纳米机械振子与超导电路耦合系统中的量子效应研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米技术的不断进步,机械振子的尺寸已经可以做到微米甚至纳米尺度.纳米机械振子通常具有极小的质量,较高的共振频率以及较低的耗散,因此在高精度位移测量、质量测量等方面有着重要的应用.此外,机械振子是观察宏观物体量子力学效应的一个很好的平台.通过将纳米机械振子耦合于不同的固体系统,比如光腔或者微波腔以及超导量子比特,研究人员最近在实验上成功地将机械振子冷却到量子基态,这为观察振子中叠加态、Fock态等非经典态以及能量量子化铺平了道路.纳米机械振子与超导微波腔之间通过辐射压力有效地耦合起来,形成了近年来一个新兴的研究领域—腔电机械系统,该系统中一些量子光学效应已经被观察到.本文中我们采用标准的泵浦-探测技术,研究了腔电机械系统中的电磁诱导透明现象和快慢光效应以及共振增强的四波混频现象,并且讨论了该系统在光子晶体管、单光子路由器以及质量传感器等方面的潜在应用.另一方面,超导量子比特是一种人造的两能级原子系统,可作为辅助系统用来读取纳米机械振子的运动,实现机械系统的量子调控.最近的技术进步使得利用这种人造两能级系统进行一些芯片上的量子光学实验变得可能.本文中我们理论上研究了纳米机械振子与库珀对盒子(电荷量子比特)耦合系统在质量测量上的应用.这两种耦合系统都易于集成在芯片上,从而在固态量子计算和量子信息中都有着重要的应用.论文共分为六章.
     在第一章中,我们首先介绍了腔光机械系统的一些基本理论并举例说明了实验上实现的几种腔光机械系统,然后着重介绍了我们所研究的腔电机械系统的一些最新进展.此外,本章还介绍了三种基本的超导量子比特以及与纳米机械振子耦合系统的一些研究背景.最后,我们介绍了本论文研究的基础—电磁诱导透明现象及共振增强的三阶非线性效应.
     在第二章中,我们研究了腔电机械系统中的电磁诱导透明现象和快慢光效应.当微波腔受到红失谐的泵浦场驱动时,辐射压力的作用使得探测场的透射谱中腔共振附近出现一个窄的透明窗口,且透明窗口的宽度随泵浦场功率增大而变宽,即出现了电磁诱导透明现象.此时系统中存在慢光效应,探测场的延迟时间最大可达到0.2ms.但当微波腔受到蓝失谐的泵浦场驱动时,系统中将出现快光效应,此时探测场的延迟时间为一负值.因此,通过改变泵浦场与腔场之间的失谐量可实现快慢光效应之间的转变,并且延迟时间的大小可由泵浦场的功率进行调节.
     在第三章中,我们研究了腔电机械系统中可调的非线性效应.首先我们讨论了该系统中腔内光子数的双稳态现象,即泵浦场频率和功率选择恰当时,腔内光子数可能出现两个稳定的解.然后我们着重讨论了共振增强的四波混频现象.当满足电磁诱导透明的双光子共振条件时,四波混频作为一种重要的三阶非线性效应可被共振增强,并且随着泵浦场功率的增大四波混频的强度可被进一步提高.
     在第四章中,我们讨论了腔电机械系统在光子晶体管和单光子路由器中的应用.当微波腔受到蓝失谐的泵浦场驱动时,探测场的透射率可出现大于1的情况,即微波信号可被放大,此时系统可用作光子晶体管.当微波腔受到红失谐的泵浦场驱动时,泵浦场功率达到一定强度后,腔共振处探测场将全部透射,但当泵浦场功率为零时,腔共振处探测场将被全部反射.因此可用一束可调的泵浦场来选择探测场从哪个输出口输出,反射出口和透射出口之间的路由可通过关闭和打开泵浦场实现.
     在第五章中,我们研究了腔电机械系统以及纳米机械振子与库珀对盒子耦合系统在微小物质比如DNA分子质量测量方面的应用.由于纳米机械振子的质量和耗散极小,吸附微小物质后将导致其共振频率发生移动.这两种耦合系统的透射谱或者吸收谱中机械振子共振频率处会出现尖锐的边峰,因此可用于测量振子的共振频率以及吸附物质后的频率移动.根据移动的频率与增加的质量之间的关系,我们即可得到吸附物质的质量.
     第六章是本文的主要结论和展望.
     以上研究得到了国家自然科学基金(10774101和10974133)和教育部高校博士点基金的资助.
Due to the great advance in nanotechnology, it is now possible tofabricate mechanical resonators with dimensions on the micro and evennanometer scale. Because of their very small masses, high frequencies andlow intrinsic dissipations, nanomechanical resonators have important ap-plications in high-precision displacement detection and mass sensing. Me-chanical resonators are also promising candidates for observing quantummechanical efects in macroscopic objects. Recently, by coupling nanome-chanical resonators to other solid-states systems such as optical cavity, mi-crowave cavity and superconducting qubits, researchers have successfullycooled the mechanical resonators to their quantum ground states, whichpaves the way towards observing nonclassical states in resonators suchas superposition states and Fock states, as well as energy quantization.Nanomechanical resonator can couple with superconducting microwavecavity via radiation pressure force, which yields an emerging research feldnamed cavity electromechanical system, where some quantum optical ef-fects have been observed. In this thesis, using the standard pump-probetechnique, we have studied the phenomenon of electromagnetically induced transparency(EIT), slow and fast light efect, and resonantly enhancedfour-wave mixing(FWM) efect in the cavity electromechanical system.Some potential applications in photonic transistor, single-photon routerand mass sensor based on this coupled system have also been discussed.On the other hand, superconducting qubits behave like artifcial atoms,which can be used to readout the nanomechanical motion and realize thequantum control of a mechanical system. Recent technological advancesmake it possible to implement quantum-optics experiments on a chip usingthese artifcial atoms. Here, we have mainly investigate theoretically themass sensing scheme based on the coupled nanomechanical resonator andCooper-pair box(charge qubit) system. Both the above two coupled sys-tems are compatible with integration on a chip, which enables them someimportant applications in solid-state quantum computation and quantuminformation. The whole thesis is consisted of six chapters.
     In Chapter One, we frst introduce some basic theories about cavityoptomechanical systems and provide some experimentally realized exam-ples. Then we give some special emphasis on the introduction of recentdevelopments in the fled of cavity electromechanical systems, which is thesystem we’ll study. Introduction to the research backgrounds of supercon-ducting qubits and their couplings to nanomechanical resonators is alsogiven. Finally, we introduce the phenomenon of electromagnetically in-duced transparency(EIT) and resonantly enhanced three-order nonlinearprocess based on EIT.
     In Chapter Two, we investigate the phenomenon of electromagnet-ically induced transparency(EIT) as well as slow and fast light efect incavity electromechanical system. When the cavity is driven by a properred-detuned pump feld, a narrow transparency window will appear inprobe transmission spectrum, which can be further broadened by increas- ing the power of the pump feld. Slow light efect appears at this time,and the maximum time delay can reach about0.2ms. However, whenthe cavity is driven by a blue-detuned pump feld, fast light efect willappear, and the time delay is a negative value. Therefore, the transitionbetween slow light and fast light efect can be achieved by modulating thefrequency of the pump feld, and the magnitude of the time delay can becontrolled by the power of the pump feld.
