超精密运动平台中气浮支承振动特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超精密运动平台有别于传统的精密运动机构,后者多由接触式运动副和刚性结构所组成,摩擦、发热及振动传递等因素制约了这类机构结构的动力学特性,目前这类机构的运动精度只能达到微米级,无法满足诸如IC制造装备等运动精度达纳米级的需求。因此,以气浮支承取代机械接触式的运动副是超精密运动平台的主要结构特征,尽管与传统运动机构相比,超精密运动平台的动力学特性有显著改善,但气浮支承内部气流运动引起的振动仍不容忽视,是制约气浮运动平台定位精度提升的关键因素。针对这一问题,本文采用数值计算和物理实验相结合的方法,系统地研究了超精密运动平台中气浮支承的振动特性,内容和成果包括:
     1)利用气体润滑理论,建立了气浮气膜的三维力学模型,数值仿真和物理实验结果表明,建模精度较现有的二维模型有较大的提高;
     2)采用数值仿真方法,分析了气浮支承中压力腔形状、结构尺寸等结构因素和供气压力、气膜间隙等工艺参数对气旋的影响规律,并通过物理实验方法研究了不同条件下系统微振动的特性,阐明了气旋是引起系统微振动的主要因素;
     3)建立了气浮支承气锤振动的数学模型,采用物理实验方法,研究了压力腔形状与气浮支承气锤振动的内在关系,揭示了压力腔形状对气锤的影响规律,提出了气浮支承压力腔设计原则,为气浮支承系统的结构设计提供了理论指导;
     4)采用仿真和实验相结合的方法,分析了压力腔形状、节流器尺寸和工艺参数对气浮支承系统振动传递特性的影响规律,提出了一种气浮支承振动传递特性的实时调节方法。
     本文的研究揭示了气浮支承振动的产生机理,阐明了不同气浮支承结构对气旋和气锤的影响规律,提出了气浮支承系统动力学特性分析方法,为超精密气浮运动平台的设计和制造提供了理论依据。
Ultra-precision motion stages, the core part of a wide range of precision manufacturing equipments, differentiate themselves from traditional motion mechanisms characterized of contacted motion pairs and rigid structures. It is well recognized that the limit precision of traditional motion stages can only achieve micron-level, far beyond the needs of nanometer level of motion precision required in some nano-manufacturing devices such as semiconductor lithography, due to serious issues such as friction, heat generation and vibration transmission phenomena. Therefore, in modern ultra-precision motion stages, aerostatic bearings are widely applied in place of traditional contact moving pairs, as a result, significantly improving dynamic performance of ultra-precision motion stages, in comparison with that of traditional motion stages. Nevertheless, vibrations induced by gas flowing in aerostatic bearing can still not be ignored, and it has become one of the major factors, which limit further improvement of motion precision of the stages. In this dissertation, aiming at this problem, the combinational methods of simulations and experiments are conducted to further investigate the vibration characteristics of aerostatic bearing. The content and achievement of this dissertation are as follows.
     1) A 3D mechanical model is built by applying the gas lubrication theory. The simulation and experimental results indicate that the accuracy of the proposed model has greatly been improved, comparing to that of the existing 2D model.
     2) The patterns of influence of the structure factors, such as shape and dimension of chambers, and the process parameters, such as gas supply pressure and gas film clearance, on the gas vortex in aerostatic bearing are analyzed by applying numerical simulation methods. The micro-vibration characteristics under different conditions are studied through a serial physical experiment. It is clarified that the gas vortex existing in aerostatic bearing is the major factor of the phenomenon of system micro-vibration.
     3) The intrinsic relationship between pressure chamber shapes of aerostatic bearings and pneumatic hammer phenomena has been studied based on physical experiments. The patterns of the influence of chamber shapes on the pneumatic hammer phenomena are revealed, and the design rules of chamber shapes in aerostatic bearings are established, which provide a theoretical guidance for the design of aerostatic bearings.
