is, searching uncorrupted pixels in the eight different directions around the processed pixel, and introduces the nonlocal spirit; the spirit of the weighted mean filtering, which is used for Gaussian noise, is applied to remove impulse noise, and the weights can be adaptively calculated by using some weight function based on space similarity and gray similarity. For filtering with more pixels and other relative information, the EDS-AWM algorithm preserves more details.
     (2)A novel algorithm for removing Gaussian noise, i.e. Fast Nonlocal-means(FNLM), is proposed, and it solves the efficiency of the Nonlocal-means(NLM). The efficiency of the original Nonlocal-means(NLM) was very low, and it is difficult for using NLM in practical applications. In order to solve this problem, this thesis proposes a way to speed up NLM based on weight symmetry and moving average. Considering the quality may be reduced when speeding up, the presented method combines the modified weight function, and the ability of the algorithm to deal with the outlying image patches is improved. Furthermore, the thesis studies the properties of the residual image from the statistics perspective, and proves that the residual image contains some structural information in theory. And then propose a feasible framework about using the residual image for improving the denoised quality. For selecting the similar image patches, the thesis proposes a new method based on SSIM (Structural Similarity), and the stability and the robustness to the noise of the method are improved.
     (3)A novel algorithm for removing mixed noise based on Robust Outlyingness Ratio-Nonlocal-means(ROR-NLM) is proposed, and it solves the impulse noise detection and the problem of using NLM for removing impulse noise. The thesis proposes a new statistics called ROR for measuring the outlyingness of each pixel in the image at the first time, and the pixels are divided into four different outlyingness levels based on the ROR. Then the noise is detected in each level with different rules. In order to improve the detection precision and the robustness to the noise density, the coarse to fine strategy and the iterative strategy are used. Meanwhile, the NLM is successfully extended to remove the impulse noise by introducing a reference image for the first time, and a new framework for removing mixed noise is proposed by combining the new detection method.
     (4)According to the needs of the image processing technology in the RFID equipment, the State Key Laboratory of Digital Manufacturing Equipment and Technology developed the universal image processing software platform FAMT_MV. The above researches are integrated in the FAMT_MV, and the algorithms are tested by using the practical images from the RFID equipment. The FAMT_MV provides support for achieving different image processing operations in the uniform platform.
引文
[1]吕洁.射频识别技术RFID及其应用(上).智能建筑与城市信息,2004,(11):72-76.
    [2]吕洁.射频识别技术RFID及其应用(下).智能建筑与城市信息,2004,(12):75-79.
    [3]刘辉RFID标签封装设备中机器视觉系统设计与实现:[硕士论文].武汉:华中科技大学,2006.
    [4]邓泽峰.图像复原技术研究及应用:[博士论文].武汉:华中科技大学,2007.
    [5]Buades A, Coll B, Morel J M. A review of image denoising algorithms, with a new one. SIAM Journal on Multiscale Modeling and Simulation,2005,4(2):490-530.
    [6]Gonzalez R C, Woods R E. Digital image processing. Englewood Cliffs, NJ: Prentice-Hall,2002.
    [7]Pitas I, Venetsanopoulos A N. Order statistics in digital image processing, in: Proceedings of the IEEE, New York,1992:1893~1921.
    [8]Astola J, Kuosmanen P. Fundamentals of nonlinear digital filtering. New York: CRC,1997.
    [9]Brownrigg D R K. The weighted median filter. Communications of the Acm,1984, 27(8):807~818.
    [10]Nieminen A, Heinonen P, Neuvo Y. A new class of detail-preserving filters for image processing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987,9(1):74~90.
    [11]Ko S J, Lee Y H. Center weighted median filters and their applications to image enhancement. IEEE Transactions on Circuits and Systems,1991,38(9):984~993.
    [12]Sun T, Neuvo Y. Detail-preserving median based filters in image processing. Pattern Recognition Letters,1994,15(4):341~347.