     In Chapter Three, the controllable nonlinear response of the cavityelectromechanical system is investigated. We frst study the bistable be-havior of intracavity photon number in this system, that is, two stablevalues of the intracavity photon number may exist if the frequency andpower of the pump feld are properly chosen. Then we study the resonantlyenhanced four-wave mixing(FWM) under conditions of EIT. When thetwo-photon resonance condition is satisfed, the magnitude of FWM, animportant three-order nonlinear process, can be enhanced greatly. More-over, the magnitude can be further increased by enlarging the power ofthe pump feld.
     In Chapter Four, we demonstrate two potential applications of cavityelectromechanical system in photonic transistor and single-photon router.When the cavity is driven by a blue-detuned pump feld, the magnitudeof the transmitted probe feld on resonance can exceed unity, thus themicrowave signal can be amplifed in this case, which can be employed asa photonic transistor. However, when the cavity is driven by a red-detunedpump feld, the probe feld on resonance can be totally transmitted if thepump power increases above a critical value, while the probe feld wouldbe totally refected in the absence of the pump feld. Therefore, we canuse a controllable pump feld to choose what output port of the probe feldis delivered. Routing between the refection output port and transmission output port can be achieved by turning of and on the pump feld.
     In Chapter Five, we present a scheme for mass sensing in tiny objectssuch as DNA molecule based on cavity electromechanical system as wellas the coupled nanomechanical resonator and Cooper-pair box system.Because the mass and intrinsic dissipation of the nanomechanical resonatorare very small, a frequency shift of the resonator will be induced by landinga tiny object on it. Two sharp sideband peaks appear exactly at theresonance frequency of the resonator in the transmission or absorptionspectrum of the above two systems, which provides us an efcient way tomeasure the frequency of the resonator and the corresponding frequencyshift after adsorption. According to the relation between the frequencyshift and the added mass, we can obtain the mass.
     In Chapter Six, it is the main conclusions and the prospect.
     This work was supported by the National Natural Science Foundationof China under contract NO.10774101and No.10974133, as well as theNational Ministry of Education Program for Training Ph.D.
引文
[1] Kippenberg T.J. Vahala K.J.,“Cavity opto-mechanics”, Opt. Express,2007,15(25),17172–17205.
    [2] Kippenberg T. Vahala K.,“Cavity optomechanics: Back-action at the mesoscale”,Science,2008,321(5893),1172.
    [3] Marquardt F.,“Optomechanics”, Physics,2009,2(40).
    [4] Favero I. Karrai K.,“Optomechanics of deformable optical cavities”, Nat Photon,2009,3(4),201–205.
    [5] Aspelmeyer M., Gro¨eblacher S., Hammerer K., et al.,“Quantum optomechanics-throwing a glance [invited]”, JOSA B,2010,27(6), A189–A197.
    [6] Thompson J.D., Zwickl B.M., Jayich A.M., et al.,“Strong dispersive coupling ofa high-fnesse cavity to a micromechanical membrane”, Nature,2008,452(7183),72–75.
    [7] Brennecke F., Donner T., Ritter S., et al.,“Cavity qed with a bose-einstein con-densate”, Nature,2007,450(7167),268–271.
    [8] Schliesser A., Riviere R., Anetsberger G., et al.,“Resolved-sideband cooling of amicromechanical oscillator”, Nat Phys,2008,4(5),415–419.
    [9] Lin Q., Rosenberg J., Jiang X., et al.,“Mechanical oscillation and cooling actuatedby the optical gradient force”, Physical Review Letters,2009,103(10),103601.
    [10] Chan J., Alegre T.P.M., Safavi-Naeini A.H., et al.,“Laser cooling of a nanome-chanical oscillator into its quantum ground state”, Nature,2011,478(7367),89–92.
    [11] Sankey J.C., Yang C., Zwickl B.M., et al.,“Strong and tunable nonlinear optome-chanical coupling in a low-loss system”, Nat Phys,2010,6(9),707–712.
    [12] Brennecke F., Ritter S., Donner T., et al.,“Cavity optomechanics with a bose-einstein condensate”, Science,2008,322(5899),235.
    [13] Ritter S., Brennecke F., Baumann K., et al.,“Dynamical coupling between a bose-einstein condensate and a cavity optical lattice”, Applied Physics B,2009,95(2),213–218.
    [14] Schliesser A., Arcizet O., Riviere R., et al.,“Resolved-sideband cooling and posi-tion measurement of a micromechanical oscillator close to the heisenberg uncer-tainty limit”, Nat Phys,2009,5(7),509–514.
    [15] Lin Q., Rosenberg J., Chang D., et al.,“Coherent mixing of mechanical excitationsin nano-optomechanical structures”, Nat Photon,2010,4(4),236–242.
    [16] Eichenfeld M., Chan J., Camacho R.M., et al.,“Optomechanical crystals”, Na-ture,2009,462(7269),78–82.
    [17] Eichenfeld M., Camacho R., Chan J., et al.,“A picogram-and nanometre-scalephotonic-crystal optomechanical cavity”, Nature,2009,459(7246),550–555.
    [18] Safavi-Naeini A., Alegre T., Chan J., et al.,“Electromagnetically induced trans-parency and slow light with optomechanics”, Nature,2011,472(7341),69–73.
    [19] Regal C., Teufel J., Lehnert K.,“Measuring nanomechanical motion with a mi-crowave cavity interferometer”, Nature Physics,2008,4(7),555–560.
    [20] Teufel J.D., Harlow J.W., Regal C.A., et al.,“Dynamical backaction of microwavefelds on a nanomechanical oscillator”, Physical Review Letters,2008,101(19),197203.
    [21] Teufel J.D., DonnerT, Castellanos-Beltran M.A., et al.,“Nanomechanical motionmeasured with an imprecision below that at the standard quantum limit”, NatNano,2009,4(12),820–823.
    [22] Rocheleau T., Ndukum T., Macklin C., et al.,“Preparation and detection of amechanical resonator near the ground state of motion”, Nature,2010,463(7277),72–75.
    [23] Massel F., Heikkila¨ T.T., Pirkkalainen J.M., et al.,“Microwave amplifcation withnanomechanical resonators”, Nature,2011,480(7377),351–354.
    [24] Gro¨blacher S., Hammerer K., Vanner M.R., et al.,“Observation of strong couplingbetween a micromechanical resonator and an optical cavity feld”, Nature,2009,460(7256),724–727.
    [25] Park Y.S. Wang H.,“Resolved-sideband and cryogenic cooling of an optomechan-ical resonator”, Nat Phys,2009,5(7),489–493.
    [26] Teufel J., Donner T., Li D., et al.,“Sideband cooling of micromechanical motionto the quantum ground state”, Nature,2011,475(7356),359–363.
    [27] Teufel J., Li D., Allman M., et al.,“Circuit cavity electromechanics in the strong-coupling regime”, Nature,2011,471(7337),204–208.
    [28] Marshall W., Simon C., Penrose R., et al.,“Towards quantum superpositions ofa mirror”, Physical Review Letters,2003,91(13),130401.