     4) Based on a combination of numerical analyses and physical experiments, the patterns of the influence of chamber shapes, orifice dimensions and condition parameters on the vibration transmission characteristics of aerostatic bearings are studied, and a method for
     real-time regulation of dynamical performance of aerostatic bearings is proposed.
     In general, in this dissertation, the vibration mechanisms of aerostatic bearings are revealed, and the patterns of the influences of bearing structures and operating conditions on the phenomena of the gas vortex and the pneumatic hammer are clarified, and the dynamics analysis methods of aerostatic bearings are proposed. The research results are believed to provide a theoretical basis for the design and manufacturing of ultra-precision motion stages.
引文
[1]杨叔子,吴波.先进制造技术及其发展趋势.机械工程学报,2003,36(10):73-78.
    [2]杨叔子,吴波,李斌.再论先进制造技术及其发展趋势.机械工程学报,2006,42(1):1-5.
    [3]Mao J H, Hiroyuki T. Precision positioning of a DC-motor-driven aerostatic slide system.PrecisionEngi-neering,2003,27(1):32-41.
    [4]陈学东,何学明,叶燚玺著.超精密气浮定位工作台技术—动力学与控制导论.华中科技大学出版社.2008.
    [5]Shinozaki Hiroyuki, Komatsubara Ryuichi etc. Development of step-and-scan-type XY-stage system for electron beam systems. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers,2007,46(9B):6178-6182.
    [6]Powell JW. Design of aerostatic bearing. Machinery Publishing Co. Ltd; 1970.
    [7]Anton V B, Ron A.J. van Ostayen. The design of partially grooved externally pressurized bearings. Tribology International,2006,39:833-838.
    [8]张鸣,朱煜,段广洪.超精密气浮工件台的微振动及其抑制.制造技术与机床,2005,(11):47-49.
    [9]Chen Xuedong, He Xueming. The effect of the recess shape on performance analysis of the gas-lubricated bearing in optical lithography. Tribology International,2006, 39(11):1336-1341.
    [10]Aoyama T, Kakinuma Y, Kobayashi Y. Numerical and experimental analysis for the small vibration of aerostatic guideways. CIRP Annals-Manufacturing Technology,2006, 55(1):419-422.
    [11]王云飞著.气体润滑理论与气体轴承设计.北京.机械工业出版社,1999.
    [12]Shinozaki Hiroyuki, Komatsubara Ryuichi, Nakamura Tsuyoshi, et al. Development of step-and-scan-type XY-stage system for electron beam systems. Japanese Journal of Applied Physics, Part 1:Regular Papers and Short Notes and Review Papers,2007,46(9 B):6178-6182.
    [13]王立鼎,褚金奎,刘冲等.中国微纳制造研究进展.机械工程学报,2008,44(11):2-12.
    [14]Kim Won-jong, Verma Shobhit, Shakir Huzefa. Design and precision construction of novel magnetic-levitation-based multi-axis nanoscale positioning systems. Precision Engineering,2007,31(4):337-350.
    [15]翁寿松.65nm/45nm工艺及其相关技术.微纳电子技术,2004,(7):10-14.
    [16]刘暾.静压气体润滑.哈尔滨,哈尔滨工业大学出版社,1990.
    [17]杜金名,卢泽生,孙雅洲.空气静压轴承各种节流形式的比较.航空精密制造技术,2003,39(6):4-8.
    [18]Liu L X. Ttheory for hydrostatic gas journal bearings for micro-electro-mechanical systems. Ph.D. thesis, Department of Mechanical Engineering,2005, MIT.
    [19]Schenk Christoph, Buschmann Stefan, Risse Stefan et al. Comparison between flat aerostatic gas-bearing pads with orifice and porous feedings at high-vacuum conditions. Precision Engineering,2008,32(4):319-328.
    [20]Kwan Y, Corbett J. Porous aerostatic bearings-an updated review. Wear,1998,222:69-73
    [21]Belforte G, Raparelli T, Viktorov V, et al. Feeding system of aerostatic bearings with porous media. Proceedings of 8th Biennial ASME Conference on Engineering Systems Design and Analysis(ESDA2006),2006.
