七氟醚抗单肺通气致急性肺损伤保护作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 副题名:从花生四烯酸的生成和代谢途径研究
  • 作者:刘睿
  • 论文级别:博士
  • 学科专业名称:外科学
  • 学位年度:2013
  • 导师:王殿华
  • 学科代码:100210
  • 学位授予单位:昆明医科大学
  • 论文提交日期:2013-01-01
摘要
[研究背景和目的]
     单肺通气(one-lungventilation,OLV)作为临床常用的机械通气模式,可引起急性肺损伤(acute lung injury,ALI)。因此,研究OLV发病机制,寻找和阐明抗OLV致肺损伤的药物及其作用机制是临床实际工作中亟待解决和研究的重点之一
     研究证实,花生四烯酸(arachidonic acid.AA)及其代谢产物在肺损伤的发生发展中起着重要作用。但是,它们在OLV致AL1中的作用并不十分清楚。
     七氟醚(Sevoflurane)为临床常用挥发性麻醉药,被发现具有抗OLV致肺损伤保护作用,但其抗OLV致肺损伤作用机制是否与影响AA及其代谢产物的生成有关,未见报道。
     因而,本研究旨在从AA生成和代谢关键酶途径研究OLV致ALI和七氟醚抗OLV致ALI保护作用机制,为临床防治单肺通气致肺损伤寻找药物作用的新干预途径提供一定的实验依据。
     [研究方法]
     1.实验分组
     1.1单肺通气致急性肺损伤动物模型的建立
     采用右主支气管内插管+胸骨旁开窗术,建立单肺通气致急性肺损伤动物模型。24只日本大耳白兔随机分组(n=6)为:①假手术组(S组);②双肺通气组(T组);③双肺通气+胸骨旁开窗术组(TF组)和④单肺通气组(O组)。
     1.2Clara细胞剥除动物模型的建立
     采用萘气吸入法建立Clara细胞剥除动物模型。随机将12只日本大耳白兔分组(n=6)为:①对照组(C组)和②萘气吸入组(NA组),连续吸入萘气(100mg/L)12h。
     1.3七氟醚抗单肺通气致肺损伤作用机制研究方法
     实验动物随机分组:①假手术组(S组);②单肺通气组(O组);③单肺通气+七氟醚组(OS组),OS组又按所给七氟醚浓度的不同分为1vo1%、2vo1%、3vol%和4vo1%浓度亚组:④Clara细胞剥除假手术组(NA组);⑤Clara细胞剥除+单肺通气组(NAO组)和⑥Clara细胞剥除+单肺通气+七氟醚组(NAOS组):每组n=6。
     2.各项观察指标
     (1)显微镜观察肺组织形态学改变,同时进行肺组织病理学评分;
     (2)电镜观察肺细支气管Clara细胞形态学变化并计数;
     (3)测定肺湿/干(wet/dry,W/D)比值;
     (4) ELISA测定肺组织髓过氧化物酶(myeloperoxidase, MPO)活性,肺组织花生四烯酸(AA)、前列环素(prostacyclin,Prostaglandin i2, PGI2)、血栓素A2(thromboxane A2. TXA2)及白三烯B4(leukotrienes B4. LTB4)含量;
     (5)计数支气管肺泡灌洗液(bronchoalveolar lavage fluid, BALF)中多形核白细胞(polymorphonuclear leukocyte, PMN)数量:
     (6) Western-blot和定量RT-PCR分别检测肺组织Clara细胞分泌蛋白(clara cell secretory protein, CCSP)、胞质型磷脂酶A2(cytosolic phospholipase A2.C-PLA2)、环氧化酶-2(cyclooxygenase-2, COX2)和5-脂氧化酶(5-lipoxygenase,5-LOX)蛋白及其各自mRNA表达水平。
     [结果]
     第一部分动物模型的建立
     1.1单肺通气致急性肺损伤动物模型的建立
     与S组相比,O组、T组和TF组动物BALF中PMN计数,肺组织AA含量、MPO活性,肺W/D比值和肺组织病理学评分均明显增高(P<0.05);TF组和T组动物的上述各项指标无显著性差异,但均显著低于O组(P<0.05);光镜观察:S组动物肺组织未见明显病理学改变;T组和TF组动物肺组织可见散在充血、出血灶,肺泡腔少量红细胞和炎细胞浸润,肺泡壁略增厚;0组动物肺组织大面积充血、出血,肺泡腔内有较多红细胞和炎细胞浸润,肺泡壁广泛充血、增厚和渗出。
     1.2Clara细胞剥除动物模型的建立
     与C组相比,NA组动物肺组织CCSP mRNA和蛋白表达水平及细支气管Clara细胞计数显著降低(P<0.05),但两组间肺W/D比值和肺组织病理学评分无显著性差异。光镜观察:两组实验动物肺组织除部分区域见毛细血管扩张充血外,均未见明显病理改变。电镜观察:C组动物细支气管Clara细胞内含有较多分泌颗粒,而NA组动物细支气管内clara细胞数量明显减少且呈空泡样变性,其内未见明显分泌颗粒。
     第二部分七氟醚抗单肺通气致肺损伤作用机制
     2.1从花生四烯酸的胞质型磷脂酶A2(C-PLA2)生成途径研究