    [29] You J. Nori F.,“Superconducting circuits and quantum information”, PhysicsToday,2006,58(11),42–47.
    [30] Makhlin Y., Schn G., Shnirman A.,“Quantum-state engineering with josephson-junction devices”, Reviews of Modern Physics,2001,73(2),357–400.
    [31] You J.Q. Nori F.,“Atomic physics and quantum optics using superconductingcircuits”, Nature,2011,474(7353),589–597.
    [32] Clarke J. Wilhelm F.K.,“Superconducting quantum bits”, Nature,2008,453(7198),1031–1042.
    [33] Ladd T.D., Jelezko F., Lafamme R., et al.,“Quantum computers”, Nature,2010,464(7285),45–53.
    [34] Tinkham M., Introduction to Superconductivity, McGraw-Hill, New Yok,1996.
    [35] Voss R.F. Webb R.A.,“Macroscopic quantum tunneling in1-um nb josephsonjunctions”, Physical Review Letters,1981,47(4),265–268.
    [36] Devoret M.H., Martinis J.M., Clarke J.,“Measurements of macroscopic quantumtunneling out of the zero-voltage state of a current-biased josephson junction”,Physical Review Letters,1985,55(18),1908–1911.
    [37] Caldeira A. Leggett A.,“Quantum tunnelling in a dissipative system”, Annals ofPhysics,1983,149(2),374–456.
    [38] Martinis J.M., Devoret M.H., Clarke J.,“Energy-level quantization in the zero-voltage state of a current-biased josephson junction”, Physical Review Letters,1985,55(15),1543–1546.
    [39] Nakamura Y., Chen C.D., Tsai J.S.,“Spectroscopy of energy-level splitting be-tween two macroscopic quantum states of charge coherently superposed by joseph-son coupling”, Physical Review Letters,1997,79(12),2328–2331.
    [40] Friedman J.R., Patel V., Chen W., et al.,“Quantum superposition of distinctmacroscopic states”, Nature,2000,406(6791),43–46.
    [41] van der Wal C.H., ter Haar A.C.J., Wilhelm F.K., et al.,“Quantum superpositionof macroscopic persistent-current states”, Science,2000,290(5492),773–777.
    [42] Martinis J.M., Nam S., Aumentado J., et al.,“Rabi oscillations in a largejosephson-junction qubit”, Physical Review Letters,2002,89(11),117901.
    [43] Plourde B.L.T., Robertson T.L., Reichardt P.A., et al.,“Flux qubits and readoutdevice with two independent fux lines”, Physical Review B,2005,72(6),060506.
    [44] Saito S., Thorwart M., Tanaka H., et al.,“Multiphoton transitions in a macro-scopic quantum two-state system”, Physical Review Letters,2004,93(3),037001.
    [45] Chiorescu I., Nakamura Y., Harmans C., et al.,“Coherent quantum dynamics ofa superconducting fux qubit”, Science,2003,299(5614),1869.
    [46] Yu Y., Han S., Chu X., et al.,“Coherent temporal oscillations of macroscopicquantum states in a josephson junction”, Science,2002,296(5569),889–892.
    [47] Simmonds R.W., Lang K.M., Hite D.A., et al.,“Decoherence in josephson phasequbits from junction resonators”, Physical Review Letters,2004,93(7),077003.
    [48] Wallraf A., Schuster D.I., Blais A., et al.,“Strong coupling of a single photon toa superconducting qubit using circuit quantum electrodynamics”, Nature,2004,431(7005),162–167.
    [49] Houck A.A., Schuster D.I., Gambetta J.M., et al.,“Generating single microwavephotons in a circuit”, Nature,2007,449(7160),328–331.
    [50] Schuster D.I., Houck A.A., Schreier J.A., et al.,“Resolving photon number statesin a superconducting circuit”, Nature,2007,445(7127),515–518.
    [51] Blais A., Huang R.S., Wallraf A., et al.,“Cavity quantum electrodynamics forsuperconducting electrical circuits: An architecture for quantum computation”,Physical Review A,2004,69(6),062320.
    [52] Blais A., Gambetta J., Wallraf A., et al.,“Quantum-information processing withcircuit quantum electrodynamics”, Physical Review A,2007,75(3),032329.
    [53] Abdumalikov A. A. J., Astafev O., Zagoskin A.M., et al.,“Electromagneticallyinduced transparency on a single artifcial atom”, Physical Review Letters,2010,104(19),193601.
    [54] Armour A.D., Blencowe M.P., Schwab K.C.,“Entanglement and decoherence ofa micromechanical resonator via coupling to a cooper-pair box”, Physical ReviewLetters,2002,88(14),148301.
    [55] Irish E.K. Schwab K.,“Quantum measurement of a coupled nanomechanicalresonator-cooper-pair box system”, Physical Review B,2003,68(15),155311.
    [56] Zhang P., Wang Y.D., Sun C.P.,“Cooling mechanism for a nanomechanical res-onator by periodic coupling to a cooper pair box”, Physical Review Letters,2005,95(9),097204.
    [57] Xue F., Wang Y., Sun C., et al.,“Controllable coupling between fux qubit andnanomechanical resonator by magnetic feld”, New Journal of Physics,2007,9,35.
    [58] Cleland A.N. Geller M.R.,“Superconducting qubit storage and entanglement withnanomechanical resonators”, Physical Review Letters,2004,93(7),070501.
    [59] O’Connell A.D., Hofheinz M., Ansmann M., et al.,“Quantum ground state andsingle-phonon control of a mechanical resonator”, Nature,2010,464(7289),697–703.
    [60] LaHaye M.D., Suh J., Echternach P.M., et al.,“Nanomechanical measurements ofa superconducting qubit”, Nature,2009,459(7249),960–964.
    [61] Suh J., LaHaye M., Echternach P., et al.,“Parametric amplifcation and back-action noise squeezing by a qubit-coupled nanoresonator”, Nano Lett,2010.
    [62] Lvovsky A.I., Sanders B.C., Tittel W.,“Optical quantum memory”, Nat Photon,2009,3(12),706–714.
    [63] Fleischhauer M., Imamoglu A., Marangos J.P.,“Electromagnetically inducedtransparency: Optics in coherent media”, Reviews of Modern Physics,2005,77(2),633–673.
    [64] Harris S.,“Electromagnetically induced transparency”, Physics Today,1997,50(7),36–42.
    [65] Boller K.J., Imamolu A., Harris S.E.,“Observation of electromagnetically inducedtransparency”, Physical Review Letters,1991,66(20),2593–2596.
    [66] Agarwal G. Huang S.,“Electromagnetically induced transparency in mechanicalefects of light”, Physical Review A,2010,81(4),041803.
    [67] Weis S., Rivière R., Deléglise S., et al.,“Optomechanically induced transparency”,Science,2010,330(6010),1520.
    [68] Yuan X., Goan H., Lin C., et al.,“Nanomechanical-resonator-assisted inducedtransparency in a cooper-pair box system”, New Journal of Physics,2008,10,095016.
    [69] Kasapi A., Jain M., Yin G.Y., et al.,“Electromagnetically induced transparency:Propagation dynamics”, Physical Review Letters,1995,74(13),2447.
    [70] Fleischhauer M. Lukin M.D.,“Quantum memory for photons: Dark-state polari-tons”, Physical Review A,2002,65(2),022314.