    [22]Mekid Samir. High precision linear slide Part I:design and construction. International Journal of Machine Tools & Manufacture,2000,40(3):1039-1050.
    [23]朱煜,尹文生,段广洪.光刻机超精密工件台研究.电子工业专用设备,2004,109(2):25-27.
    [24]董吉洪,田兴志,李志来等.100nm步进扫描投影光刻机工件台、掩模台的发展.光机电信息,2004,5:20-24.
    [25]杨一博,尹文生,朱煜等.粗精动超精密运动平台系统建模与分析研究.中国机械工程,2008,19(23):2773-2776.
    [26]International technology roadmap for semiconductors 2008 update overview. ITRS.2008.
    [27]Jiao H, Jia X, Zeng Z. Technique for manufacturability optimization design aiming at the yield of IC's. Research and Progress of Solid State Electronics.2005,25(2):271-275.
    [28]Richard M, Xing C, Lin J et al. Environmental challenges to China's semiconductor manufacturing industry-AMC effects to semiconductor IC fabrication in China. Electrochemical Society Inc.,2008.
    [29]马万里,赵建明,吴纬国.IC制造工艺与光刻对准特性关系的研究.半导体技术,2005,30(6):14-17.
    [30]李辉,张建民.先进IC制造技术在超精密加工中的应用与发展.新技术新工艺,2003,(11):4-6.
    [31]Huo D and Cheng K. A dynamics-driven approach to precision machines design for micro-manufacturing and its implementation perspectives. Proceedings of the IMechE, Part B:Journal of Engineering Manufacture,2008,222(B1):1-13.
    [32]Hoyle R. Developments in micro and nano engineering and manufacturing. Plastics, Rubber and Composites.2008,37(2-4):50-56.
    [33]李圣怡,戴一帆.超精密加工机床新进展.机械工程学报,2003,39(8):7-14.
    [34]朱煜,尹文生,段广洪.光刻机超精密工件台研究.电子工业专用设备,2004,109(2):25-27.
    [35]张晓峰,林彬.大行程纳米级分辨率超精密工作台的发展方向.南京航空航天大学学报,2005,37(11):179-183.
    [36]Shinno H., Hashizume H., Yoshioka H et al. X-Y-q nano-positioning table system for a mother machine. Annals of the CIRP,2004,53(1):337-340.
    [37]Shinno H, Yoshioka H, Taniguchi K. A newly developed linear motor-driven aerostatic X-Y planar motion table system for nano-machining. Annals of the CIRP,2007,56(1): 369-372.
    [38]Verma Shobhit, Kim Won-Jong, Shakir Huzefa. Multi-axis maglev nanopositioner for precision manufacturing and manipulation applications. IEEE Transactions on Industry Applications,2005,41(5):1159-1167.
    [39]Zhang Wenming, Meng Guang, Zhou Jianbin et al. Slip model for the ultra-thin gas-lubricated slider bearings of an electrostatic micromotor in MEMS. Microsystem Technologies,2009,15(6):953-961.
    [40]Kneer Johannes, Eastwick C Carol, Muller Armin, et al. Experimental investigations of film flows around obstacles. Proceedings of the ASME Turbo Expo:Power for Land, Sea, and Air,2008,4(B):1461-1470.
    [41]张强.流动诱导空腔振荡频率方程的改进.振动工程学报,2004,17(1):53-57.
    [42]黄典贵.完全气体一维无粘可压振荡流动的一个解析解.热能动力工程,1999,83(14):403-405.
    [43]Santos Ilmar F, Watanabe Flavio Y. Lateral dynamics and stability analysis of a gas compressor supported by hybrid and active lubricated multirecess journal bearing. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2006, 28(4):485-495.
    [44]Pal D K, Majumdar B C. Analysis of stiffness and damping characteristics of externally pressurized gas-lubricated porous bearings under conical mode of vibration. Wear, 118(2):199-216.
    [45]Potapov V D. Stability of elastic and viscoelastic plates in a gas flow taking into account shear strains. Journal of Sound and Vibration,2004,276(3-5):615-26.