     2.1.1七氟醚对单肺通气致急性肺损伤兔肺组织CCSP及C-PLA2表达的影响
     与S组相比,O组和OS组兔肺组织CCSP mRNA和蛋白表达水平明显降低(P<0.05),肺组织C-PLA2mRNA和蛋白表达水平、AA含量、肺W/D比值及肺组织病理学评分均明显升高(P<0.05);与O组相比,OS组动物肺组织CCSP mRNA和蛋白表达水平明显增高(P<0.05),而肺组织C-PLA2mRNA和蛋白表达水平、肺组织AA含量及病理学评分显著下降(P<0.05);OS组不同浓度七氟醚兔肺组织CCSP mRNA和蛋白表达水平均无显著性差异,但随着七氟醚浓度的增加OS组肺组织C-PLA2mRNA和蛋白表达水平、肺组织AA含量、肺W/D比值及肺组织病理学评分逐渐降低(P<0.05)。光镜观察:S组动物肺组织除部分区域见毛细血管扩张外,无明显病理改变;O组动物肺组织可见大量出血、充血灶,肺泡腔内较多红细胞和炎症细胞浸润,肺泡壁明显充血、增厚和渗出;随七氟醚浓度增加,OS组动物肺组织上述病理形态学改变逐渐减轻。
     2.1.2CCSP在七氟醚抗单肺通气致急性肺损伤中的作用
     与S组相比,其它各组动物肺组织CCSP mRNA和蛋白表达水平均明显降低(P<0.05),肺组织C-PLA2mRNA和蛋白表达水平、AA含量、肺W/D比值和肺组织病理学评分除在NA组无显著差异外,其余各组均明显升高(P<0.05);与NA组相比,NAO组和NAOS组肺组织CCSP mRNA和蛋白表达水平无显著差异(P>0.05),而O组和OS组明显增高(P<0.05);与O组相比,肺组织CCSP mRNA和蛋白表达水平在OS组明显增高(P<0.05),在NAO和NAOS组明显降低(P<0.05),但肺组织C-PLA2mRNA和蛋白表达水平、肺组织AA含量、肺W/D比值及肺组织病理学评分在OS组和NAOS组中均明显降低(P<0.05),在NAO组明显增高(P<0.05):与OS组相比,NAO组和NAOS组动物肺组织CCSP mRNA和蛋白表达水平明显降低(P<0.05),但其余各指标均明显升高(P<0.05)。与NAO组相比,NAOS组动物肺组织CCSP mRNA和蛋白表达水平无明显差异,其余各指标均明显降低(P<0.05)。光镜观察:S组和NA组动物肺组织未见明显病理形态学改变:O组动物肺组织可见大量出血、充血灶,肺泡腔内较多红细胞和炎症细胞浸润,肺泡壁明显充血、增厚和渗出;NAO组动物肺组织上述病理形态学改变进一步加重;OS组肺组织散在小范围充血、出血灶,肺泡腔内散在红细胞和炎细胞浸润,肺泡壁明显增厚、渗出;NAOS组动物肺组织病理改变与OS组类似,但明显加重。
     2.2从花生四烯酸的COX2和5-LOX代谢途径研究
     与S组相比,O组和OS组动物肺组织COX2蛋白、COX2mRNA和5-LOX蛋白、5-LOX mRNA表达水平,肺组织PGI2、LTB4和TXA2含量,肺W/D比值及肺组织病理学评分均明显升高(P<0.05),肺组织PGI2/TXA2比值明显降低(P<0.05)。与O组相比,OS组动物肺组织PGI2/TXA2比值明显升高(P<0.05),而其余指标均明显降低(P<0.05)。S组动物肺组织除部分区域见毛细血管扩张充血外,未见明显病理改变。O组肺组织可见大量出血、充血灶,肺泡腔内较多红细胞和炎症细胞浸润,可见肺泡壁明显充血、增厚和渗出;OS组肺组织散在小范围充血、出血灶,肺泡腔内散在红细胞和炎细胞浸润,肺泡壁增厚。
     结论
     1.右主支气管内插管联合胸骨旁开窗术可用于构建兔单肺通气致急性肺损伤动物模型。
     2.单肺通气可诱发急性肺损伤,其机制可能与下调肺组织CCSP mRNA和蛋白表达,从而削弱了其对C-PLA2的抑制作用,以及激活AA代谢COX2和5-LOX途径,使得AA及其代谢产物大量生成有关。
     3.七氟醚抗单肺通气致急性肺损伤作用可能与通过或不通过促进肺组织CCSP的表达而抑制肺内AA生成的C-PLA2途径,减少肺组织AA的生成有关。
     4.七氟醚可通过调控肺内AA的COX2和5-LOX代谢途径发挥抗单肺通气致ALI作用,其机制可能与下调COX2和5-LOX表达,减少AA代谢产物的生成和调控PGI2/TXA2比值有关。
     5.肺内花生四烯酸生成和代谢途径可能是七氟醚抗单肺通气致急性肺损伤作用新的潜在干预途径。
Background and Objective
     Studies have shown that, as a widely used mechanical ventilation mode, one-lung ventilation (OLV) can result in acute lung injury (ALI). Therefore, to investigate the mechanisms of ALI induced by OLV and to unravell the preventive and therapeutic effects of drugs on OLV-induced ALI are currently areas of intense investigation.