    [71] Schmidt O., Wynands R., Hussein Z., et al.,“Steep dispersion and group velocitybelow c/3000in coherent population trapping”, Physical Review A,1996,53(1),R27–R30.
    [72] Hau L.V., Harris S.E., Dutton Z., et al.,“Light speed reduction to17metres persecond in an ultracold atomic gas”, Nature,1999,397(6720),594–598.
    [73] Lukin M. Imamo lu A.,“Controlling photons using electromagnetically inducedtransparency”, Nature,2001,413(6853),273.
    [74] Harris S.E., Field J.E., Imamogˇlu A.,“Nonlinear optical processes using elec-tromagnetically induced transparency”, Physical Review Letters,1990,64(10),1107–1110.
    [75] Schmidt H. Imamogˇdlu A.,“Giant kerr nonlinearities obtained by electromagnet-ically induced transparency”, Optics letters,1996,21(23),1936–1938.
    [76] Li Y. Xiao M.,“Enhancement of nondegenerate four-wave mixing based on elec-tromagnetically induced transparency in rubidium atoms”, Optics letters,1996,21(14),1064–1066.
    [1] Schwab K.C. Roukes M.L.,“Putting mechanics into quantum mechanics”, PhysicsToday,2005,58(7),36–42.
    [2] Kippenberg T.J. Vahala K.J.,“Cavity optomechanics: Back-action at themesoscale”, Science,2008,321(5893),1172–1176.
    [3] Caves C.M., Thorne K.S., Drever R.W.P., et al.,“On the measurement of a weakclassical force coupled to a quantum-mechanical oscillator. i. issues of principle”,Reviews of Modern Physics,1980,52(2),341.
    [4] Bocko M.F. Onofrio R.,“On the measurement of a weak classical force coupled toa harmonic oscillator: experimental progress”, Reviews of Modern Physics,1996,68(3),755.
    [5] Buks E. Yurke B.,“Mass detection with a nonlinear nanomechanical resonator”,Physical Review E,2006,74(4),046619.
    [6] Braginsky V.B., Quantum Measurement, Cambridge University Press, Cambridge,1992.
    [7] LaHaye M.D., Buu O., Camarota B., et al.,“Approaching the quantum limit of ananomechanical resonator”, Science,2004,304(5667),74–77.
    [8] Naik A., Buu O., LaHaye M.D., et al.,“Cooling a nanomechanical resonator withquantum back-action”, Nature,2006,443(7108),193–196.
    [9] Brown K.R., Britton J., Epstein R.J., et al.,“Passive cooling of a micromechanicaloscillator with a resonant electric circuit”, Physical Review Letters,2007,99(13),137205.
    [10] Armour A.D., Blencowe M.P., Schwab K.C.,“Entanglement and decoherence ofa micromechanical resonator via coupling to a cooper-pair box”, Physical ReviewLetters,2002,88(14),148301.
    [11] Wallraf A., Schuster D.I., Blais A., et al.,“Strong coupling of a single photon toa superconducting qubit using circuit quantum electrodynamics”, Nature,2004,431(7005),162–167.
    [12] Regal C.A., Teufel J.D., Lehnert K.W.,“Measuring nanomechanical motion witha microwave cavity interferometer”, Nat Phys,2008,4(7),555–560.
    [13] Braunstein S.L. van Loock P.,“Quantum information with continuous variables”,Reviews of Modern Physics,2005,77(2),513.
    [14] Vitali D., Tombesi P., Woolley M.J., et al.,“Entangling a nanomechanical res-onator and a superconducting microwave cavity”, Physical Review A,2007,76(4),042336.
    [15] Woolley M.J., Doherty A.C., Milburn G.J., et al.,“Nanomechanical squeezingwith detection via a microwave cavity”, Physical Review A,2008,78(6),062303.
    [16] Tian L., Allman M.S., Simmonds R.W.,“Parametric coupling between macro-scopic quantum resonators”, New Journal of Physics,2008,10,115001.
    [17] Hertzberg J.B., Rocheleau T., Ndukum T., et al.,“Back-action-evading measure-ments of nanomechanical motion”, Nat Phys,2010,6(3),213–217.
    [18] Xue F., Wang Y.D., Liu Y.x., et al.,“Cooling a micromechanical beam by couplingit to a transmission line”, Physical Review B,2007,76(20),205302.
    [19] Li Y., Wang Y.D., Xue F., et al.,“Quantum theory of transmission line resonator-assisted cooling of a micromechanical resonator”, Physical Review B,2008,78(13),134301.
    [20] Teufel J.D., Regal C.A., Lehnert K.W.,“Prospects for cooling nanomechanicalmotion by coupling to a superconducting microwave resonator”, New Journal ofPhysics,2008,10,095002.
    [21] Teufel J.D., Harlow J.W., Regal C.A., et al.,“Dynamical backaction of microwavefelds on a nanomechanical oscillator”, Physical Review Letters,2008,101(19),197203.
    [22] Rocheleau T., Ndukum T., Macklin C., et al.,“Preparation and detection of amechanical resonator near the ground state of motion”, Nature,2009,463(7277),72–75.
    [23] Agarwal G.S. Huang S.,“Electromagnetically induced transparency in mechanicalefects of light”, Physical Review A,2010,81(4),041803.
    [24] Schliesser A. Kippenberg T.J., Advances in atomic, molecular and optical physics,Academic Press, Amsterdam,2010.
    [25] Weis S., Rivi`ere R., Del′eglise S., et al.,“Optomechanically induced transparency”,Science,2010,330(6010),1520.
    [26] Kuzmich A., Dogariu A., Wang L.J., et al.,“Signal velocity, causality, and quan-tum noise in superluminal light pulse propagation”, Physical Review Letters,2001,86(18),3925.
    [27] Mok J.T. Eggleton B.J.,“Photonics: Expect more delays”, Nature,2005,433(7028),811–812.
    [28] Kasapi A., Jain M., Yin G.Y., et al.,“Electromagnetically induced transparency:Propagation dynamics”, Physical Review Letters,1995,74(13),2447.
    [29] Hau L.V., Harris S.E., Dutton Z., et al.,“Light speed reduction to17metres persecond in an ultracold atomic gas”, Nature,1999,397(6720),594–598.
    [30] Bigelow M.S., Lepeshkin N.N., Boyd R.W.,“Observation of ultraslow light prop-agation in a ruby crystal at room temperature”, Physical Review Letters,2003,90(11),113903.
    [31] Bigelow M.S., Lepeshkin N.N., Boyd R.W.,“Superluminal and slow light propa-gation in a room-temperature solid”, Science,2003,301(5630),200–202.
    [32] Okawachi Y., Bigelow M.S., Sharping J.E., et al.,“Tunable all-optical delays viabrillouin slow light in an optical fber”, Physical Review Letters,2005,94(15),153902.
    [33] Song K., Herra′ez M.G., Th′evenaz L.,“Observation of pulse delaying and advance-ment in optical fbers using stimulated brillouin scattering”, Optics Express,2005,13(1),82–88.
    [34] Herra′ez M.G., Song K., Th′evenaz L.,“Optically controlled slow and fast lightin optical fbers using stimulated brillouin scattering”, Applied Physics Letters,2005,87(8),081113.
