基于蓝牙的履带车遥控技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国为果业大国,种植面积大,果园作业耗工时多,操作人员的劳动强度大、条件差,尤其在炎热的夏季,由于果园中透风性差,劳动者在进行施药时容易发生中毒事件。因此,对智能化果园装备的开发研究受到越来越多的重视。本文对面向果园应用的小型电动履带车为研究对象,利用蓝牙技术结合单片机技术对履带车的运动控制技术进行了相关研究。主要取得的结论归纳如下:
     (1)结合果园环境的特点,通过对几种目前比较常用的短距离无线通信技术比较,确定了基于蓝牙的操控方案,选取GC-05蓝牙模块作为通信载体来完成信息的无线传递。
     (2)设计了基于单片机的控制系统硬件电路,包括遥控端外围电路和从端外围电路两部分,系统利用单片机自带的A/D转换功能实现了对各传感器信息的采集,减少了元器件个数。
     (3)在C语言开发平台ICC AVR下,征对履带车运动控制的要素,制定了遥控端与从端蓝牙通信的控制帧格式,控制帧由行动指令、方向控制指令以及校检位3字节组成,遥控端单片机将定时扫描得到的按键、电位器状态按固定格式打包发送给从端单片机,完成控制指令的传输。
     (4)从端单片机与直流电机驱动器之间采用Modbus的远程终端(RTU)模式通信,利用循环冗余码校验查表法保证了从端单片机对两直流伺服电机的控制的准确性。
     (5)对履带车接触式导航技术做了相关的研究,设计了增量式PID控制器。从端单片机将采集到的角度传感器角度值与设定值的差作为PID控制器的输入信号,实现了履带车沿预铺设的橡皮管道的自动行走。
     (6)实现了遥控和自行走两种运动控制方式之间的切换,极大的扩大了履带车的应用范围。
     (7)实验结果表明,在50m范围内能较好的实现对履带车运动的无线遥控,指令传输的延时较小;采用直径为4cm的橡皮管道作为导航路径,履带车以接触式导航方式行走时,横向偏差范围在-9.7~2.4cm之间,在低速条件下能实现沿管道的自行走。
Due to the large area for planting, our country is a great nation of fruit industry, but the consumption of working hours in orchard is excessively, the labor intensity of operator is high, and the condition of work is poor, especially in the hot days of summer, laborer has the risk to get poisoned when spraying as the poor ventilation of orchard, therefore, the research of intelligent equipment used in orchard has attract more and more attention. This paper takes a small electric tracked vehicle applying to orchard as the object of research, does some research on the controlling of tracked vehicle using micro-controller technology and Bluetooth technology. The main result of this paper is as the following:
     (1)Combining with the characteristics of orchard environment, compared some short range wireless communication technology which are frequent used, determine the manipulation of the scheme based on Bluetooth, selected the Bluetooth module of GC-05 as the communicate carrier,completed the wireless transmission of imformation.
     (2)Designed the hardware circuit of control system based on SCM, including remote control and slave, making use of the A/D function of SCM, realized the collection of digital information of sensor,reduced the number of component.
     (3)Under the platform of ICC AVR based on C programming language, after considered the control elements of the motion of tracked vehicle, defined the form of communicate frame between remote control and the slave, which is made from basic control instruction, direction control instruction and the frame of checkout. The remote microcontroller will timing send the information of the status of buttons and rheostat to the slave controller after scan to completed the transmission of the control instructions.
     (4)Using Remote Terminal Unit (RTU) mode of Modbus and querying method of Cyclic Redundancy Yards calibration to achieve and guarantee the accuracy of communication between slave MCU and DC servo motor.
     (5)Made some correlative research of tracked vehicle based on touch navigation technology, and designed the PID controller which use the deviation of angle sensor and setting value as the input of PID controller, realized the automatic movement along the pre laid pipelines of tracked vehicle.
     (6)Realized the switch of control mode between remote control and automatic navigation, expand the range of application which tracked vehicle can be used.
     (7)The test show a good performance of remote control in the scopes of 50m, using a rubber pipeline whose diameter if 4cm as the path of the tracked vehicle, found a lateral deviation range from -9.7cm to 2.4cm when tracked vehicle move in a low speed under the way of touch which is acceptable error in automatic navigation.