     Sevoflurane, a commonly used clinical anesthetic, is considered to possess protective effects on OLV-induced ALI by inhibition of inflammatory response. However, its protective mechanisms are still unclear. Studies showed that arachidonic acid (AA) and its metabolites play an important role in the development of lung injury. Thus, the purpose of this study is to investigate the effects of sevoflurane on OLV-induced ALI from arachidonic acid metabolic pathways to present novel avenues for therapeutic intervention.
     Methods
     1. Animal grouping
     (1) OLV-induced ALI animal model
     OLV-induced ALI rabbit model was constructed by right mainstem bronchial intubation with parasternal fenestration. Totally24healthy Japanese white rabbits were randomly divided into4groups(n=6):①sham operated group(S group);②two-lung ventilation(TLV) group (T group);③TLV with parasternal fenestration group (TF group) and④OLV group (O group).
     (2) Exfoliation of clara cell rabbit model
     12healthy Japanese white rabbits were randomized into two groups (n=6): control group(C group),and naphthalene vapor (100mg/L,12h) inhaled group (NA group).
     (3) The protective mechanisms of sevoflurane on OLV-induced ALI
     Healthy Japanese white rabbits were randomized into groups as follows:①sham operated group (S group);②OLV group (O group);③OLV+sevoflurane group (OS group). The OS group was divided into4subgroups with different concentrations of sevoflurane(lvol%,2vol%,3vol%and4vol%respectively);④inhaled naphthalene vapor group (NA group);⑤inhaled naphthalene vapor before OLV group; and⑥inhaled naphthalene vapor before OLV+sevoflurane group (n=6).
     2. Detection indcators and methods
     (1) Histological scores and lung wet/dry weight (W/D) ratios were determined for lung injury assessment.
     (2) Expressions of lung CCSP, C-PLA2, COX2and5-LOX proteins and their homologous mRNAs were detected by western-blotting and real time-PCR, respectively.
     (3) PMN in the BALF were quantified by automated hematology analyzer.
     (4) Lung myeloperoxidase (MPO) activity, levels of lung arachidonic acid (AA), prostaglandin I2(PGI2), thromboxane A2(TXA2) and leukotrienes B4(LTB4) were quantified by ELISA.
     (5) Morphology and counts of clara cell were performed by electron microscope.
     (6) Lung histological change was observed by light microscope.
     Result
     1. One-lung ventilation (OLV) induced ALI animal model
     Compared with those in S group, MPO activity and AA contents in lung tissues, PMN counts in BALF, lung W/D ratio and histopathologic score were increased in O group,T group and TF group (P<0.05).No difference was observed between T group and TF group., but all the indicators mentioned above in the two groups were lower than those in O group (P<0.05). No significant histopathologic changes were observed in S group except for mild capillary dilatation in some areas of the lung tissues. Serious hyperemia and hemorrhage in the lung tissues, thickening and exudation of alveolar wall, marked red blood cell and inflammatory cell infiltration in the alveolar space were found in O group. In both T group and TF group, pulmonary histopathologic changes alleviated significantly as compared with those in O group
     2. Exfoliation of clara cell rabbit model
     Lung W/D ratio and lung histopathologic score in NA group were the same as those in N A group, but the counts of clara cell in bronchioles and the levels of lung CCSP mRNA and protein expressions were decreased dramatically in NA group as compared with those in C group (P<0.05). No significant histopathologic changes were observed in the two groups, but the counts of clara cell in bronchioles and the secretory granules in clara cell of NA group were lower than those of C group under electron microscope.