    [35] Thevenaz L.,“Slow and fast light in optical fbres”, Nature Photonics,2008,2(8),474–481.
    [36] Xue W., Sales S., Capmany J., et al.,“Microwave phase shifter with control-lable power response based on slow-and fast-light efects in semiconductor opticalamplifers”, Optics letters,2009,34(7),929–931.
    [37] Wei L., Xue W., Chen Y., et al.,“Optically fed microwave true-time delay basedon a compact liquid-crystal photonic-bandgap-fber device”, Optics letters,2009,34(18),2757–2759.
    [38] Dobrindt J.M., Wilson-Rae I., Kippenberg T.J.,“Parametric normal-mode split-ting in cavity optomechanics”, Physical Review Letters,2008,101(26),263602.
    [39] Genes C., Vitali D., Tombesi P., et al.,“Ground-state cooling of a micromechan-ical oscillator: Comparing cold damping and cavity-assisted cooling schemes”,Physical Review A,2008,77(3),033804.
    [40] Giovannetti V. Vitali D.,“Phase-noise measurement in a cavity with a movablemirror undergoing quantum brownian motion”, Physical Review A,2001,63(2),023812.
    [41] Marquardt F., Chen J.P., Clerk A.A., et al.,“Quantum theory of cavity-assistedsideband cooling of mechanical motion”, Physical Review Letters,2007,99(9),093902.
    [42] Boyd R.W., Nonlinear Optics, Academic Press, Amsterdam,2008.
    [43] Kippenberg T.J. Vahala K.J.,“Cavity opto-mechanics”, Opt. Express,2007,15(25),17172–17205.
    [44] Gardiner C.W. Zoller P., Quantum Noise, Springer, Berlin,2004.
    [45] Clerk A.A., Devoret M.H., Girvin S.M., et al.,“Introduction to quantum noise,measurement, and amplifcation”, Reviews of Modern Physics,2010,82(2),1155.
    [46] Thompson R.J., Rempe G., Kimble H.J.,“Observation of normal-mode splittingfor an atom in an optical cavity”, Physical Review Letters,1992,68(8),1132.
    [47] Gro¨ blacher S., Hammerer K., Vanner M., et al.,“Observation of strong couplingbetween a micromechanical resonator and an optical cavity feld”, Nature,2009,460(7256),724–727.
    [48] Kozinsky I., Postma H.W.C., Kogan O., et al.,“Basins of attraction of a nonlinearnanomechanical resonator”, Physical Review Letters,2007,99(20),207201.
    [49] Rocheleau T., Ndukum T., Macklin C., et al.,“Preparation and detection of amechanical resonator near the ground state of motion”, Nature,2010,463(7277),72–75.
    [50] Solli D., Chiao R.Y., Hickmann J.M.,“Superluminal efects and negative groupdelays in electronics, and their applications”, Physical Review E,2002,66(5),056601.
    [51] Stenner M.D., Gauthier D.J., Neifeld M.A.,“The speed of information in a ‘fast-light’ optical medium”, Nature,2003,425(6959),695–698.
    [1] Diez S., Schmidt C., Ludwig R., et al.,“Four-wave mixing in semiconductor opticalamplifers for frequency conversion and fast optical switching”, IEEE JournalSelected Topics in Quantum Electronics,1997,3(5),1131–1145.
    [2] Kitayama K.,“Highly stabilized millimeter-wave generation by using fber-opticfrequency-tunable comb generator”, Journal of Lightwave Technology,1997,15(5),883–893.
    [3] Wiberg A., Milla′n P., Andr′es M., et al.,“Microwave-photonic frequency multi-plication utilizing optical four-wave mixing and fber bragg gratings”, Journal oflightwave technology,2006,24(1),329.
    [4] Harris S.E., Field J.E., Imamogˇlu A.,“Nonlinear optical processes using elec-tromagnetically induced transparency”, Physical Review Letters,1990,64(10),1107–1110.
    [5] Boller K.J., Imamolu A., Harris S.E.,“Observation of electromagnetically inducedtransparency”, Physical Review Letters,1991,66(20),2593–2596.
    [6] Li Y.q. Xiao M.,“Enhancement of nondegenerate four-wave mixing based onelectromagnetically induced transparency in rubidium atoms”, Opt. Lett.,1996,21(14),1064–1066.
    [7] Schmidt H. Imamogˇlu A.,“Giant kerr nonlinearities obtained by electromagneti-cally induced transparency”, Opt. Lett.,1996,21(23),1936–1938.
    [8] Ham B.S., Shahriar M.S., Hemmer P.R.,“Enhanced nondegenerate four-wavemixing owing to electromagnetically induced transparency in a spectral hole-burning crystal”, Opt. Lett.,1997,22(15),1138–1140.
    [9] Arcizet O., Cohadon P.F., Briant T., et al.,“Radiation-pressure cooling and op-tomechanical instability of a micromirror”, Nature,2006,444(7115),71–74.
    [10] Wilson-Rae I., Nooshi N., Zwerger W., et al.,“Theory of ground state coolingof a mechanical oscillator using dynamical backaction”, Physical Review Letters,2007,99(9),093901.
    [11] Marquardt F., Chen J.P., Clerk A.A., et al.,“Quantum theory of cavity-assistedsideband cooling of mechanical motion”, Physical Review Letters,2007,99(9),093902.
    [12] Genes C., Vitali D., Tombesi P., et al.,“Ground-state cooling of a micromechan-ical oscillator: Comparing cold damping and cavity-assisted cooling schemes”,Physical Review A,2008,77(3),033804.
    [13] Kippenberg T.J. Vahala K.J.,“Cavity optomechanics: Back-action at themesoscale”, Science,2008,321(5893),1172–1176.
    [14] Groblacher S., Hammerer K., Vanner M.R., et al.,“Observation of strong couplingbetween a micromechanical resonator and an optical cavity feld”, Nature,2009,460(7256),724–727.
    [15] Woolley M.J., Doherty A.C., Milburn G.J., et al.,“Nanomechanical squeezingwith detection via a microwave cavity”, Physical Review A,2008,78(6),062303.
    [16] Regal C.A., Teufel J.D., Lehnert K.W.,“Measuring nanomechanical motion witha microwave cavity interferometer”, Nat Phys,2008,4(7),555–560.
    [17] Teufel J.D., Harlow J.W., Regal C.A., et al.,“Dynamical backaction of microwavefelds on a nanomechanical oscillator”, Physical Review Letters,2008,101(19),197203.
    [18] Rocheleau T., Ndukum T., Macklin C., et al.,“Preparation and detection of amechanical resonator near the ground state of motion”, Nature,2010,463(7277),72–75.
    [19] Schliesser A.,“Cavity optomechanics and optical frequency comb generation withsilica whispering-gallery-mode microresonators,”, Thesis, Ludwig-Maximilians-Universita¨t Mu¨nchen,2009.
    [20] Agarwal G.S. Huang S.,“Electromagnetically induced transparency in mechanicalefects of light”, Physical Review A,2010,81(4),041803.
    [21] Weis S., Rivi`ere R., Del′eglise S., et al.,“Optomechanically induced transparency”,Science,2010,330(6010),1520–1523.
