光机械系统中电磁诱导透明及其相关现象的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于在精密测量和高灵敏传感器方面具有重要的应用前景,近十几年来人们对各种腔光机械系统展开了广泛的研究,比如Casimir力的测量、冷却机械振子到其量子基态、实现机械振子与腔场的强耦合控制等。此外,由于机械元件的尺度和质量均分布在从纳米到微观再到宏观的过渡范围内,因此这种系统也可以用来验证和调控宏观物体的量子性质,从而加深人们对量子力学基本规律的理解和应用,如制备机械振子的压缩态和宏观量子叠加态、实现机械元件与腔场之间的纠缠等。在本论文中我们主要研究腔光机械系统中的部分非线性量子光学效应,特别是与电磁诱导透明有关的现象。其实现途径主要是通过各种不同跃迁通道之间的干涉来得到显著的共振增强的非线性效应。主要的工作包括以下几个方面:
     一、我们通过概率幅方程和Heisenberg-Langevin方程以及微扰法等介绍和总结了Λ型三能级原子介质、线性耦合薄膜腔光机械系统和平方耦合薄膜腔光机械系统三种媒介中的电磁诱导透明效应,并从缀饰态理论、暗态理论和反斯托克斯散射等方面对这些系统中的电磁诱导透明现象进行了物理解释。此外,我们还对这三种电磁诱导透明现象进行了比较分析,在发生条件、物理机制和图形特征三个方面总结了它们之间的异同之处。
     二、我们在大原子数极限和原子能级低激发的条件下探索了二能级原子系综对平方耦合薄膜腔光机械系统中电磁诱导透明现象的影响。通过求解系统Heisenberg-Langevin方程的稳态解和输入输出关系得出探测场的透射系数。再通过解析方法找到影响电磁诱导透明现象的四个参量的变化趋势。最后由数值结果确认其中起主导作用的参量从而发现原子介质对系统电磁诱导透明现象的主要影响。
     三、我们从理论上研究了在平方耦合薄膜腔光机械系统中通过电磁诱导透明来实现慢光现象。我们计算了由系统电磁诱导透明效应中的相位色散导致的探测脉冲的透射群延迟。并通过解析分析和数值模拟得出通过平方光机械耦合产生的慢光与线性耦合情况有很大差别,其潜在的物理过程涉及到双声子过程。我们还证明了该系统中的声子能量几乎全部来自于由环境温度引起的薄膜的热振动,且耦合场功率和环境温度构成了系统非线性相干的两个必不可少的元素。因此在平方耦合腔光机械系统中慢光不仅能通过耦合场功率来调节,而且也能够被环境温度所控制。且慢光能够在一个非常广泛的参数范围内来实现,甚至在高温下,例如200K。
     总之,本论文的研究加深了对宏观物体的量子属性的认识,有助于进一步了解混合系统中的各种非线性量子光学效应。这些研究对量子光学、非线性光学和精密测量等方面的研究和应用具有一定的参考价值。
In the past decades, lots of researches based on cavity optomechanical sys-tems have arisen due to their important applications on precision measurement andhigh-precision sensors, for example, Casimir force measurement, cooling mechan-ical resonators to their ground state of motion, strong coupling regime betweenmechanical resonators and cavity fields and so on. Besides, because the sizes andmass of mechanical elements are in transition range from nanometer to micro-scope even macro-scope, cavity optomechanical systems have also been exploit-ed as a tool to test and control quantum properties of macroscopic objects, andpromote the understanding of fundamental principle of quantum mechanics, e.g.,preparing mechanical squeezed states and macroscopic superposition states, creat-ing optomechanical entanglement between mechanical resonators and cavity fieldsand so on. In this thesis, we mainly study some quantum nonlinear effects in cavityoptomechanical systems, especially electromagnetically induced transparency andrelated phenomena. These phenomena can be realized by prominently enhancedresonant nonlinearity from quantum interference between different transition path-s. The main content is as follows:
     1. We introduce and summarize three different effects of electromagneticallyinduced transparency in Λ-type atomic media, linearly coupled cavity optomechan-ical systems and quadratically coupled cavity optomechanical systems via someanalytical methods such as probability amplitude equations, Heisenberg-Langevinequations and tiny-disturbance method, etc. We also make corresponding physicalinterpretation for these three effects in dressed state theory, dark state theory andanti-Stokes scattering. In addition, we do compare between them and find out thedifferences in initial conditions, physical reasons and graphical characteristics, etc.