    [46]He Xueming, Chen Xuedong. The dynamic analysis of the gas lubricated stage in optical lithography. International Journal of Advanced Manufacturing Technology,2007,32(9-10):978-984.
    [47]Grau G., Iordanoff, I.,Said B. Bou et al. An original definition of the profile of compliant foil journal gas bearings:Static and dynamic analysis.Tribology Transactions,2004, 47(2):248-256.
    [48]Onat Ekinci T., Mayer J.R.R., Cloutier, Guy M. Investigation of accuracy of aerostatic guideways. International Journal of Machine Tools and Manufacture,2009,49(6):478-487.
    [49]Wang Nenzi, Chang Chinyuan. An application of Newton's method to the lubrication analysis of air-lubricated bearings.1999,42(2):419-424.
    [50]包钢,樊蕾,李军.圆盘多供气孔气体静压止推轴承的有限元分析.机床与液压,2003,(2):145-147.
    [51]Harrison W J. The hydrodynamical theory of lubrication with specialreference to air as a lubricant. Transactions of Cambridge Philosophical Society,1913,22:39—54.
    [52]李树森,张鹏顺,曲全利.气体润滑轴承技术的应用及发展趋势.润滑与密封,1999,(2):9—10.
    [53]郭良斌.静压气体轴承静态特性的理论研究综述.武汉科技大学学报(自然科学版),2006,129(1):37-40.
    [54]JohnH Laub. Hydrostatic gas bearings. Journal of Basic Engineering,1960,82(2):276— 286.
    [55]H Morf. A theoretical investigation of pressure depression in externally pressurized gas-lubricated circular thrust bearings. Journal of Basic Engi-neering,1961,83(2):201—208.
    [56]M M Redd, T Y Chu. Finite element solution of the steady-state compressible lubrication problem. Journal of Lubrication Technology,1970,92 (3):495—503.
    [57]Brebbia C A, Walker S. Introduction to boundary element methods. Recent advances in boundary element methods,1978,1-43.
    [58]李子才,戴锷.气体轴承压力的数值计算—求解Reynolds方程的非线性有限元及其误差分析.力学学报,1980,(2):158—168.
    [59]朱自强.应用计算流体力学[M].北京:北京航空航天大学出版社,2002.
    [60]Zhang Ming, Zhu Yu, Ren Gexue etc. Finite element and experimental modal analysis of ultra-precision air bearing linear motion stage. International Technology and Innovation Conference 2006(ITIC 2006).2006,524:1721-1725.
    [61]Liu L.X., Spakovszky Z.S. Effects of bearing stiffness anisotropy on hydrostatic micro gas journal bearing dynamic behavior. Journal of Engineering for Gas Turbines and Power,2007,129(1):177-184
    [62]Huang Bo-Wun, Kuang, Jao-Hwa. Dynamic responses of a cracked gas-bearing spindle American Society of Mechanical Engineers, Applied Mechanics Division, Proceedings of the ASME Applied Mechanics Division-2004(AMD 2004),255:545-552,
    [63]Czolczynski K. How to obtain stiffness and damping coefficients of gas bearings. Wear, 201(1-2):265-275.
    [64]Cui M.M. Investigation of gas flow in the rolling element bearing assembly of a centrifugal compressor. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology,2006,220(7):629-637.
    [65]Chen Xuedong, Yu Xianzhong, He Xueming. Dynamic characteristic analysis of precise long stroke linear motor with air-bearing in optical lithography. Chinese Journal of Mechanical Engineering (English Edition) 2008; 21; 17-22.
    [66]Kassab SZ, Noureldeen EM, Shawky MA. Effects of operating conditions and supply hole diameter on the performance of a rectangular aerostatic bearing. Tribology International 1997;30(7):533-45.
    [67]M.F.Chen, Y.T.Lin. Static behavior and dynamic stability analysis of grooved rectangular aerostatic thrust bearings by modified resistance network method. Tribology International,2002,35:329-338.
    [68]G. Belforte, T. Raparelli, V. Viktorov. Modeling and Identification of Gas Journal Bearings:Self-Acting Gas Bearing Results. Journal of Tribology,2002,124(10):716-724.