引文
安然然,冯露. 2009.基于AVR单片机的无线通道控制系统的设计.沈阳化工学院学报, 23(1): 76~79
    蔡爱华. 2004.蓝牙无线通用遥控器的设计[硕士学位论文].西安:西北工业大学
    曹毅,姜戎,王宏力. 2007.基于单片机的小型自控飞艇舵控系统设计.嵌入式技术, (2): 13~15
    陈军,朱忠祥,鸟巢谅,武田纯一. 2006.拖拉机沿曲线路径的跟踪控制.农业工程学报. 22(11):108~111
    陈淑艳,陈文家. 2007.履带式移动机器人研究综述.机电工程, 24(12): 109~112
    陈鹰,杨灿军,顾临怡. 2003.基于载人潜水器的深海资源勘探作业技术研究.机械工程学报, 39(11): 38~42
    崔保健,赵士杰. 1995.单片微型计算机在遥控编译码器中的应用.遥测遥控, 16(1): 36~40
    郭志斌. 2005.常用电子元器件使用手册.北京:人民邮电出版社
    何焕良. 2005.移动机器人的路径规划及其无线遥控系统的设计[硕士学位论文].哈尔滨:哈尔滨工业大学
    何忠波,陈慧岩,陶刚. 2003.履带式遥控车辆自动驾驶控制系统的研制.工程机械, (10): 3~7
    侯敬巍. 2008.基于虚拟现实的遥控工程机器人系统研究[博士论文].长春:吉林大学
    贾海政,陈军. 2009.基于蓝牙的温室温度检控系统研究.农机化研究, 31(5): 111~114
    金纯万,正兵. 2007.基于广电网的蓝牙红外通讯遥控器设计.广播与电视技术, 4: 117~118
    康雁林,林喜竹,李建国. 2010.基于AVR单片机的PID算法控制系统设计.河南师范大学学报(自然科学版), 38(2): 180~183
    李海斌,王让. 2010.基于单片机编码的防盗遥控器设计.拖拉机与农用运输车, 37(3): 95~96
    李金飞,袁海宵,陈志辉,王惠贞,严仰光. 2009.无刷直流伺服电机位置控制过程的研究.电气传动, 39(7): 10~13
    李明. 2010.基于全方位视觉传感器的农业机械定位系统.农业工程学报, 26(2): 170~173
    李西恭,张云,朱燕丛,郭丽娟,邱祁. 2009.基于蓝牙技术的无线控制逆变焊机.电焊机, 39(2): 47~50
    李晓辉,任艳君. 2006.四路无线遥控开关系统的设计与实现.现代电子技术, 30(12): 66~68
    李娅菲,朱烜璋. 2010.基于蓝牙技术的智能家居远程控制的研究.办公自动化, (22): 193
    李焱. 2002.大时延遥操作技术及虚拟现实技术研究[博士学位论文].长沙:国防科学技术大学
    连世江,陈军,贾海政,张伟华. 2009.基于模糊控制的拖拉机转向跟踪控制研究.西北农林科技大学学报, 37(9): 224~228
    连世江,陈军,贾海政.基于PID控制的拖拉机自动转向系统.农机化研究, 31(6): 211~213
    刘歌群,刘卫国,卢京潮. 2005.无人机强实时性串行通讯程序设计.计算机应用, 25(1): 210~212
    刘溧,耿聪,陈慧岩,杨东来. 2004.遥控驾驶靶车牵引车的速度控制.兵工学报, 25(3): 318~321
    刘溧,杨东来,陈慧岩. 2002.遥控履带车辆数字化操纵技术的研究.农业机械学报, 33(2): 127~128
    刘小群. 2010.蓝牙技术的应用.科技信息, (30): 451~453
    柳平增,毕树生,付冬菊,苗良.室外农业机器人导航研究综述.农业网络信息, (3): 5~9
    陆振林,张明慧,李亮,李晶皎. 2010.基于蓝牙技术的智能车实时监测系统的研究.电子技术应用, 36(2): 77~83
    罗玮. 2010.一种新兴的蓝牙技术.现代电信科技, 10(10): 31~34
    马潮. 2007. AVR单片机嵌入式系统原理与应用实践.北京:北京航空航天大学出版社
    马建仓. 2003.蓝牙核心技术及应用.北京:科学出版社
    马建辉,马共立. 2010.基于CAN总线及蓝牙技术的汽车电子产品的开发及测试.电子产品世界, 6: 43~47
    马一丁. 2010. SIG力推蓝牙4.0标准,挑战多种无线传输技术.基础电子, (9): 38
    毛保全,汪凡,徐礼,徐冰川. 2010.基于模糊神经网络的遥控武器站伺服系统PID控制器.兵工自动化, 29(9): 75~78
    齐江涛,张书慧,于英杰,徐岩. 2009.基于蓝牙技术的变量施肥机速度采集系统设计.农业机械学报, 40(12): 200~203
    宋健,张宾,张铁中. 2005.电磁诱导式喷雾机器人导航系统.农业机械学报, 36(12): 91~94
    苏清华. 2010.农业移动机器人远程嵌入式监控系统研究[硕士学位论文].杨凌:西北农林科技大学谭浩强. 2002. C语言程序设计.北京:清华大学出版社
    汪小燕,王浩,柯志武. 2009.基于蓝牙v2.0的远程节能控制系统的设计与实现.通信技术, 42(8): 148~150
    王楠,侯紫峰,宋建平. 2004.蓝牙无线连接可靠性措施的研究与实现.小型微型计算机系统, 24(5): 929~932
    王鹏飞,孙立宁,黄博. 2006.地面机器人系统的研究现状与关键技术.机械设计, 23(7): 1~4
    王平,蒋进,梅海军,陈晓仁. 2004.智能化蓝牙电子标志牌及其无线识读系统.计算机集成制造系统, 10(9): 1144~1147
    王泉. 2005.基于蓝牙技术的多机器人通信和控制系统的研究[硕士学位论文].武汉:武汉理工大学
    王希芝,周承胜,王俊朋,周泽明. 2010.基于单片机控制的动态舰模电路设计与研究.青岛大学学报(工程技术版), 25(3): 48~53
    王玉成,王庭有,徐丽娟. 2010.遥控履带小车视频监控系统设计.新技术新工艺, (9): 39~41
    韦庆. 1999.基于事件反馈的机器人监控技术及其在大时延遥操作中的应用.空间机器人及遥科学技术研讨会论文集, :307~313