    [13]Chen T, Ma K. K, Chen L H. Tri-state median filter for image denoising. IEEE Transactions on Image Processing,1999,8(12):1834~1838.
    [14]Chen T, Wu H R. Space variant median filters for the restoration of impulse noise corrupted images. IEEE Transactions on Circuits and Systems-Ⅱ:Analog and Digital Signal Processing,2001,48(8):784~789.
    [15]Wang Z, Zhang D. Progressive switching median filter for the removal of impulse noise from highly corrupted images. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing,1999,46(1):78~80.
    [16]Zhang S Q, Karim M A. A new impulse detector for switching median filters. IEEE Signal Processing Letters,2002,9(11):360~363.
    [17]Crnojevic V, Senk V, Trpovski Z. Advanced impulse Detection Based on pixel-wise MAD. IEEE Signal Processing Letters,2004,11(7):589~592.
    [18]Luo W B. A new efficient impulse detection algorithm for the removal of impulse noise. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences,2005, E88-A(10):2579~2586.
    [19]Dong Y Q, Xu S F. A new directional weighted median filter for removal of random-valued impulse noise. IEEE Signal Processing Letters,2007,14(3): 193~196.
    [20]Dey D, Laha S, Chowdhury S, et al. A denoising approach for salt and pepper noise corrupted image at higher noise density. Communications in Computer and Information Science,2011,205:173~184.
    [21]Mandal J K, Mukhopadhyay S. GA based denoising of impulses (GADI). Communications in Computer and Information Science,2011,245:212~220.
    [22]Awad A S. Standard deviation for obtaining the optimal direction in the removal of impulse noise. IEEE Signal Processing Letters,2011,18(7):407~410.
    [23]李双全,张宇,孙广明等.消除椒盐噪声的改进滤波算法.计算机工程,2008,34(10):171-173.
    [24]张丽新.数字图像高密度脉冲噪声的中值滤波算法研究:[硕士论文].上海:上海交通大学,2009.
    [25]郭红伟.数字图像中椒盐噪声的滤波算法研究:[硕士论文].昆明:云南大学,2010.
    [26]Chen T, Wu H R. Adaptive impulse detection using center-weighted median filters. IEEE Signal Processing Letters,2001,8(1):1-3.
    [27]Akkoul S, Ledee R, Leconge R, et al. A new adaptive switching median Filter. IEEE Signal Processing Letters,2010,17(6):587~590.
    [28]Pok G, Liu J C, Nair A S. Selective removal of impulse noise based on homogeneity level information. IEEE Transactions on Image Processing,2003, 12(1):85~92.
    [29]Ng P E, Ma K K. A switching median filter with boundary discriminative noise detection for extremely corrupted images. IEEE Transactions on Image Processing, 2006,15(6):1506~1516.
    [30]Xu H X, Zhu G X, Peng H Y, et al. Adaptive fuzzy switching filter for images corrupted by impulse noise. Pattern Recognition Letters,2004,25(15):1657~1663.
    [31]Russo F, Ramponi G. A fuzzy operator for the enhancement of blurred and noisy images. IEEE Transactions on Image Processing,1995,4(8):1169~1174.
    [32]Russo F, Ramponi G. A fuzzy filter for images corrupted by impulse noise. IEEE Signal Processing Letters,1996,3(6):168~170.
    [33]Russo F. FIRE operators for image processing. Fuzzy Sets and Systems,1999, 103(2):265~275.
    [34]Lee C, Kuo Y, Yu P. Weighted fuzzy mean filters for image processing. Fuzzy Sets and Systems,1997,89(2):157~180.
    [35]Wang H J, Chiu C H. An adaptive fuzzy filter for restoring highly corrupted images by histogram estimation. in:Proceedings of the National Science Council Part A:Physical Science and Engineering, Taipei, Taiwan,1999.
    [36]Wang J H, Liu W J, Lin L D. Histogram-based fuzzy filter for image restoration. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics,2002, 32(2):230~238.
    [37]Schulte S, De Witte V, Nachtegael M, et al. Fuzzy random impulse noise reduction method. Fuzzy Sets and Systems,2007,158(3):270~283.