    [69]Alexander Slocum, Murat Basaran, Roger Cortesi et al. Linear motion carriage with aerostatic bearings preloaded by inclined iron core linear electric motor. Precision Engineering,2003,27:382-394.
    [70]Li Yuntang, Ding Han. Influences of the geometrical parameters of aerostatic thrust bearing with pocketed orifice-type restrictor on its performance. Tribology International, 2007,40(7):1120-1126.
    [71]Yang Lihua, Li Huiguang, Yu Lie. Dynamic stiffness and damping coefficients of aerodynamic tilting-pad journal bearings. Tribology International,2007,40(9):1399-1410.
    [72]Huang Bowun, Kuang Jaohwa. Dynamic responses of a cracked gas-bearing spindle. American Society of Mechanical Engineers, Applied Mechanics Division.2004,255: 545-552.
    [73]G. Belforte, T. Raparelli. Discharge coefficients of orifice-type restrictor for aerostatic bearings. Tribology International,2007,40:512-521.
    [74]T.Nakamura, S.Yoshimoto. Static tilt characteristics of aerostatic rectangular double-pad thrust bearings with compound restrictors. Tribology International,1995,29(2):145-152.
    [75]Yoshimoto S, Tamura J, Nakamura T. Dynamic tilt characteristics of aerostatic rectangular double-pad thrust bearings with compound restrictors. Tribology International,1999,32:731-738.
    [76]Fujii Yusaku. Frictional characteristics of an aerostatic linear bearing.Tribology International,2006,39(9); 888-896.
    [77]Viktorov Vladimir, Belforte Guido, Raparelli Terenziano. Modeling and identification of gas journal bearings:Externally pressurized gas bearing results. Journal of Tribology, 2005,127(3):548-556.
    [78]张鸣,朱煜,段广洪.基于FEMLAB的气浮轴承静态性能求解方法.润滑与密封,2006,174(2):63-65.
    [79]Teo C J, Spakovszky Z S, Jacobson S A. Unsteady flow and dynamic behavior of ultrashort Lomakin gas bearings. Journal of Tribology,2008,130(1).
    [80]黄海,孟光.考虑二阶滑移流效应的微型气浮轴承-转子稳定性分析及其动态响应.振动与冲击,2008,27(5):112-114.
    [81]Branch H D, Watkins C B, Eronini I E. Vibration of a hydrostatic gas bearing due to supply pressure oscillations. Wear,95(2):199-212.
    [82]Talukder H M, Stowell T B. Pneumatic hammer in an externally pressurized orificecompensated air journal bearing.Tribology International 2003,36:585-591.
    [83]Yang Ding-Wen, Chen Cheng-Hsien, Kang Yuan, et al. Influence of orifices on stability of rotor-aerostatic bearing system. Tribology International,2009,42(8):1206-1219.
    [84]Al-Bender F. On the modelling of the dynamic characteristics of aerostatic bearing films: from stability analysis to active compensation. Precision Engineering,2009,33(2):117-126.
    [85]童秉纲,尹协远,朱克勤编.涡运动理论.合肥,中国科学技术大学社,1994.
    [86]Mori H. Theoretical investigation of pressure depression in externally pressurized gas lubricated circular thrust bearings. Trans. ASME, J.Basic Eng.,1961,83:201-2 08.
    [87]党根茂.气体润滑技术.南京:东南大学出版社,1990
    [88]十合晋一著,韩焕臣译.气体轴承设计、制作与应用.北京,宇航出版社,1988.
    [89]Constantinescu V N. Gas lubrication. ASME, United Engi-neeringCenter, New York, 1969.
    [90]Gross W A, Matsch L A, Castelli V et al. Fluid film lubrication. John Wiley and Sons, New York,1980.
    [91]Wang Qian, Wu Jianjin, Li Dongsheng. Simulation of air gap vibration on aerostatic bearing under flow/structure coupled conditions. Proceedings of SPIE-The International Society for Optical Engineering,2009.