    魏延富. 2005.机电伺服触觉式秸秆导向系统试验研究[博士学位论文].北京:中国农业大学
    乌建中,阮佳梦. 2006.无线遥控液压爬行机器人的设计.中国工程机械学报, 4(4): 433~437
    吴国钊,傅雪冬,裴海龙. 2000.基于INTERNET的机器人实时跟踪系统.机器人技术与应用, (l): 24~26
    吴绍斌,丁华荣,刘溧,陈慧岩. 2002.履带车辆遥控驾驶的转向控制技术.兵工学报, 23(3): 402~405
    吴占臣,冯开林. 2005.遥控抢险机器人及其关键技术研究.液压与气动, (9): 28~29
    武健,石沛林,邹广德,薛明琛. 2008.遥控车辆电动转向控制系统设计.制造业自动化, 30(2): 60~63
    熊光明,徐正飞,高峻境,黄志敏. 2006.基于遥操作和局部自主的移动机器人越障.计算机测量与控制, 14(2): 193~195
    徐一峰. 2006.地面移动机器人遥操作系统分析及相关技术研究[硕士学位论文].南京:南京理工大学
    闫文婷. 2004.基于蓝牙技术的数据传输的研究与实现[硕士学位论文].南京:南京理工大学
    应火冬, Carr-WestM, MatinP. 2008.农业机器的随动控制导航.电子机械工程, 87(5): 30~33
    应火冬, Hagras H, Callaghan V. 2000.农业机器的模糊逻辑控制导航.农业机械学报,31(3): 31~34
    余强,宋铁成. 2008.基于蓝牙技术的视频传输系统的硬件设计与实现.电气电子教学学报, 30(1): 2~55
    翟丽,孙逢春,谷中丽. 2009.电子差速履带车辆转向转矩神经网络PID控制.农业机械学报, 40(2): 1~5
    张书慧,马成林,杜巧玲. 2004.精确农业自动变量施肥机控制系统设计与实现.农业工程学报, 20(1): 113~116
    章艳,罗高生,王峰,顾临怡. 2007.深海压力适应型水下机器人压力补偿技术.机电工程, 4(24): 10~14
    郑敏. 2007.时滞系统稳定性分析及其在遥操作系统中的应用研究[博士学位论文].南京:东南大学郑文. 2009.单片机软件解码在无线遥控中的应用.浙江万里学院学报, 22(5): 43~47
    仲训昱. 2009.遥自主移动机器人运动规划与控制技术研究[博士学位论文].哈尔冰:哈尔滨工程大学
    周彬,夏继强. 2010.蓝牙技术在阀门电动装置中的应用.单片机与嵌入式系统应用, (2): 62~64
    周计文,王立新,王辉. 2008.基于单片机的多路无线遥控开关设计.微处理机, (3): 159~161
    朱磊磊,陈军,白晓鸽,杨娜,苏清华. 2009.基于曲柄滑块机构原理导航的农业机器人设计.农业机械学报, 40(z1): 33~36
    朱磊磊. 2010.果园管理机器人平台的自动导航系统研究[硕士学位论文].杨凌:西北农林科技大学朱忠祥,陈军,鸟巢谅. 2006.基于PD控制的拖拉机半挂车机组自动直线倒车系统.农业机械学报,37(7): 98~100
    邹国红. 2009.蓝牙车载免提系统的研究与设计.鞍山师范学院学报, 11(4): 74~77
    Alexander Paar. 2003. The BTRC Bluetooth remote control system. Pers Ubiquit Comput, 7: 102~112
    Alycia S. Gailey, Khajak Berberian, Brian N. Kim, Manfred Lindau. 2010. A Bluetooth Device for Wireless Communication of in vivo Data from Freely Moving Research Animals. Biophysical Journal, 98(3): 407
    Bilstrup U, Wiberg P. 2000. Bluetooth in industrial environment. 2000IEEE International Workshop on Factory Communication Systems. Porto: IEEE, 12(3): 239~246
    Brad A. Myers. 2005. Using handhelds for wireless remote control of PCs and appliances. Interacting with Computers, 17(3): 251~264
    Erdal Bekiroglu, Nihat Daldal. 2005. Remote control of an ultrasonic motor by using a GSM mobile phone. Sensors and Actuators A: Physical, 120(2): 536~542
    Fridtjof Feldbusch, Alexander Paar, Manuel Odendahl and Ivan Ivanov. 2002. A Bluetooth Remote Control System. Lecture Notes in Computer Science, 2299: 111~125
    J.0.Gray. 1996. Recent development in advanced robotics and intelligent system. Computer Control Engineering, 7(6):267~276P
    Joshua Mendoza-Jasso, Gerardo Ornelas-Vargas, Rodrigo Castaneda-Miranda, et al. 2005. FPGA-based real-time remote monitoring system. Computers and Electronics in Agriculture, 49(2): 272~285