     3. Effects of sevoflurane on cytosolic phospholipaseA2and clara cell secretory protein in OLV-induced injured rabbit lung tissues
     In both O group and OS group, pulmonary CCSP mRNA and protein expressions were significantly lower, while C-PLA2mRNA and protein expressions, lung W/D ratios and lung histopathologic scores were higher than those in the S group (P<0.05). Compared with O group,the OS group showed significantly increased expressions of CCSP mRNA and protein and reduced C-PLA2mRNA and protein expressions. In the4OLV+sevoflurane groups, CCSP underwent no significant changes as sevoflurane concentration increased,but C-PLAt mRNA and protein expressions, lung W/D ratios and lung histopathologic scores all decreased gradually as the concentrations of sevoflurane increased (P<0.05).No significant pathological changes were observed in the S group except for mild capillary dilatation in some areas of lung tissues.In the0group,the lung tissues presented with severe hyperemia and hemorrhage, alveolar wall thickening and exudation, with markedly red blood cell and inflammatory cell infiltration in alveolar space. These pathological changes above mentioned in lung tissues were alleviated gradually as the concentration of sevoflurane increased.
     4. The role of clara cell secretory protein in the protective effects of sevoflurane against OLV-induced ALI
     Compared with those in the S group, lung CCSP mRNA and protein expressions were decreased in all the other groups(P<0.05), while lung C-PLA2mRNA and protein expressions,the contents of lung AA, lung W/D ratio and histopathologic score were increased (P<0.05), except that those in the NA group; Lung CCSP mRNA and protein expressions in NA group were the same as those in the NAO Group and NAOS group, but were significant lower than those in the O group and OS group (P<0.05), while the other indicators were significant higher than those in the latter four groups(P<0.05). Compared with those in the O group, lung CCSP mRNA and protein expressions decreased significantly in the NAO group and NAOS groups(P<0.05),but increased significantly in the OS group(P<0.05),while the rest indicators were increased significantly in the OS and NAOS groups(P<0.05),but decreased significantly in NAO group(P<0.05). Except for the lung CCSP mRNA and protein expressions were significant lower(P<0.05), the rest indicators were significant higher in the NAO group than those in the OS group and NAOS groups (P <0.05). The levels of lung CCSP mRNA and protein expressions increased significantly,but the other indicators decreased significantly in the OS group as compared with those in the NOS group(P<0.05). No apparent pathologic changes were found in both S group and NA group. A large area of hyperemia and hemorrhage in lung tissues, thickening and exudation in alveolar wall, marked red blood cell and inflammatory cell infiltration in alveolar space were found in O group and the pathologic changes above-mentioned were further deterioration in the NAO group. In the OS group, scattered regions of hyperemia and hemorrhage spots, mild red blood cell and inflammatory cell infiltration in alveolar space and apparent incrassation and exudation in alveolar wall were found. Pathologic changes in NAOS group were aggravated apparently as compared with those in the OS group.
     5. The effects of sevoflurane on AA metabolism COX2and5-LOX pathways in OLV-induced ALI
     COX2and5-LOX mRNA and protein expressions and the contents of LTB4, TXA2and PGI2in the lungs, lung wet/dry(W/D) ratio and histopathologic score were significantly higher, while PGI2/TXA2ratio was significantly lower in O group and OS group than those in S group (P<0.05). Compared with those in O group, all the indicators above-mentioned were decreased significantly but PGI2/TXA2ratio was elevated markedly in OS group(P<0.05). No significant histopathologic changes were observed in S group except for mild capillary dilatation in some areas of the lung tissues. Serious hyperemia and hemorrhage in the lung tissues, thickening and exudation of alveolar wall, marked red blood cell and inflammatory cell infiltration in the alveolar space were found in O group. These pulmonary histopathologic changes were alleviated significantly in OS group.
     Conclusion
     1. Combined the right mainstem bronchial intubation with parasternal fenestration can be used to construct rabbit model of OLV-induced ALI.
     2. OLV induced ALI may be associated with the increased expressions of C-PLA2by downregulating the expression of CCSP, and the activations of COX2and5-LOX pathways to result in increased generation of arachidonic acid (AA) and its metabolities in injured rabbit lung tissues.
     3. The protective effects of sevoflurane on OLV-induced ALI may be through the inhibition of C-PLA2expression by up-regulating the expression of CCSP or through other mechanisms to down-regulate the expression of C-PLA2.
     4. Sevoflurane can produce protective effects against on OLV-induced ALI possibly by reducing AA metabolities and regulating PGI2/TXA2ratio via inhibition of COX2and5-LOX pathways.
     5. Arachidonic acid generation and metabolism pathways in lung may be a novel avenues for therapeutic potential intervention of sevoflurane on OLV-induced ALI.