     2. We study the effect of a two-level atomic ensemble on electromagneticallyinduced transparency in a quadratically coupled optomechanical system under theconditions of large atom-number limit and low-excitation case. We firstly acquireprobe-field transmission by solving system’s Heisenberg-Langevin equations insteady-state case and input-output relation. Then we find variation tendency offour parameters relative to electromagnetically induced transparency by analyticalexpression with an atomic medium being, and find out the dominant parameter vianumerical methods, and consequently we discover main effects of atomic mediaon electromagnetically induced transparency in this system.
     3. We theoretically investigate the slow-light phenomenon in a quadraticallycoupled cavity optomechanical system. We work out transmission group delay ofprobe field which is generated due to rapid phase dispersion induced by electro-magnetically induced transparency effect. By analysis and numerical examinationwe find the slow light via quadratic coupling has many differences from linear cou-pling cases, and its underlying physical process involves a two-phonon process.We also prove that in quadratically coupled optomechanical systems, almost allphonon energy are from membrane’s oscillation caused by environment tempera-ture, and environment temperature and coupling field power are two indispensableelements in nonlinear coherence. So the slow light can also be tuned by environ-ment temperature besides coupling field power in this system. In addition, the slowlight can be realized in an extensive range of parameters even at high temperature,e.g.,200K.
     In summary, this thesis may be helpful to deepen understanding of quantumproperties of macroscopic objects and know some quantum nonlinear effects inhybrid systems. These studies also may be with some reference value for theresearches and applications of quantum optics, nonlinear optics and precision
引文
[1] Lebedev P N. Untersuchungen uber die Druckkrafte des Lichtes. Ann. der Physik,1901,311(11):433–458
    [2] Nichols E F, Hull G F. The Pressure due to Radiation. Astrophys. J,1903,17(5):315–351
    [3]张可烨.波色-爱因斯坦凝聚体的腔光力学:[PhD Dissertation].上海:华东师范大学,2010
    [4] Aspelmeyer M, Meystre P, Schwab K. Quantum optomechanics. Phys. Today,2012,65(7):29–35
    [5] Ashkin A. Acceleration and Trapping of Particles by Radiation Pressure. Phys.Rev. Lett.,1970,24(4):156–159
    [6] Lamoreaux S. Casimir Forces: Still Surprising After60Years. Phys. Today,2007,60(2):40–45
    [7] Fitzgerald R. New All-Electrical Measurement Schemes Can Detect the Spin Stateof a Single Electron. Phys. Today,2004,57(10):22–24
    [8] Bose S, Jacobs K, Knight P L. Preparation of nonclassical states in cavities with amoving mirror. Phys. Rev. A,1997,56(5):4175–4186
    [9] Pepper B, Ghobadi R, Jeffrey E, et al. Optomechanical Superpositions via NestedInterferometry. Phys. Rev. Lett.,2012,109(2):023601/1–5
    [10] Kippenberg T, Vahala K. Cavity optomechanics: Back-action at the mesoscale.Science,2008,321(5893):1172–1176
    [11]李勇.量子光力学.物理,2012,41(7):474–475
    [12] Kleckner D, Bouwmeester D. Sub-kelvin optical cooling of a micromechanicalresonator. Nature,2006,444(7115):75–78