    [38]Eng H L, Ma K K. Noise adaptive soft-switching median filter. IEEE Transactions on Image Processing,2001,10(2):242~251.
    [39]Melange T, Nachtegael M, Schulte S, et al. A fuzzy filter for the removal of random impulse noise in image sequences. Image and Vision Computing,2011, 29(6):407~419.
    [40]Nikolova M. A variational approach to remove outliers and impulse noise. Journal of Mathematical Imaging and vision,2004,20(1-2):99~120.
    [41]Chan R H, Ho C W, Nikolova M. Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Transactions on Image Processing,2005,14(10):1479~1485.
    [42]Chan R H, Hu C, Nikolova M. An iterative procedure for removing random-valued impulse noise. IEEE Signal Processing Letters,2004,11(12):921~924.
    [43]Hwang H, Haddad R A. Adaptive median filters:new algorithms and results. IEEE Transactions on Image Processing,1995,4(4):499~502.
    [44]Dong Y Q, Chan R H, Xu S F. A detection statistic for random-valued impulse noise. IEEE Transactions on Image Processing,2007,16(4):1112~1120.
    [45]Cmojevi, Vladimir, Petrovi, et al. Impulse Noise Filtering Using Robust Pixel-Wise S-Estimate of Variance. EURASIP Journal on Advances in Signal Processing,2010,2010.
    [46]Wu J, Tang C. PDE-based random-valued impulse noise removal based on new class of controlling functions. IEEE Transactions on Image Processing,2011,20(9): 2428~2438.
    [47]Tomita F, Tsuji S. Extraction of multiple regions by smoothing in selected neighborhoods. IEEE transactions On systems Man And Cybernetics Part A-Systems And Humans,1977,7(3):107~109.
    [48]Nagao M, Matsuyama T. Edge preserving smoothing. Computer Graphics and Image Processing,1979,9(4):394~407.
    [49]胡浩,王明照,杨杰.自适应模糊加权均值滤波器.系统工程与电子技术,2002,24(2):15-17.
    [50]Young S C, Krishnapuram R. A robust approach to image enhancement based on fuzzy logic. IEEE Transactions on Image Processing,1997,6(6):808~825.
    [51]余庆军,谢胜利.一个基于相邻像素兼容度的模糊加权平均滤波器.通信学报,2003,24(12):1-8.
    [52]Tomasi C, Manduchi R. Bilateral filtering for gray and color images. in: Proceeding of the 1998 IEEE International Conference on Computer Vision, Bombay, India,1998:839~846.
    [53]Mallat S. A wavelet tour of signal processing. New York:Academic Press,1998.
    [54]Donoho D L. De-noising by soft-thresholding. IEEE Transactions on Information Theory,1995,41(3):613~627.
    [55]Kivanc Mihcak M, Kozintsev I, Ramchandran K, et al. Low-complexity image denoising based on statistical modeling of wavelet coefficients. IEEE Signal Processing Letters,1999,6(12):300~303.
    [56]Zhang L, Bao P, Wu X L. Hybrid inter-and intra-wavelet scale image restoration. Pattern Recognition,2003,36(8):1737~1746.
    [57]Hou Z J. Adaptive singular value decomposition in wavelet domain for image denoising. Pattern Recognition,2003,36(8):1747~1763.
    [58]Zhang L, Bao P, Wu X. Multiscale LMMSE-based image denoising with optimal wavelet selection. IEEE Transactions on Circuits and Systems for Video Technology,2005,15(4):469~481.
    [59]Chang S G, Yu B, Vetterli M. Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Transactions on Image Processing,2000,9(9): 1522~1531.
    [60]Pizurica A, Philips W, Lemahieu I, et al. A joint inter-and intrascale statistical model for Bayesian wavelet based image denoising. IEEE Transactions on Image Processing,2002,11(5):545~557.
    [61]Portilla J, Strela V, Wainwright M J, et al. Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Transactions on Image Processing,2003, 12(11):1338~1351.