引文
[1]Webb HH,Tierney DF.Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures.Protection by positive end-expiratory pressure.Am Rev Respir Dis.1974,110:556-565.
    [2]Zeldin RA. Normadin D, Landtwing BS, et al. Postpneumo-nectomy pulmonary edema. J Thorac Cardiovasc Surg,1984,87:359-65.
    [3]Della Rocca G, Coccia C.Acute lung injury in thoracic surgery. Curr Opin Anaesthesiol,2013, 26(1):40-6.
    [4]You Z, Feng D, Xu H, et al.Nuclear factor-kappa B mediates one-lung ventilation-induced acute lung injury in rabbits.J Invest Surg,2012,25(2):78-85.
    [5]Kuipers MT, van der Poll T, Schultz MJ,et al.Bench-to-bedside review:Damage-associated molecular patterns in the onset of ventilator-induced lung injury. Crit Care,2011,15(6):235.
    [6]Kozian A, Schilling T, Rocken C,et al. Increased alveolar damage after mechanical ventilation in a porcine model of thoracic surgery. J Cardiothorac Vase Anesth,2010,24(4):617-23.
    [7]Riquelme M,Monnet E,Kudnig ST,et al.Cardiopulmonary changes induced during one-lung ventilation in anesthetized dogs with a closed thoracic cavity.Am J Vet Res,2005,66(6):973-977.
    [8]Michelet P, Roch A, Brousse D,et al.Effects of PEEP on oxygenation and respiratory mechanics during one-lung ventilation. Br J Anaesth,2005,95(2):267-73.
    [9]Funakoshi T, Ishibe Y,Okazaki N,et al.Effect of re-expansion after short-period lung collapse on pulmonary capillary permeability and pro-inflammatory cytokine gene expression in isolated rabbit lungs.British Journal of Anaesthesia,2004,92(4):558-563.
    [10]Hamvas A,Park CK,Palazzo R et al.Modify ing pulmonary ischemia-reperfusion injury by altering ventilatory strategies during ischemia.J Appl Physiol,1992,73(5):2112-2119.
    [11]游志坚,姚尚龙,李进.三种兔单肺通气模型的比较.中国实验动物学报,2007,15(4):245-248.
    [12]Mangar D, Kirchhoff GT, Derasari M,et al.Left bronchial intubation by a single-lumen tube in adults:effects of bevel and curvature[J]. South Med J,1994,87(11):1129-31.
    [13]罗静,刘睿,李江,等.双腔气管导管插管致气管及支气管损伤1例报道.昆明医学院学报,2008,(3):220-221.
    [1]刘流,李李,周海洋.clara细胞分泌蛋白对兔单肺通气肺损伤的保护作用.临床麻醉学杂志,2010,26(7):619-621.
    [2]Pakenham G, Lango J, Buonarati M, et al.Urinary naphthalene mercapturates as biomarkers of exposure and stereoselectivity of naphthalene epoxidation.Drug Metab Dispos, 2002,30(3):247-53.
    [3]Boers J E, Ambergen A W, Thunnissen F B. Number and proliferation of Clara cells in normal human airway epithelium.Am J Respir Crit Care Med,1999,159(5 Pt 1):1585-1591.
    [4]Plopper C G, Mariassy A T, Hill L H. Ultrastructure of the nonciliated bronchiolar epithelial (Clara) cell of mammalian lung:A comparison of rabbit, guinea pig, rat, hamster, and mouse. Exp Lung Res,1980,1(2):139-154.
    [5]孙秀泓,罗自强主编.肺的非呼吸功能与临床.人民卫生出版社,2003,243-244.
    [6]Rasmussen R, Do D, Kim T, Dearden L. Comparative cytotoxicity of naphthalene and its monomethyl-and mononitro-derivatives in the mouse lung. J Appl Toxicol,1986,6:13-20.
    [7]Lin CY, Wheelock AM, Morin D, et al.Toxicity and metabolism of methylnaphthalenes: comparison with naphthalene and 1-nitronaphthalene. Toxicology,2009,260(1-3):16-27.
    [8]Chichester CH, Buckpitt AR, Chang A, Plopper CG.Metabolism and cytotoxicity of naphthalene and its metabolites in isolated murine Clara cells.Mol Pharmacol, 1994,45(4):664-72.
    [1]Samuelsson B. Arachidonic acid metabolism:role in inflammation. Z Rheumatol, 1991,50:3-6.
    [2]Hedqvist P, Raud J, Dahlen SE. Dual action of prostaglandin E2 in allergic inflammation. Adv.Prostaglandin Thromboxane Leukot Res,1989,19:539-542.