    [13] Arcizet O, Cohadon P F, Briant T, et al. Radiation-pressure cooling and optome-chanical instability of a micromirror. Nature,2006,444(7115):71–74
    [14] Park Y S, Wang H. Resolved-sideband and cryogenic cooling of an optomechanicalresonator. Nat. Phys.,2009,5(7):489–493
    [15] Mancini S, Vitali D, Tombesi P. Optomechanical Cooling of a Macroscopic Oscil-lator by Homodyne Feedback. Phys. Rev. Lett.,1998,80(4):688–691
    [16] Schliesser A, Riviere R, Anetsberger G, et al. Resolved-sideband cooling of amicromechanical oscillator. Nat. Phys.,2008,4(5):415–419
    [17] Gigan S, Bohm H R, Paternostro M, et al. Self-cooling of a micromirror by radia-tion pressure. Nature,2006,444(7115):67–70
    [18] Khalili F, Danilishin S, Miao H, et al. Preparing a Mechanical Oscillator in Non-Gaussian Quantum States. Phys. Rev. Lett.,2010,105(7):070403/1–4
    [19] Fiore V, Yang Y, Kuzyk M C, et al. Storing optical information as a mechanicalexcitation in a silica optomechanical resonator. Phys. Rev. Lett.,2011,107(13):133601/1–5
    [20] Kleckner D, Pikovski I, Jeffrey E, et al. Creating and verifying a quantum super-position in a micro-optomechanical system. New J. Phys.,2008,10(9):095020
    [21] Mancini S, Vitali D, Tombesi P. Scheme for Teleportation of Quantum States ontoa Mechanical Resonator. Phys. Rev. Lett.,2003,90(13):137901/1–4
    [22] Vitali D, Gigan S, Ferreira A, et al. Optomechanical Entanglement between aMovable Mirror and a Cavity Field. Phys. Rev. Lett.,2007,98(3):030405/1–4
    [23] Verhagen E, Deleglise S, Weis S, et al. Quantum-coherent coupling of a mechanicaloscillator to an optical cavity mode. Nature,2012,482(7383):63–67
    [24] Rugar D, Grutter P. Mechanical parametric amplification and thermomechanicalnoise squeezing. Phys. Rev. Lett.,1991,67(6):699–702
    [25] Suh J, LaHaye M D, Echternach P M, et al. Parametric Amplification and Back-Action Noise Squeezing by a Qubit-Coupled Nanoresonator. Nano Lett.,2010,10(10):3990–3994
    [26] Clerk A A, Marquardt F, Jacobs K. Back-action evasion and squeezing of a me-chanical resonator using a cavity detector. New J. Phys.,2008,10(9):095010/1–20
    [27] O’Connell A D, Hofheinz M, Ansmann M, et al. Quantum ground state and single-phonon control of a mechanical resonator. Nature,2010,464(7289):697–703
    [28] Groblacher S, Hammerer K, Vanner M R, et al. Observation of strong couplingbetween a micromechanical resonator and an optical cavity field. Nature,2009,460(7256):724–727
    [29] Zhang J, Pen K, Braunstein S L. Quantum-state transfer from light to macroscopicoscillators. Phys. Rev. A,2003,68(1):013808/1–5
    [30] Tian L, Wang H. Optical wavelength conversion of quantum states with optome-chanics. Phys. Rev. A,2010,82(5):053806/1–5
    [31] Marshall W, Simon C, Penrose R, et al. Towards Quantum Superpositions of aMirror. Phys. Rev. Lett.,2003,91(13):130401/1–4
    [32] Mancini S, Giovannetti V, Vitali D, et al. Entangling Macroscopic Oscillators Ex-ploiting Radiation Pressure. Phys. Rev. Lett.,2002,88(12):120401/1–4
    [33] Hartmann M J, Plenio M B. Steady State Entanglement in the Mechanical Vibra-tions of Two Dielectric Membranes. Phys. Rev. Lett.,2008,101(20):200503/1–4