    Keicher R, Seufert H. 2000. Automatic guidance for agricultural vehicles in Europe. Computers and Electronics in Agriculture, 25: 169~194
    Kentner B.Wilson. 1975. Servoarm—A Water Hydraulic Master—Slave Manipulator. Proc. 23rd Conf. Remote Syst Technol, : 233
    Li, P. Y., Krishnaswamy, K.. 2001. Passive bilateral teleoperation of an electrohydraulic actuator using an electrohydraulic passive valve. Proceedings of the American Control Conference, (5): 3932~3937
    Linker R, Blass T. 2008. Path-planning algorithm for vehicles operating in orchards. BiosystemsEngineering, 101: 152~160
    N.Sriskanthan, F. Tan, A.Karande. 2002. Bluetooth based home automation system. Microprocessors and Microsystems, 26: 281~289
    Navee Erasala, David C. Yen. 2002. Bluetooth technology: a strategic analysis of its role in global 3G wireless communication era. Computer Standards & Interfaces, 24:193~206
    Noguchi N., Ishii K.Terao H. 1997. Development of an agricultural mobile robot using a geomagnetic direction sensor and image sensors. Journal of Agricultural Engineering Research, 67(1): 1~15
    O.Yekutieli, F.Garbati Pegna. 2002. Automatic Guidance of a Tractor in a Vineyard. Conference. ASAE, (7): 26~27
    RASHID R A, YUSOFF R. 2006. Bluetooth performance analysis in personal area network(PAN). RF and Microwave Conference, 12(14): 393~397
    Reid J F, 2000. Agriculture automatic guidance research in North America. Computers and Electronics in Agriculture, 25: 133~153
    Schafer.R.L, Young, R.E. 1979. An automatic guidance system for tractors. Trans.ASAE, 22(1):46~49
    Shi C, Wang Y, Yang J. 2010. A local obstacle avoidance method for mobile robots in partially known environment. Robotics and Autonomous System, 58: 425~434
    Thanh T D C, Ahn K K. 2006. Nonlinear PID control to improve the control performance of axes pneumatic artificial muscle manipulator using neural network. Mechatronics, 16(9): 577~587
    Tillett N.D.. 1991. Automatic guidence sensor for agriculture filed machine. Journal of Agriculture Engineering Research, 50(3): 167~187
    Torii T. 2000. Research in autonomous agriculture vehicles in Janpan. Computers and Electronics in Agriculture, 25: 155~167
    W. S. Lee, J. K. Schueller, and T. F. Burks. 2005. Wagon-Based Silage Yield Mapping System. Agricultural Engineering International: the CIGR E. Journal, Vol. VII. Manuscript IT 05 003 Willrodt.F.L. 1924. Steering attatchment for tractors. U.S, Patent No.1506706
    Wilson J.N.. 2000. Guidence of agriculture vechiles-a historical perspective. Computer and Electronics in agriculture, 25(1): 3~9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700