    [3]Harada Y, Tanaka K, Uchida Y,et al. Changes in the levels of prostaglandins and thromboxane and their roles in the accumulation of exudate in rat carrageenin-induced pleurisy--a profile analysis using gas chromatography-mass spectrometry. Prostaglandins,1982,23:881-895.
    [4]Williams TJ. Prostaglandin E2, prostaglandin 12 and the vascular changes of inflammation. Br J Pharmacol.1979,65:517-524.
    [5]Serhan CN. Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot. Essent. Fatty Acids,200 5,73:141-162.
    [6]Chang J, Musser JH, McGregor H.Biochem Pharmacol.Phospholipase A2:function and pharmacological regulation. Biochem Pharmacol,1987,36(15):2429-36.
    [7]Murakami M, Kudo I, Inoue K. Secretory phospholipases A2. J Lipid Mediat Cell Signal,1995, 12:119-130.
    [8]Leslie CC. Regulation of arachidonic acid availability for eicosanoid production. Biochem. Cell Biol,2004,82:1-17.
    [9]Leslie CC. Regulation of the specific release of arachidonic acid by cytosolic phospholipase A2. Prostagl. Leukotr Essen Fatty Acids.2004,70:373-376.
    [10]Funk CD. Prostaglandins and leukotrienes:advances in eicosanoid biology. Science, 2001,294:1871-1875.
    [11]John E. Burke, Edward A. Dennis.Phospholipase A2 structure/function, mechanism, and signaling.J Lipid Res,2009,50 (Supplement):S237-S242.
    [12]Kuwata H, Yamamoto S, Miyazaki Y, et al. Studies on a mechanism by which cytosolic phospholipase A2 regulates the expression and function of type IIA secretory phospholipase A2. J Immunol,2000,165:4024-4031.
    [13]Morioka N, Takeda K, Kumagai K, et al. Interleukin-1 beta-induced substance P release from rat cultured primary afferent neurons driven by two phospholipase A2 enzymes:secretory type IIA and cytosolic type IV. J Neurochem,2002,80:989-997.
    [14]Bonventre JV, Huang Z, Taheri MR,et al. Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature,1997,390:622-625.
    [15]Uozumi N,T Shimizu. Roles for cytosolic phospholipase A2alpha as revealed by gene-targeted mice. Prostaglandins Other Lipid Mediat,2002,68-69:59-69.
    [16]McKew J C, K. L Lee, M W Shen. et al. Indole cytosolic phospholipase A2 alpha inhibitors: discovery and in vitro and in vivo characterization of 4-{3-[5-chloro-2-(2-{[(3,4-dichlorobenzyl)sulfonyl]amino}ethyl)-1-(dipheny lmethyl)-1 H-indol-3-yl]propyl}benzoic acid, efipladib. J Med Chem,2008,51:3388-3413.
    [17]Yaksh T L, G Kokotos, C I Svensson.et al. Systemic and intrathecal effects of a novel series of phospholipase A(2) inhibitors on hyperalgesia and spinal prostaglandin E-2 release. J Pharmacol Exp Ther,2006.316466-475.
    [18]Miyahara T, Hamanaka K, Weber DS,et al.Cytosolic phospholipase A2 and arachidonic acid metabolites modulate ventilator-induced permeability increases in isolated mouse lungs. J Appl Physiol,2008,104(2):354-62.
    [19]Shiyu S. Zhiyu L, Mao Y,et al.Polydatin up-regulates Clara cell secretory protein to suppress phospholipase A2 of lung induced by LPS in vivo and in vitro. BMC Cell Biol, 2011,25:12-31.
    [20]Yoshikawa S, Miyahara T. Reynolds SD,et al.Clara cell secretory protein and phospholipase A2 activity modulate acute ventilator-induced lung injury in mice. J Appl Physiol, 2005,98(4):1264-71.
    [21]Sun YH, Zhang Q, Wang JK. et al.Effects of sevoflurane on membrane permeability of alveolar capillaries in rats with acute lung injury caused by endotoxin.Zhonghua Wai Ke Za Zhi,2004.42(16):1014-7.
    [22]Bedirli N, Demirtas CY, Akkaya T, et al.Volatile anesthetic preconditioning attenuated sepsis induced lung inflammation. J Surg Res,2012,178(1):e 17-23.
    [23]Cheng SE, Luo SF, Jou MJ, et al. Cigarette smoke extract induces cytosolic phospholipase A2 expression via NADPH oxidase, MAPKs, AP-1, and NF-kappaB in human tracheal smooth muscle cells. Free Radical Biology and Medicine,2009,46:948-960.
    [24]Fan Zhang, Jian Sha, Thomas G. Wood,et al. Alteration in the activation state of new inflammation-associated targets by phospholipase A2-Activating protein(PLAA). Cell Signal,2008,20(5):844-861.