    [62]Pizurica A, Philips W. Estimating the probability of the presence of a signal of interest in multiresolution single-and multiband image denoising. IEEE Transactions on Image Processing,2006,15(3):654~665.
    [63]Wang X T, Shi G M, Niu Y, et al. Robust adaptive directional lifting wavelet transform for image denoising. IET Image Processing,2011,5(3):249~260.
    [64]Rabbani H, Gazor S. Image denoising employing local mixture models in sparse domains. IET Image Processing,2010,4(5):413~428.
    [65]Wang X T, Shi G M, Niu Y, et al. Robust adaptive directional lifting wavelet transform for image denoising. IET Image Processing,2011,5(3):249~260.
    [66]Chen G Y, Kegl B. Image denoising with complex ridgelets. Pattern Recognition, 2007,40(2):578~585.
    [67]Starck J L, Candes E J, Donoho D L. The curvelet transform for image denoising. IEEE Transactions on Image Processing,2002,11(6):670~684.
    [68]Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on Image Processing, 2007,16(8):2080~2095.
    [69]Muresan D D, Parks T W. Adaptive principal components and image denoising. in: International Conference on Image Processing, Barcelona,2003:101~104.
    [70]Elad M, Aharon M. Image Denoising Via Sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing,2006,15(12): 3736~3745.
    [71]Aharon M, Elad M, Bruckstein A. K-SVD:An Algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing,2006,54(11):4311~4322.
    [72]Foi A, Katkovnik V, Egiazarian K. Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images. IEEE Transactions on Image Processing,2007,16(5):1395~1411.
    [73]Lyu S, Simoncelli E P. Modeling multiscale subbands of photographic images with fields of gaussian scale mixtures. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(4):693~706.
    [74]Eslami R, Radha H. Optimal linear combination of denoising schemes for efficient removal of image artifacts, in:IEEE International Conference on Multimedia and Expo, Toronto,2006:465-468.
    [75]Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D:Nonlinear Phenomena,1992,60(4):259~268.
    [76]Gilboa G, Sochen N, Zeevi Y Y. Forward-and-backward diffusion processes for adaptive image enhancement and denoising. IEEE Transactions on Image Processing,2002,11(7):689~703.
    [77]Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(7): 629~639.
    [78]You Y L, Kaveh M. Fourth-order partial differential equations for noise removal. IEEE Transactions on Image Processing,2000,9(10):1723~1730.
    [79]Bae E, Shi J, Tai X C. Graph cuts for curvature based image denoising. IEEE Transactions on Image Processing,2011,20(5):1199~1210.
    [80]Guo Z C, Sun J B, Zhang D Z, et al. Adaptive Perona-Malik model based on the variable exponent for image denoising. IEEE Transactions on Image Processing, 2011,21(3):958~967.
    [81]Katkovnik V, Foi A, Egiazarian K, et al. From local Kernel to nonlocal multiple-model image denoising. International Journal of Computer Vision,2010, 86(1):1-32.
    [82]Efros A A, Leung T K. Texture synthesis by non-parametric sampling. in: International Conference on Computer Vision, Corfu, Greece,1999:1258.
    [83]Yaroslavsky L P. Digital picture processing:an introduction. New York: Springer-Verlag,1985.
    [84]Barash D. Fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(6):844~847.
    [85]Coifman R R, Donoho D L. Translation-invariant de-noising. in:Antoniadis A, Oppenheim G. Wavelets and Statistics. Springer-Verlag.1995.
    [86]Awate S P, Whitaker R T. Higher-order image statistics for unsupervised, information-theoretic, adaptive, image filtering. in:IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego,2005:44~51.
    [87]Singer A, Shkolnisky Y, Nadler B. Diffusion interpretation of nonlocal neighborhood filters for signal denoising. SIAM Journal on Imaging Science,2009, 2(1):118~139.
    [88]Kindermann S, Osher S, Jones P W. Deblurring and denoising of images by nonlocal functionals. SIAM Journal on Multiscale Modeling and Simulation,2005, 4(4):1091~1115.