    [34] Paternostro M, Vitali D, Gigan S, et al. Creating and Probing Multipartite Macro-scopic Entanglement with Light. Phys. Rev. Lett.,2007,99(25):250401/1–4
    [35] Weis S, Rivie`re R, Dele′glise S, et al. Optomechanically Induced Transparency.Science,2010,330(6010):1520–1523
    [36] Tian L. Adiabatic State Conversion and Pulse Transmission in OptomechanicalSystems. Phys. Rev. Lett.,2012,108(15):153604/1–5
    [37] Carmon T, Rokhsari H, Yang L, et al. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett.,2005,94(22):223902/1–4
    [38] Metzger C, Ludwig M, Neuenhahn C, et al. Selfinduced oscillations in an optome-chanical system driven by bolometric backaction. Phys. Rev. Lett.,2008,101(13):133903/1–4
    [39] Marquardt F, Harris J G E, Girvin S M. Dynamical multistability induced by ra-diation pressure in high-finesse micromechanical optical cavities. Phys. Rev. Lett.,2006,96(10):103901/1–4
    [40]李金金.广义纳米光机械系统的光学传播特性及其应用:[PhD Dissertation].上海:上海交通大学,2012
    [41] Dorsel A, McCullen J D, Meystre P, et al. Optical Bistability and Mirror Confine-ment Induced by Radiation Pressure. Phys. Rev. Lett.,1983,51(17):1550–1553
    [42] Carmon T, Cross M C, Vahala K J. Chaotic Quivering of Micron-Scaled On-ChipResonators Excited by Centrifugal Optical Pressure. Phys. Rev. Lett.,2007,98(16):167203/1–4
    [43] Meystre P. A short walk through quantum optomechanics. Ann. der Physik,2013,525(3):215–233
    [44] Murch K W, Moore K L, Gupta S, et al. Observation of quantum-measurementbackaction with an ultracold atomic gas. Nat. Phys.,2008,4(7):561–564
    [45] Brennecke F, Ritter S, Donner T, et al. Cavity optomechanics with a Bose-Einsteincondensate. Science,2008,322(5899):235–238
    [46] Thompson J D, Zwickl B M, Jayich A M, et al. Strong dispersive coupling ofa high-finesse cavity to a micromechanical membrane. Nature,2008,452(7183):72–75
    [47] Cheung H K, Law C K. Nonadiabatic optomechanical Hamiltonian of a movingdielectric membrane in a cavity. Phys. Rev. A,2011,84(2):023812/1–10
    [48] Wilson D J, Regal C A, Papp S B, et al. Cavity Optomechanics with StoichiometricSiN Films. Phys. Rev. Lett.,2009,103(20):207204/1–4
    [49] Zwickl B M, Shanks W E, al A M J. High quality mechanical and optical prop-erties of commercial silicon nitride membranes. Appl. Phys. Lett.,2008,92(10):103125/1–3
    [50] Sankey J C, Yang C, Zwickl B M, et al. Strong and tunable nonlinear optomechan-ical coupling in a low-loss system. Nat. Phys.,2010,6(9):707–712
    [51] Brennecke F, Donner T, Ritter S, et al. Cavity QED with a Bose-Einstein conden-sate. Nature,2007,450(7167):268–271
    [52] Li J J, Zhu K D. Nanometer optomechanical transistor based on nanometer cavityoptomechanics with a single quantum dot. J. Appl. Phys,2011,110(11):114308/1–6
    [53] Armani D K, Kippenberg T J, Spillane S M, et al. Ultra-high-Q toroid microcavityon a chip. Nature,2003,421(6926):925–928
    [54] Regal C A, Teufel J D, Lehnert K W. Measuring nanomechanical motion with amicrowave cavity interferometer. Nat. Phys.,2008,4(7):555–560
    [55] Teufel J D, Li D, Allman M S, et al. Circuit cavity electromechanics in the strong-coupling regime. Nature,2011,471(7337):204–208