    [25]Chapman KE, Sinclair SE, Zhuang D,et al.Cyclic mechanical strain increases reactive oxygen species production in pulmonary epithelial cells. Am J Physiol Lung Cell Mol Physiol, 2005,289(5):L834-41.
    [26]You Z, Feng D, Xu H, et al.Nuclear factor-kappa B mediates one-lung ventilation-induced acute lung injury in rabbits.,J Invest Surg,2012,25(2):78-85.
    [27]Theroux MC, Fisher AO, Horner LM,et al.Protective ventilation to reduce inflammatory injury from one lung ventilation in a piglet model. Paediatr Anaesth,2010,20(4):356-64.
    [28]Altemeier WA, Matute-Bello G, Frevert CW, et al.Mechanical ventilation with moderate tidal volumes synergistically increases lung cytokine response to systemic endotoxin. Am J Physiol Lung Cell Mol Physiol,2004,287(3):L533-42.
    [29]Peng X, Abdulnour RE, Sammani S, et al.Inducible nitric oxide synthase contributes to ventilator-induced lung injury. Am J Respir Crit Care Med,2005,172(4):470-9.
    [30]Fanelli V, Mascia L, Puntorieri V, et al.Pulmonary atelectasis during low stretch ventilation: "open lung" versus "lung rest" strategy. Crit Care Med,2009,37(3):1046-53.
    [31]Moe MC, Berg-Johnsen J, Larsen GA,et al.Sevoflurane reduces synaptic glutamate release in human synaptosomes. J Neurosurg Anesthesiol,2002,14(3):180-6.
    [32]Wang H, Lu S, Yu Q,et al.Sevoflurane preconditioning confers neuroprotection via anti-inflammatory effects. Front Biosci (Elite Ed),2011,3:604-15.
    [33]Loop T, Scheiermann P, Doviakue D,et al.Sevoflurane inhibits phorbol-myristate-acetate-induced activator protein-1 activation in human T lymphocytes in vitro:potential role of the p38-stress kinase pathway. Front Biosci (Elite Ed),2011,3:604-15.
    [34]Wang JM, Hu ZY, Gu WZ. Effects of sevoflurane postconditioning on renal ischemia-reperfusion injury:experiment with rats. Zhonghua Yi Xue Za Zhi, 2009,89(15):1016-20.
    [35]Sun SX, Ge BX, Miao CH.Effects of preconditioning with sevoflurane on TNF-a-induced permeability and activation of p38 MAPK in rat pulmonary microvascular endothelial cells. Cell Biochem Biophys,2011,61(1):123-9.
    [1]Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis,1974,110(5):556-65.
    [2]Rasmussen R, Do D, Kim T, Dearden L. Comparative cytotoxicity of naphthalene and its monomethyl-and mononitro-derivatives in the mouse lung. J Appl Toxicol,1986,6:13-20.
    [3]Lin CY, Wheelock AM, Morin D, et al.Toxicity and metabolism of methylnaphthalenes: comparison with naphthalene and 1-nitronaphthalene. Toxicology,2009,260(1-3):16-27.
    [4]刘流,李李,周海洋clara细胞分泌蛋白对兔单肺通气肺损伤的保护作用.临床麻醉学杂志,2010,26(7):619-621.
    [5]Jorens PG, Sibille Y, Goulding NJ,et al.Potential role of Clara cell protein, an endogenous phospholipase A2 inhibitor, in acute lung injury.Eur Respir J,1995,8(10):1647-53.
    [6]Yoshikawa S, Miyahara T. Reynolds SD,et al.Clara cell secretory protein and phospholipase A2 activity modulate acute ventilator-induced lung injury in mice. J Appl Physiol, 2005,98(4):1264-71.
    [1]Sharma JN, Jawad NM.Adverse effects of COX-2 inhibitors. Scientific World Journal,2005, 5:629-45.
    [2]Sugasawa Y, Yamaguchi K, Kumakura S, et al.Effects of sevoflurane and propofol on pulmonary inflammatory responses during lung resection. J Anesth,2012.26(1):62-9.
    [3]Schilling T, Kozian A, Senturk M, et al.Effects of volatile and intravenous anesthesia on the alveolar and systemic inflammatory response in thoracic surgical patients. Anesthesiology, 2011.115(1):65-74.
    [4]Samuelsson B. Arachidonic acid metabolism:role in inflammation. Z Rheumatol,1991,50:3-6.
    [5]Harada Y, Tanaka K, Uchida Y,et al. Changes in the levels of prostaglandins and thromboxane and their roles in the accumulation of exudate in rat carrageenin-induced pleurisy--a profile analysis using gas chromatography-mass spectrometry. Prostaglandins.1982,23:881-895.