    [22] Safavi-Naeini A.H., Alegre T.P.M., Chan J., et al.,“Electromagnetically inducedtransparency and slow light with optomechanics”, Nature,2011,472(7341),69–73.
    [23] Teufel J.D., Li D., Allman M.S., et al.,“Circuit cavity electromechanics in thestrong-coupling regime”, Nature,2011,471(7337),204–208.
    [24] Dorsel A., McCullen J.D., Meystre P., et al.,“Optical bistability and mirror con-fnement induced by radiation pressure”, Physical Review Letters,1983,51(17),1550–1553.
    [25] Fabre C., Pinard M., Bourzeix S., et al.,“Quantum-noise reduction using a cavitywith a movable mirror”, Physical Review A,1994,49(2),1337–1343.
    [26] Huang S. Agarwal G.S.,“Normal-mode splitting and antibunching in stokes andanti-stokes processes in cavity optomechanics: Radiation-pressure-induced four-wave-mixing cavity optomechanics”, Physical Review A,2010,81(3),033830.
    [27] Teufel J.D., Donner T., Li D., et al.,“Sideband cooling of micromechanical motionto the quantum ground state”, Nature,2011,475(7356),359–363.
    [28] Hau L.V., Harris S.E., Dutton Z., et al.,“Light speed reduction to17metres persecond in an ultracold atomic gas”, Nature,1999,397(6720),594–598.
    [29] Greene B.I., Muller J.F., Orenstein J., et al.,“Phonon-mediated optical nonlin-earity in polydiacetylene”, Physical Review Letters,1988,61(3),325–328.
    [30] Boyd R.W., Nonlinear Optics, Academic Press, Amsterdam,2008.
    [31] Gupta S., Moore K.L., Murch K.W., et al.,“Cavity nonlinear optics at low photonnumbers from collective atomic motion”, Physical Review Letters,2007,99(21),213601.
    [32] Brennecke F., Ritter S., Donner T., et al.,“Cavity optomechanics with a bose-einstein condensate”, Science,2008,322(5899),235–238.
    [33] Kanamoto R. Meystre P.,“Optomechanics of a quantum-degenerate fermi gas”,Physical Review Letters,2010,104(6),063601.
    [34] Gardiner C.W. Zoller P., Quantum Noise, Springer, Berlin,2004.
    [35] Li J., O’Faolain L., Rey I.H., et al.,“Four-wave mixing in photonic crystal waveg-uides: slow light enhancement and limitations”, Opt. Express,2011,19(5),4458–4463.
    [36] Schliesser A., Riviere R., Anetsberger G., et al.,“Resolved-sideband cooling of amicromechanical oscillator”, Nat Phys,2008,4(5),415–419.
    [37] Prasanna Venkatesh B., Larson J., O’Dell D.H.J.,“Band-structure loops and mul-tistability in cavity qed”, Physical Review A,2011,83(6),063606.
    [38] Ghobadi R., Bahrampour A.R., Simon C.,“Quantum optomechanics in thebistable regime”, Physical Review A,2011,84(3),033846.
    [39] Jiang C., Chen B., Zhu K.,“Tunable pulse delay and advancement device based ona cavity electromechanical system”, EPL (Europhysics Letters),2011,94,38002.
    [40] Reid M.D. Walls D.F.,“Generation of squeezed states via degenerate four-wavemixing”, Physical Review A,1985,31(3),1622–1635.
    [41] Slusher R.E., Hollberg L.W., Yurke B., et al.,“Observation of squeezed statesgenerated by four-wave mixing in an optical cavity”, Physical Review Letters,1985,55(22),2409–2412.
    [1] Gibbs H.M., Optical Bistability: Congrolling light with light, Academic Press,Amsterdam,1985.
    [2] O’Brien J.,“Optical quantum computing”, Science,2007,318(5856),1567.
    [3] Bouwmeester D., Ekert A., Zeilinger A., The Physics of Quantum Information,Springer, Berlin,2000.
    [4] Chang D.E., Sorensen A.S., Demler E.A., et al.,“A single-photon transistor usingnanoscale surface plasmons”, Nat Phys,2007,3(11),807–812.
    [5] Hong F.Y. Xiong S.J.,“Single-photon transistor using microtoroidal resonators”,Physical Review A,2008,78(1),013812.
    [6] Hwang J., Pototschnig M., Lettow R., et al.,“A single-molecule optical transis-tor”, Nature,2009,460(7251),76–80.
    [7] Tominaga J., Mihalcea C., Büchel D., et al.,“Local plasmon photonic transistor”,Applied Physics Letters,2001,78,2417.
    [8] Medhekar S. Sarkar R.K.,“All-optical passive transistor”, Opt. Lett.,2005,30(8),887–889.
    [9] Schmidt H. Imamogˇlu A.,“Giant kerr nonlinearities obtained by electromagneti-cally induced transparency”, Optics letters,1996,21(23),1936–1938.
    [10] Harris S.,“Electromagnetically induced transparency”, Physics Today,1997,50,36.
    [11] Harris S.E. Yamamoto Y.,“Photon switching by quantum interference”, PhysicalReview Letters,1998,81(17),3611–3614.
    [12] Lukin M.,“Colloquium: Trapping and manipulating photon states in atomicensembles”, Reviews of Modern Physics,2003,75(2),457.
    [13] Fleischhauer M., Imamogˇlu A., Marangos J.,“Electromagnetically induced trans-parency: Optics in coherent media”, Reviews of Modern Physics,2005,77(2),633.
    [14] Miller R., Northup T., Birnbaum K., et al.,“Trapped atoms in cavity qed: cou-pling quantized light and matter”, Journal of Physics B: Atomic, Molecular andOptical Physics,2005,38, S551.
    [15] Duan L.M. Kimble H.J.,“Scalable photonic quantum computation throughcavity-assisted interactions”, Physical Review Letters,2004,92(12),127902.
    [16] Birnbaum K.M., Boca A., Miller R., et al.,“Photon blockade in an optical cavitywith one trapped atom”, Nature,2005,436(7047),87–90.
    [17] Waks E. Vuckovic J.,“Dipole induced transparency in drop-flter cavity-waveguidesystems”, Physical Review Letters,2006,96(15),153601.
    [18] Weis S., Rivière R., Deléglise S., et al.,“Optomechanically induced transparency”,Science,2010,330(6010),1520.
    [19] Safavi-Naeini A., Alegre T., Chan J., et al.,“Electromagnetically induced trans-parency and slow light with optomechanics”, Nature,2011,472(7341),69–73.
    [20] Regal C., Teufel J., Lehnert K.,“Measuring nanomechanical motion with a mi-crowave cavity interferometer”, Nature Physics,2008,4(7),555–560.
    [21] Vitali D., Tombesi P., Woolley M., et al.,“Entangling a nanomechanical resonatorand a superconducting microwave cavity”, Physical Review A,2007,76(4),42336.
    [22] Woolley M., Doherty A., Milburn G., et al.,“Nanomechanical squeezing withdetection via a microwave cavity”, Physical Review A,2008,78(6),062303.
    [23] Rocheleau T., Ndukum T., Macklin C., et al.,“Preparation and detection of amechanical resonator near the ground state of motion”, Nature,2009,463(7277),72–75.