    [56] Eichenfield M, Chan J, Camacho R M, et al. Optomechanical crystals. Nature,2009,462(7269):78–82
    [57] Safavi-Naeini A H, Mayer-Alegre T P, Chan J, et al. Electromagnetically inducedtransparency and slow light with optomechanics. Nature,2011,472(7341):69–73
    [58]江成.纳米机械振子与超导电路耦合系统中的量子效应研究及其应用:
    [PhD Dissertation].上海:上海交通大学,2012
    [59] Bhattacharya M, Uys H, Meystre P. Optomechanical trapping and cooling of par-tially reflective mirrors. Phys. Rev. A,2008,77(3):033819/1–12
    [60] Jayich A M, Sankey J C, Zwickl B M, et al. Dispersive optomechanics: a membraneinside a cavity. New J. Phys.,2008,10(9):095008/1–28
    [61] Barzanjeh S, Naderi M H, Soltanolkotabi M. Back-action ground-state cooling ofa micromechanical membrane via intensity-dependent interaction. Phys. Rev. A,2011,84(2):023803/1–8
    [62] Usami K, Naesby A, Bagci T, et al. Optical cavity cooling of mechanical modes ofa semiconductor nanomembrane. Nat. Phys.,2012,8(2):168–172
    [63] Buchmann L F, Zhang L, Chiruvelli A, et al. Macroscopic Tunneling of a Mem-brane in an Optomechanical Double-Well Potential. Phys. Rev. Lett.,2012,108(21):210403/1–5
    [64] Huang S, Agarwal G S. Electromagnetically induced transparency from two-phonon processes in quadratically coupled membranes. Phys. Rev. A,2011,83(2):023823/1–5
    [65] Zhan X G, Si L G, Zheng A S, et al. Tunable slow light in a quadratically coupledoptomechanical system. J. Phys. B: At. Mol. Opt. Phys.,2013,46(2):025501/1–6
    [66] Biancofiore C, Karuza M, Galassi M, et al. Quantum dynamics of an optical cav-ity coupled to a thin semitransparent membrane: Effect of membrane absorption.Phys. Rev. A,2011,84(3):033814/1–12
    [67]陈彬.波色-爱因斯坦凝聚体腔光机械系统中的光传播特性研究:[PhDDissertation].上海:上海交通大学,2012
    [68] Rokhsari H, Kippenberg T, Carmon T, et al. Radiation-pressure-driven micro-mechanical oscillator. Opt. Express,2005,13(14):5293–5301
    [69] Schliesser A, Delhaye P, Nooshi N, et al. Radiation Pressure Cooling of a Mi-cromechanical Oscillator Using Dynamical Backaction. Phys. Rev. Lett.,2006,97(24):243905/1–4
    [70] Schliesser A, Arcizet O, Riviere R, et al. Resolved-sideband cooling and positionmeasurement of a micromechanical oscillator close to the heisenberg uncertaintylimit. Nat. Phys.,2009,5(7):509–514
    [71] Lin Q, Rosenberg J, Jiang X. Mechanical oscillation and cooling actuated by theoptical gradient force. Phys. Rev. Lett.,2009,103(10):103601/1–4
    [72] Lin Q, Rosenberg J, Chang D, et al. Coherent mixing of mechanical excitations innano-optomechanical structures. Nat Photon,2010,4(4):236–242
    [73] Eichenfield M, Camacho R M, Chan J, et al. A picogram-and nanometre-scalephotonic-crystal optomechanical cavity. Nature,2009,459(7246):550–555
    [74] Chan J, Mayer-Alegre T P, Safavi-Naeini A H, et al. Laser cooling of a nanome-chanical oscillator into its quantum ground state. Nature,2011,478(7367):89–92
    [75] Chang D E, Safavi-Naeini A H, Hafezi M, et al. Slowing and stopping light usingan optomechanical crystal array. New J. Phys.,2011,13(2):023003/1–26