    [89]Gilboa G, Osher S. Nonlocal linear image regularization and supervised segmentation. SIAM Multiscale Modeling and Simulation,2007,6(2):595~630.
    [90]Kervrann C, Boulanger J, Coupe P. Bayesian non-local means filter, image redundancy and adaptive dictionaries for noise removal. Berlin:Springer-Verlag, 2007.
    [91]Chatterjee P, Milanfar P. A generalization of non-local means via kernel regression. in:Proceedings of SPIE Conference on Computational Imaging, San Jose,2008: various pagmgs.
    [92]Kervrann C, Boulanger J. Optimal spatial sdaptation for patch-based image denoising. IEEE Transactions on Image Processing,2006,15(10):2866~2878.
    [93]Zimmer S, Didas S, Weickert J. A rotationally invariant block matching strategy improving image denoising with non-local means. in:Proceedings of International Workshop on Local and Nonlocal Approximation in Image Processing, Lausanne, Switzerland,2008.
    [94]Van de Ville D, Kocher M. Nonlocal means with dimensionality reduction and SURE-based parameter selection. IEEE Transactions on Image Processing,2011, 20(9):2683~2690.
    [95]Deledalle C A, Duval V, Salmon J. Anisotropic Non-Local Means with Spatially Adaptive Patch Shapes. In:SSVM,2011.
    [96]Dauwe A, Goossens B, Luong Q H, et al. A fast non-local image denoising algorithm. in:Proceedings of SPIE Electronic Imaging, San Jose,2008:various pagings.
    [97]Tasdizen T. Principal neighborhood dictionaries for nonlocal means image denoising. IEEE Transactions on Image Processing,2009,18(12):2649~2660.
    [98]Wang J, Guo Y, Ying Y, et al. Fast non-local means for image de-noising. in:IEEE International Coference on Image Processing, Atlanta, GA,2006:1.
    [99]Mahmoudi M, Sapiro G. Fast image and video denoising via nonlocal means of similar neighborhoods. IEEE Signal Processing Letters,2005,12(12):839~842.
    [100]Coupe P, Yger P, Barillot C. Fast non local means denoising for 3D MR images. in: Larsen R, Nielsen M, Sporring J. Proceedings International Conference on Medical Image Computing and Computer-Assisted Intervention.2006.
    [101]Liu Y L, Wang J, Chen X, et al. A robust and fast non-local means algorithm for image denoising. Journal of Computer Science and Technology,2008,23(2): 270~279.
    [102]Brox T, Cremers D. Iterated nonlocal means for texture restoration. Springer-Verlag.2007.
    [103]Van De Ville D, Kocher M. SURE-based non-local means. IEEE Signal Processing Letters,2009,16(11):973~976.
    [104]Dowson N, Salvado O. Hashed nonlocal means for rapid image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(3):485~499.
    [105]Coup E P, Yger P, Prima S, et al. An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Transactions on Medical Imaging,2008,27(4):425~441.
    [106]Coupe P, Hellier P, Kervrann C, et al. Bayesian non local means-based speckle filtering. in:5th IEEE International Symposium on Biomedical Imaging:From Nano to Macro, Paris, France,2008.
    [107]王志明,张丽.自适应的快速非局部图像去噪算法.中国图象图形学报,2009,14(4):669-675.
    [108]杨学志,沈晶,范良欢.基于非局部均值滤波的结构保持相干斑噪声抑制方法.中国图象图形学报,2009,14(12):2443-2450.
    [109]Abreu E, Lightstone M, Mitra S K, et al. A new efficient approach for the removal of impulse noise from highly corrupted images. IEEE Transactions on Image Processing,1996,5(6):1012~1025.
    [110]谷亚明,刘泊,吴丽莹.混有高斯和脉冲噪声图像的一种新滤波方法.哈尔滨理工大学学报,2000,5(5):25-28.