    [24] Teufel J., Donner T., Li D., et al.,“Sideband cooling of micromechanical motionto the quantum ground state”, Nature,2011,475(7356),359–363.
    [25] Teufel J., Li D., Allman M., et al.,“Circuit cavity electromechanics in the strong-coupling regime”, Nature,2011,471(7337),204–208.
    [26] Agarwal G. Huang S.,“Electromagnetically induced transparency in mechanicalefects of light”, Physical Review A,2010,81(4),041803.
    [27] Lezama A., Barreiro S., Akulshin A.,“Electromagnetically induced absorption”,Physical Review A,1999,59(6),4732.
    [28] Mollow B. Glauber R.,“Quantum theory of parametric amplifcation. i”, PhysicalReview,1967,160(5),1076.
    [29] Verlot P., Tavernarakis A., Briant T., et al.,“Backaction amplifcation and quan-tum limits in optomechanical measurements”, Physical Review Letters,2010,104(13),133602.
    [30] Braginsky V., Strigin S., Vyatchanin S.,“Parametric oscillatory instability infabry-perot interferometer”, Physics Letters A,2001,287(5-6),331–338.
    [31] Kippenberg T.J., Rokhsari H., Carmon T., et al.,“Analysis of radiation-pressureinduced mechanical oscillation of an optical microcavity”, Physical Review Let-ters,2005,95(3),033901.
    [32] Massel F., Heikkila T.T., Pirkkalainen J.M., et al.,“Microwave amplifcation withnanomechanical resonators”, Nature,2011,480(7377),351–354.
    [33] Kimble H.J.,“The quantum internet”, Nature,2008,453(7198),1023–1030.
    [34] Aoki T., Parkins A.S., Alton D.J., et al.,“Efcient routing of single photons byone atom and a microtoroidal cavity”, Physical Review Letters,2009,102(8),083601.
    [35] Bajcsy M., Hoferberth S., Balic V., et al.,“Efcient all-optical switching usingslow light within a hollow fber”, Physical Review Letters,2009,102(20),203902.
    [36] Hall M.A., Altepeter J.B., Kumar P.,“Ultrafast switching of photonic entangle-ment”, Physical Review Letters,2011,106(5),053901.
    [37] Agarwal G.S. Huang S.,“Optomechanical systems as single-photon routers”,Physical Review A,2012,85(2),021801.
    [38] Astafev O., Zagoskin A., Abdumalikov A., et al.,“Resonance fuorescence of asingle artifcial atom”, Science,2010,327(5967),840.
    [39] Abdumalikov A. A. J., Astafev O., Zagoskin A.M., et al.,“Electromagneticallyinduced transparency on a single artifcial atom”, Physical Review Letters,2010,104(19),193601.
    [40] Hoi I.C., Wilson C.M., Johansson G., et al.,“Demonstration of a single-photonrouter in the microwave regime”, Physical Review Letters,2011,107(7),073601.
    [41] Teufel J., Harlow J., Regal C., et al.,“Dynamical backaction of microwave feldson a nanomechanical oscillator”, Physical Review Letters,2008,101(19),197203.
    [42] Arcizet O., Cohadon P., Briant T., et al.,“Radiation-pressure cooling and op-tomechanical instability of a micromirror”, Nature,2006,444(7115),71–74.
    [43] Wilson-Rae I., Nooshi N., Zwerger W., et al.,“Theory of ground state coolingof a mechanical oscillator using dynamical backaction”, Physical Review Letters,2007,99(9),93901.
    [44] Marquardt F., Chen J., Clerk A., et al.,“Quantum theory of cavity-assisted side-band cooling of mechanical motion”, Physical Review Letters,2007,99(9),93902.
    [45] Genes C., Vitali D., Tombesi P., et al.,“Ground-state cooling of a micromechan-ical oscillator: Comparing cold damping and cavity-assisted cooling schemes”,Physical Review A,2008,77(3),033804.
    [46] Kippenberg T. Vahala K.,“Cavity optomechanics: Back-action at the mesoscale”,Science,2008,321(5893),1172.
    [47] Groblacher S., Hammerer K., Vanner M., et al.,“Observation of strong couplingbetween a micromechanical resonator and an optical cavity feld”, Nature,2009,460(7256),724–727.
    [48] Schliesser A.,“Cavity optomechanics and optical frequency comb generationwith silica whispering-gallery-mode microresonators, thesis, ludwig-maximilians-universita¨t mu¨nchen”,2009.
    [49] Jiang C., Chen B., Zhu K.,“Tunable pulse delay and advancement device based ona cavity electromechanical system”, EPL (Europhysics Letters),2011,94,38002.
    [1] Gupta A., Akin D., Bashir R.,“Single virus particle mass detection using mi-croresonators with nanoscale thickness”, Applied Physics Letters,2004,84,1976.
    [2] Li M., Tang H.X., Roukes M.L.,“Ultra-sensitive nems-based cantilevers for sens-ing, scanned probe and very high-frequency applications”, Nat Nano,2007,2(2),114–120.
    [3] Feng X., He R., Yang P., et al.,“Very high frequency silicon nanowire electrome-chanical resonators”, Nano letters,2007,7(7),1953–1959.
    [4] Gil-Santos E., Ramos D., Martinez J., et al.,“Nanomechanical mass sens-ing and stifness spectrometry based on two-dimensional vibrations of resonantnanowires”, Nat Nano,2010,5(9),641–645.
    [5] Lassagne B., Garcia-Sanchez D., Aguasca A., et al.,“Ultrasensitive mass sensingwith a nanotube electromechanical resonator”, Nano letters,2008,8(11),3735–3738.
    [6] Jensen K., Kim K., Zettl A.,“An atomic-resolution nanomechanical mass sensor”,Nature nanotechnology,2008,3(9),533–537.
    [7] Ilic B., Yang Y., Aubin K., et al.,“Enumeration of dna molecules bound to ananomechanical oscillator”, Nano letters,2005,5(5),925–929.
    [8] Yang Y., Callegari C., Feng X., et al.,“Zeptogram-scale nanomechanical masssensing”, Nano letters,2006,6(4),583–586.
    [9] Ekinci K., Huang X., Roukes M.,“Ultrasensitive nanoelectromechanical massdetection”, Applied Physics Letters,2004,84(22),4469–4471.
    [10] Lavrik N. Datskos P.,“Femtogram mass detection using photothermally actuatednanomechanical resonators”, Applied Physics Letters,2003,82,2697.
    [11] Ilic B., Craighead H., Krylov S., et al.,“Attogram detection using nanoelectrome-chanical oscillators”, Journal of Applied Physics,2004,95,3694.
    [12] Wiesendanger R., Scanning Probe Microscopy and Spectroscopy, Cambridge Uni-versity Press, Cambridge, U. K.,1994.
    [13] Kim S., Ono T., Esashi M.,“Capacitive resonant mass sensor with frequencydemodulation detection based on resonant circuit”, Applied Physics Letters,2006,88,053116.
    [14] Arcamone J., Rius G., Abadal G., et al.,“Micro/nanomechanical resonators fordistributed mass sensing with capacitive detection”, Microelectronic engineering,2006,83(4),1216–1220.