    [76] Bhattacherjee A B. Cavity quantum optomechanics of ultracold atoms in an opticallattice: Normal-mode splitting. Phys. Rev. A,2009,80(4):043607/1–7
    [77] Nagy D, Domokos P, Vukics A, et al. Nonlinear quantum dynamics of two BECmodes dispersively coupled by an optical cavity. European Physical Journal D,2009,55(3):659–668
    [78] Nagy D, Konya G, Szirmai G, et al. Dicke-Model Phase Transition in the QuantumMotion of a Bose-Einstein Condensate in an Optical Cavity. Phys. Rev. Lett.,2010,104(13):130401/1–4
    [79] Colombe Y, Steinmetz T, Dubois G, et al. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip. Nature,2007,450(7167):272–276
    [80] Paternostro M, Chiara G D, Palma G M. Cold-Atom-Induced Control of an Op-tomechanical Device. Phys. Rev. Lett.,2010,104(24):243602/1–4
    [81] Zhang K, Chen W, Bhattacharya M. Hamiltonian chaos in a coupled BEC-optomechanical-cavity system. Phys. Rev. A,2010,81(1):013802/1–6
    [82] Jiang C, Chen B, Zhu K D. Demonstration of a single-photon router with a cavityelectromechanical system. J. Appl. Phys,2012,112(3):033113/1–5
    [83] Li J J, Zhu K D. Tunable slow and fast light device based on a carbon nanotuberesonator. Opt. Express,2012,20(6):5840–5848
    [84]郝向英.半导体量子阱中量子相干效应及其应用的理论研究:[PhD Disser-tation].武汉:华中科技大学,2010
    [85] Harris S E. Electromagnetically induced transparency. Phys. Today,1997,50(7):36–42
    [86]李家华.量子相干介质的非线性光学性质及其相关现象的研究:[PhDDissertation].武汉:华中科技大学,2007
    [87] Harris S E, Field J E, Imamog lu A. Nonlinear optical processes using electromag-netically induced transparency. Phys. Rev. Lett.,1990,64(10):1107–1110
    [88] Boller K J, Imamog lu A, Harris S E. Observation of electromagnetically inducedtransparency. Phys. Rev. Lett.,1991,66(20):2593–2596
    [89] Scully M O, Zubairy M S. Quantum Optics,1ed. New York: Cambridge UniversityPress,1997
    [90] Fleischhauer M, Imamog lu A, Marangos J P. Electromagnetically induced trans-parency: Optics in coherent media. Rev. Mod. Phys.,2005,77(2):633–673
    [91] Fleischhauer M, Lukin M D. Dark-State Polaritons in Electromagnetically InducedTransparency. Phys. Rev. Lett.,2000,84(22):5094–5097
    [92] Wu Y, Yang X. Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis. Phys. Rev. A,2005,71(5):053806/1–7
    [93] Ian H, Liu Y X, Nori F. Tunable electromagnetically induced transparency andabsorption with dressed superconducting qubits. Phys. Rev. A,2010,81(6):063823/1–12
    [94] Abdumalikov A A, Astafiev O, Zagoskin A M, et al. Electromagnetically In-duced Transparency on a Single Artificial Atom. Phys. Rev. Lett.,2010,104(19):193601/1–4
    [95] Wu Y, Wen L, Zhu Y. Efficient hyper-Raman scattering in resonant coherent media.Opt. Lett.,2003,28(8):631–633
    [96] Yelin S F, Sautenkov V A, Kash M M, et al. Nonlinear optics via double darkresonances. Phys. Rev. A,2003,68(6):063801/1–7
    [97] Hau L V, Harris S E, Dutton Z, et al. Light speed reduction to17metres per secondin an ultracold atomic gas. Nature,1999,397(6720):594–598
    [98] Kash M M, Sautenkov V A, Zibrov A S, et al. Ultraslow Group Velocity andEnhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas. Phys.Rev. Lett.,1999,82(26):5229–5232
    [99] Wu Y, Deng L. Ultraslow Optical Solitons in a Cold Four-State Medium. Phys.Rev. Lett.,2004,93(14):143904/1–4