    [92]Aguirre Gorka, Al-Bender Farid, Van Brussel Hendrik. A multiphysics coupled model for active aerostatic thrust bearings. IEEE/ASME International Conference on Advanced Intelligent Mechatronics(AIM 2008),2008:710-715.
    [93]Rubio Dario, Andres Luis San. Structural stiffness, dry-friction coefficient and equivalent viscous damping in a bump-type foil gas bearing. Proceedings of the ASME Turbo Expo,2005,4:737-746.
    [94]Sim Kyuho, Kim Daejong. Thermohydro dynamic analysis of compliant flexure pivot tilting pad gas bearings. Journal of Engineering for Gas Turbines and Power,2008, 130(3).
    [95]Yoshioka Hayato, Matsumura Shimpei, Hashizume Hitoshi, et al. Minimizing thermal deformation of aerostatic spindle system by temperature control of supply air. JSME International Journal, Series C:Mechanical Systems, Machine Elements and Manufacturing,2006,49(2):606-611.
    [96]付坤霞,朱煜,张鸣.基于非等温条件的空气静压轴承润滑问题研究.润滑与密封,2007,32(1):117-119.
    [97]Rathish Kumar B V, Srinivasa Rao P, Sinha Prawal. A nu-merical study of performance of a slider bearing with heat con-duction to the pad. Finite Elements inAnalysis and De- sign,2001,37:533-547.
    [98]Yoshimoto Shigeka,Yamamoto Makoto,Toda Kazuyuki. Numerical calculations of pressure distribution in the bearing clearance of circular aerostatic thrust bearings with a single air supply inlet. Proceedings of STLE/ASME International Joint Tribology Conference,2006.
    [99]Wang Cheng-Chi, Yau Her-Terng, Kuan Chen-Feng et al. Application of hybrid method to the quasi-periodic analysis of micro gas journal bearing system.2008 IEEE International Symposium on Knowledge Acquisition and Modeling Workshop Proceedings(KAM2008),2008:79-82.
    [100]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算.北京:北京理工大学出版社,2004:1-46.
    [101]张鸣,朱煜,段广洪.超精密气浮工件台的微振动及其抑制.制造技术与机床,2005,(11):47-49.
    [102]Bhat Nikhil, Barrans Simon M. Design and test of a Pareto optimal flat pad aerostatic bearing. Tribology International,2008,41(3):181-188.
    [103]Stout K J, Barrans S M. The design of aerostatic bearings for application to nanometer resolution manufacturing machine systems. Tribology International,2000,33(10):803-809.
    [104]Li Yuntang, Ding Han. Influences of the geometrical parameters of aerostatic thrust bearing with pocketed orifice-type restrictor on its performance. Tribology International, 2007,40:1120-1126.
    [105]Teo C.J, SpakovszkyZ.S. Analysis of tilting effects and geometric nonuniformities in micro-hydrostatic gas thrust bearings. Journal of Turbomachinery,2006,128(4):606-615.
    [106]Song Ju-Ho, Kim Daejong. Foil gas bearing with compression springs:Analyses and experiments. Journal of Tribology,2007,129(3):628-639.
    [107]郭良斌,王祖温.环面节流静压圆盘止推气体轴承的动特性计算,液压与气动,2006,(7):7-11.
    [108]王祖温,郭良斌,包钢等.单节流孔静压球面气体轴承动态特性的有限元分析.摩擦学学报,2003,(23):416-420.
    [109]戚社苗,耿海鹏,虞烈.动压气体轴承的动态刚度和动态阻尼系数.机械工程学报,2007,(43):P91-98.
    [110]郭良斌.多供气孔静压圆盘止推气体轴承的参数设计.润滑与密封,2007,(32):108-111.
    [111]杜建军,刘暾,姚英学.狭缝节流气体静压轴颈-止推轴承静态特性分析.摩擦学学报,2002,22:66-70.
    [112]Hashimoto Hiromu, Ochiai Masayuki. Optimization of groove geometry for thrust air bearing to maximize bearing stiffness. Journal of Tribology,2008,130(3).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700