    [111]蔡靖,杨晋生,丁润涛.分类均值-加权中值混合滤波器.天津大学学报,1999,32(5):551-554.
    [112]张宇,王希勤,彭应宁.自适应中心加权的改进均值滤波算法.清华大学学报(自然科学版),1999,39(9):76-78.
    [113]姜春苗.图像中高斯—脉冲复合噪声的抑制算法研究:[硕士论文].西安:西安电子科技大学,2009.
    [114]刘莉,谭吉春.分数域图像混合噪声盲复原方法.国防科技大学学报,2011,33(3):52-55.
    [115]万千,薛明.基于噪声分离和小波阈值自适应图像去噪算法.电子科技,2011,24(5):94-97.
    [116]Garnett R, Huegerich T, Chui C, ct al. A universal noise removal algorithm with an impulse detector. IEEE Transactions on Image Processing,2005,14(11): 1747~1754.
    [117]Chih-Hsing L, Jia-Shiuan T, Ching-Te C. Switching bilateral filter with a texture/noise detector for universal noise removal. IEEE Transactions on Image Processing,2010,19(9):2307~2320.
    [118]Lamichhane B P. Finite element techniques for removing the mixture of gaussian and impulsive noise. IEEE Transactions on Signal Processing,2009,57(7): 2538~2547.
    [119]Ji L P, Yi Z. A mixed noise image filtering method using weighted-linking PCNNs. Neurocomputing,2008,71(13-15):2986~3000.
    [120]Lopez-Rubio E. Restoration of images corrupted by Gaussian and uniform impulsive noise. Pattern Recognition,2010,43(5):1835~1846.
    [121]Xiao Y, Zeng T, Yu J, et al. Restoration of images corrupted by mixed Gaussian-impulse noise via 11-10 minimization. Pattern Recognition,2011,44(8): 1708~1720.
    [122]朊秋琦.数字图像处理.北京:电子工业出版社,2008.
    [123]Orchard J, Ebrahimi M, Wong A. Efficient nonlocal-means denoising using the SVD. in:15th IEEE International Conference on Image Processing, San Diego, 2008:1732~1735.
    [124]Pappas T N, Safranek R J. Perceptual criteria for image quality evaluation. in: Bovik A. Handbook of Image and Video Processing. Academic Press.2000.
    [125]王香菊.基于中值滤波和小波变换的图像去噪方法研究:[硕士论文].西安:西安科技大学,2008.
    [126]Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment:from error visibility to structural similarity. IEEE Transactions on Image Processing,2004, 13(4):600~612.
    [127]张延华,姚林泉,郭伟.数字信号处理基础与应用.第一版.北京:机械工业出版社,2005.
    [128]Smith S M, Brady J M. SUSAN-A new approach to low level image processing. International Journal of Computer Vision,1997,23(1):45~78.
    [129]Fodor I K, Kamath C. Denoising through wavelet shrinkage:an empirical study. Journal of Electronic Imaging,2003,12(1):151~160.
    [130]Orchard J, Ebrahimi M, Wong A. Faster nonlocal-means image denoising using the FFT. IEEE Transactions On Image Processing,2007.
    [131]Peter D J, Govindan V K, Mathew A T. Nonlocal-means image denoising technique using robust M-estimator. Journal of Computer Science and Technology, 2010,25(3):623~631.
    [132]Basu A, Paliwal K K. Robust M-estimates and generalized M-estimates for autoregressive parameter estimation. in:Fourth IEEE Region 10th International Conference TENCON'89, Bombay, India,1989:355~358.
    [133]Black M J, Sapiro G, Marimont D H, et al. Robust anisotropic diffusion. IEEE Transactions on Image Processing,1998,7(3):421~432.
    [134]Deledalle C A, Denis L, Tupin F. Iterative weighted maximum likelihood denoising with probabilistic patch-based weights. IEEE Transactions on Image Processing,2009,18(12):2661~2672.
    [135]Maronna R, Martin D, Yohai V. Robust statistics:theory and methods. New York: John Wiley,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700