    [100] Harris S E, Field J E, Kasapi A. Dispersive properties of electromagnetically in-duced transparency. Phys. Rev. A,1992,46(1): R29–R32
    [101] Lukin M, Imamoglu A. Controlling photons using electromagnetically inducedtransparency. Nature,2001,413(6853):273–276
    [102] Fleischhauer M, Lukin M D. Quantum memory for photons: Dark-state polaritons.Phys. Rev. A,2002,65(2):022314/1–12
    [103] Schmidt H, Imamogdlu A. Giant kerr nonlinearities obtained by electromagneti-cally induced transparency. Opt. Lett.,1996,21(23):1936–1938
    [104] Boon J R, Zekou E, McGloin D, et al. Comparison of wavelength dependence incascade-, Λ-, and Vee-type schemes for electromagnetically induced transparency.Phys. Rev. A,1999,59(6):4675–4684
    [105] Xu W H, Wu J H, Gao J Y. Elimination of the transient absorption in a microwave-driven Lambda-type atomic system. Physics Letters A,2003,314(1-2):23–28
    [106] Schmidt H, Campman K L, al A C G. Tunneling induced transparency: Fanointerference in intersubband transitions. Appl. Phys. Lett.,1997,70(25):3455–3457
    [107] Paspalakis E, Kylstra N J, Knight P L. Transparency induced via decay interfer-ence. Phys. Rev. Lett.,1999,82(10):2079–2082
    [108] Chen Y C, Liao Y A, Chiu H Y, et al. Observation of the quantum interferencephenomenon induced by interacting dark resonances. Phys. Rev. A,2001,64(5):053806/1–5
    [109] Zhang S, Genov D A, Wang Y, et al. Plasmon-Induced Transparency in Metama-terials. Phys. Rev. Lett.,2008,101(4):047401/1–4
    [110] Agarwal G S, Huang S. Electromagnetically induced transparency in mechanicaleffects of light. Phys. Rev. A,2010,81(4):041803/1–4
    [111] Han Y, Cheng J, Zhou L. Electromagnetically induced transparency in a cavityoptomechanical system with an atomic medium. J. Phys. B: At. Mol. Opt. Phys.,2011,44(16):165505/1–5
    [112] Chang Y, Shi T, Liu Y X, et al. Multistability of electromagnetically induced trans-parency in atom-assisted optomechanical cavities. Phys. Rew. A,2011,83(6):063826/1–10
    [113] Chen B, Jiang C, Zhu K D. Slow light in a cavity optomechanical system with aBose-Einstein condensate. Phys. Rew. A,2011,83(5):055803/1–4
    [114] Chen B, Jiang C, Li J J, et al. All-optical transistor based on a cavity optomechan-ical system with a Bose-Einstein condensate. Phys. Rev. A,2011,84(5):055802/1–5
    [115]徐在新.高等量子力学,1ed.上海:华东师范大学出版社,1994
    [116]彭金生,李高翔.近代量子光学导论,1ed.北京:科学出版社,1996
    [117] Rempe G, Walther H, Klein N. Observation of quantum collapse and revival inone-atom maser. Phys. Rev. Lett.,1987,58(4):353–356
    [118] Rempe G, Schmidt-Kaler F, Walther H. Observation of sub-poissonian photonstatistics in a micromaser. Phys. Rev. Lett.,1990,64(23):2783–2786
    [119] Yang X, Wu Y, Li Y J. Unified and standardized procedure to solve various non-linear Jaynes-Cummings models. Phys. Rev. A,1997,55(6):4545–4551
    [120]沈元壤,顾世杰.非线性光学原理,1ed.北京:科学出版社,1987
    [121]石顺祥,陈国夫,赵卫, et al.非线性光学,1ed.西安:西安电子科技大学出版社,2003
    [122]司留刚.冷原子介质中的标量和矢量时间光孤子:[PhD Dissertation].武汉:华中科技大学,2010
    [123]郭硕鸿.电动力学,2ed.北京:高等教育出版社,1997
    [124] Huang S. Electromagnetically induced transparency and quantum effects in op-tomechanical systems:[PhD Dissertation]. Stillwater, Oklahoma, USA: OklahomaState University,2011