    [15] Truitt P., Hertzberg J., Huang C., et al.,“Efcient and sensitive capacitive readoutof nanomechanical resonator arrays”, Nano letters,2007,7(1),120–126.
    [16] Forsen E., Abadal G., Ghatnekar-Nilsson S., et al.,“Ultrasensitive mass sensorfully integrated with complementary metal-oxide-semiconductor circuitry”, Ap-plied Physics Letters,2005,87,043507.
    [17] Groblacher S., Hammerer K., Vanner M.R., et al.,“Observation of strong couplingbetween a micromechanical resonator and an optical cavity feld”, Nature,2009,460(7256),724–727.
    [18] Agarwal G.S. Huang S.,“Electromagnetically induced transparency in mechanicalefects of light”, Physical Review A,2010,81(4),041803.
    [19] Weis S., Rivi`ere R., Del′eglise S., et al.,“Optomechanically induced transparency”,Science,2010,330(6010),1520–1523.
    [20] Teufel J.D., Li D., Allman M.S., et al.,“Circuit cavity electromechanics in thestrong-coupling regime”, Nature,2011,471(7337),204–208.
    [21] Safavi-Naeini A.H., Alegre T.P.M., Chan J., et al.,“Electromagnetically inducedtransparency and slow light with optomechanics”, Nature,2011,472(7341),69–73.
    [22] Marquardt F., Chen J.P., Clerk A.A., et al.,“Quantum theory of cavity-assistedsideband cooling of mechanical motion”, Physical Review Letters,2007,99(9),093902.
    [23] Regal C.A., Teufel J.D., Lehnert K.W.,“Measuring nanomechanical motion witha microwave cavity interferometer”, Nat Phys,2008,4(7),555–560.
    [24] Teufel J.D., Donner T., Li D., et al.,“Sideband cooling of micromechanical motionto the quantum ground state”, Nature,2011,475(7356),359–363.
    [25] Nakamura Y., Pashkin Y., Tsai J.,“Coherent control of macroscopic quantumstates in a single-cooper-pair box”, Nature,1999,398(6730),786–788.
    [26] You J. Nori F.,“Superconducting circuits and quantum information”, PhysicsToday,2005,58(11),42–47.
    [27] Clarke J. Wilhelm F.,“Superconducting quantum bits”, Nature,2008,453(7198),1031–1042.
    [28] You J. Nori F.,“Atomic physics and quantum optics using superconducting cir-cuits”, Nature,2011,474(7353),589–597.
    [29] Armour A., Blencowe M., Schwab K.,“Entanglement and decoherence of a mi-cromechanical resonator via coupling to a cooper-pair box”, Physical Review Let-ters,2002,88(14),148301.
    [30] Irish E.K. Schwab K.,“Quantum measurement of a coupled nanomechanicalresonator-cooper-pair box system”, Physical Review B,2003,68(15),155311.
    [31] Zhang P., Wang Y.D., Sun C.P.,“Cooling mechanism for a nanomechanical res-onator by periodic coupling to a cooper pair box”, Physical Review Letters,2005,95(9),097204.
    [32] LaHaye M., Suh J., Echternach P., et al.,“Nanomechanical measurements of asuperconducting qubit”, Nature,2009,459(7249),960–964.
    [33] Suh J., LaHaye M., Echternach P., et al.,“Parametric amplifcation and back-action noise squeezing by a qubit-coupled nanoresonator”, Nano letters,2010.
    [34] Li J.J. Zhu K.D.,“Plasmon-assisted mass sensing in a hybrid nanocrystal coupledto a nanomechanical resonator”, Physical Review B,2011,83(24),245421.
    [35] Teufel J.D., Harlow J.W., Regal C.A., et al.,“Dynamical backaction of microwavefelds on a nanomechanical oscillator”, Physical Review Letters,2008,101(19),197203.
    [36] Woolley M.J., Doherty A.C., Milburn G.J., et al.,“Nanomechanical squeezingwith detection via a microwave cavity”, Physical Review A,2008,78(6),062303.
    [37] Gardiner C.W. Zoller P., Quantum Noise, Springer, Berlin,2004.
    [38] Clerk A.A., Devoret M.H., Girvin S.M., et al.,“Introduction to quantum noise,measurement, and amplifcation”, Reviews of Modern Physics,2010,82(2),1155.
    [39] Ekinci K. Roukes M.,“Nanoelectromechanical systems”, Review of scientifc in-struments,2005,76,061101.
    [40] Ekinci K., Yang Y., Roukes M.,“Ultimate limits to inertial mass sensing basedupon nanoelectromechanical systems”, Journal of Applied Physics,2004,95,2682.
    [41] Cleland A. Roukes M.,“Noise processes in nanomechanical resonators”, Journalof Applied Physics,2002,92(5),2758–2769.
    [42] Teufel J.D., DonnerT, Castellanos-Beltran M.A., et al.,“Nanomechanical motionmeasured with an imprecision below that at the standard quantum limit”, NatNano,2009,4(12),820–823.
    [43] Rocheleau T., Ndukum T., Macklin C., et al.,“Preparation and detection of amechanical resonator near the ground state of motion”, Nature,2010,463(7277),72–75.
    [44] Boyd R.W., Nonlinear Optics, Academic Press, Amsterdam,2008.
    [45] Yuan X., Goan H., Lin C., et al.,“Nanomechanical-resonator-assisted inducedtransparency in a cooper-pair box system”, New Journal of Physics,2008,10,095016.
    [46] Rabl P., Shnirman A., Zoller P.,“Generation of squeezed states of nanomechanicalresonators by reservoir engineering”, Physical Review B,2004,70(20),205304.
    [47] Vion D., Aassime A., Cottet A., et al.,“Manipulating the quantum state of anelectrical circuit”, Science,2002,296(5569),886–889.
    [48] Schwab K. Roukes M.,“Putting mechanics into quantum mechanics”, PhysicsToday,2005,58(7),36–42.
    [49] Sun C.P., Wei L.F., Liu Y.x., et al.,“Quantum transducers: Integrating trans-mission lines and nanomechanical resonators via charge qubits”, Physical ReviewA,2006,73(2),022318.
    [50] Wu F., Ezekiel S., Ducloy M., et al.,“Observation of amplifcation in a stronglydriven two-level atomic system at optical frequencies”, Physical Review Letters,1977,38(19),1077–1080.
    [51] Xu X., Sun B., Berman P.R., et al.,“Coherent optical spectroscopy of a stronglydriven quantum dot”, Science,2007,317(5840),929–932.
    [52] Irish E.K., Gea-Banacloche J., Martin I., et al.,“Dynamics of a two-level systemstrongly coupled to a high-frequency quantum oscillator”, Physical Review B,2005,72(19),195410.
    [53] Irish E.K.,“Generalized rotating-wave approximation for arbitrarily large cou-pling”, Physical Review Letters,2007,99(17),173601.
    [54] Naik A., Hanay M., Hiebert W., et al.,“Towards single-molecule nanomechanicalmass spectrometry”, Nature nanotechnology,2009,4(7),445–450.
    [55] Wei L.F., Liu Y.X., Sun C.P., et al.,“Probing tiny motions of nanomechanicalresonators: Classical or quantum mechanical?”, Physical Review Letters,2006,97(23),237201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700