    [125] Gerry C C, Knight P L. Introductory Quantum Optics,1ed. New York: CambridgeUniversity Press,2005
    [126]周世勋.量子力学教程,1ed.北京:高等教育出版社,1979
    [127]曾谨言.量子力学卷I,4ed.北京:科学出版社,2007
    [128] Infeld L, Hull T E. The Factorization Method. Rev. Mod. Phys.,1951,23(1):21–68
    [129] Genes C, Vitali D, Tombesi P. Emergence of atom-light-mirror entanglement insidean optical cavity. Phys. Rev. A,2008,77(5):050307/1–4
    [130] Walls D F, Milburn G J. Quantum Optics,2ed. Berlin: Springer,2008
    [131] Ian H, Gong Z R, Li Y X, et al. Cavity optomechanical coupling assisted by anatomic gas. Phys. Rev. A,2008,78(1):013824/1–7
    [132] He L, Liu Y X, Yi S, et al. Control of photon propagation via electromagneticallyinduced transparency in lossless media. Phys. Rev. A,2007,75(6):063818/1–10
    [133] Xie X T, Macovei M A. Single-Cycle Gap Soliton in a Subwavelength Structure.Phys. Rev. Lett.,2010,104(7):073902/1–4
    [134] Xiong H, Si L G, Ding C L, et al. Classical theory of cylindrical nonlinear optics:Sum-and difference-frequency generation. Phys. Rev. A,2011,84(4):043841/1–6
    [135] Zeng H S, Kuang L M, Gao K L. Coherent manipulation of motional states oftrapped ions. J. Opt. B: Quantum Semiclass. Opt.,2004,6(7):269–275
    [136] Yang W X, Hou J M, Lee R K. Ultraslow bright and dark solitons in semiconductorquantum wells. Phys. Rev. A,2008,77(3):033838/1–7
    [137] Xiong H, Si L G, Ding C L, et al. Second-harmonic generation of cylindricalelectromagnetic waves propagating in an inhomogeneous and nonlinear medium.Phys. Rev. E,2012,85(1):016606/1–8
    [138] Boyd R W. Slow and fast light: fundamentals and applications. J. Mod. Opt.,2009,56(18-19):1908–1915
    [139] Boyd R W, Gauthier D J. Controlling the Velocity of Light Pulses. Science,2009,326(5956):1074–1077
    [140] Krauss T F. Why do we need slow light? Nature Photonics.,2008,2(8):448–450
    [141] Boyd R W, Gauthier D J. Slow and fast light. Prog. Opt.,2002,43:497–530
    [142] Bigelow M S, Lepeshkin N N, Boyd R W. Superluminal and Slow Light Propaga-tion in a Room-Temperature Solid. Science,2003,301(5630):200–202
    [143] The′venaz L. Slow and fast light in optical fibres. Nature Photon.,2008,2(8):474–481
    [144] Gardiner C W, Zoller P. Quantum Noise,2ed. Berlin: Springer,2000
    [145] Adams C S, Riis E. Laser cooling and trapping of neutral atoms. Prog. Quant.Electr.,1997,21(1):1–79
    [146] Lett P D, Watts R N, Westbrook C I, et al. Observation of Atoms Laser Cooledbelow the Doppler Limit. Phys. Rev. Lett.,1988,61(2):169–172
    [147] Xiong H, Si L G, Guo J F, et al. Classical theory of cylindrical nonlinear optics:Second-harmonic generation. Phys. Rev. A,2011,83(6):063845/1–8
    [148] Yang W X, Chen A X, Lee R K, et al. Matched slow optical soliton pairs viabiexciton coherence in quantum dots. Phys. Rev. A,2011,84(1):013835/1–11
    [149] Xiong H, Si L G, Huang P, et al. Analytic description of cylindrical electromagnet-ic wave propagation in an inhomogeneous nonlinear and nondispersive medium.Phys. Rev. E,2010,82(5):057602/1–4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700