    [6]Williams TJ. Prostaglandin E2, prostaglandin 12 and the vascular changes of inflammation. Br J Pharmacol,1979,65:517-524.
    [7]Serhan CN. Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot. Essent. Fatty Acids,2005,73:141-162.
    [8]Sharma JN, Jawad NM.Adverse effects of COX-2 inhibitors. Scientific World Journal,2005, 5:629-45.
    [9]Kiyomiya K, Oh-ishi S. Involvement of arachidonic acid metabolites in acute inflammation: detection of 6-keto-PGF1 alpha, thromboxane B2 and PGD2 in rat pleurisy induced by phorbol myristate acetate. Jpn J Pharmacol,1985,39:201-206.
    [10]Sala A, Zarini S, Bolla M. Leukotrienes:lipid bioeffectors of inflammatory reactions. Biochemistry (Mosc),1998,63:84-92.
    [11]Martel-Pelletier J, Lajeunesse D, Reboul P,et al.Therapeutic role of dual inhibitors of 5-LOX and COX, selective and non-selective non-steroidal anti-inflammatory drugs. Ann Rheum Dis, 2003,62(6):501-9.
    [12]Lewis RA, Ansten KF, Soberman RJ. Leukotrienes and other products of the 5-lipoxigenase pathway. Biochemistry and relation to pathobiology in human diseases. N Engl J Med,2000,192:439-46.
    [13]Bray MA, Ford-Hutchinson AW, Smith MJ. Leukotriene B4:an inflammatory mediator in vivo. Prostaglandins,1981,22:213-22.
    [14]Lee A, Chui PT, Aun CS, Possible interaction between sevoflurane and Aloe vera. Ann Pharmacother,2004,38(10):1651-4.
    [15]Hirakata H. Ushikubi F, Toda H,et al. Sevoflurane inhibits human platelet aggregation and thromboxane A2 formation, possibly by suppression of cyclooxygenase activity.Anesthesiology,1996,85(6):1447-53.
    [16]Wacker J, Lucchinetti E, Jamnicki M,et al.Delayed inhibition of a gonist-induced granulocyte-platelet aggregation after low-dose sevoflurane inhalation in humans. Anesth Analg,2008,106(6):1749-58.
    [17]Ishibe Y, Gui X, Uno H,et al.Effect of sevoflurane on hypoxic pulmonary vasoconstriction in the perfused rabbit lung. Anesthesiology,1993,79(6):1348-53.
    [18]Farragher R, Maharaj CH, Higgins BD,et al.Sevoflurane and the feto-placental vasculature: the role of nitric oxide and vasoactive eicosanoids. Anesth Analg,2008,107(1):171-7.
    [19]Heindl B, Reichle F, Becker BF.Sevoflurane but not isoflurane can reduce prostacyclin production of endothelial cells. Eur J Anaesthesiol,2003,20(2):116-9.
    [1]Pinhu L, Whitehead T, Evans T,et al. Ventilator associated lung injury. Lancet. 2003,361(9354):332-40.
    [2]Ricard JD, Dreyfuss D, Saumon G. Ventilator-induced lung injury. Eur Respir J Suppl. 2003,42:2s-9s.
    [3]Kuipers MT, van der Poll T, Schultz MJ,et al.Bench-to-bedside review:Damage-associated molecular patterns in the onset of ventilator-induced lung injury. Crit Care.2011,15(6):235.
    [4]Dreyfuss D, Saumon G. Ventilator-induced lung injury, lessons from experimental studies. Am J Respir Crit Care Med.1998;157(1):294-323.
    [5]Lionetti V. Recchia FA, Ranieri VM. Overview of ventilator-induced lung injury mechanisms. Curr Opin Crit Care.2005,1:82-6.
    [6]Dos Santos CC, Slutsky AS. Cellular responses to mechanical stress. Invited review: mechanisms of ventilator-induced lung injury:a perspective. J Appl Physiol.2000,89:1645-55.
    [7]Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis.1974,110(5):556-65.
    [8]Parker JC, Townsley MI, Rippe B, et al. Increased microvascular permeability in dog lungs due to high peak airway pressures. J Appl Physiol.1984,57(6):1809-16.
    [9]Hernandez LA, Peevy KJ, Moise AA,et al. Chest wall restriction limits high airway pressure-induced lung injury in young rabbits. J Appl Physiol.1989,66(5):2364-8.
    [10]Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis.1988,137(5):1159-64.
    [11]Gajic O, Dara SI, Mendez JL,et al.Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation.Crit Care Med.2004,32:1817-24.
    [12]Determann R, Royakkers A, Wolthuis EK,et al.Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury:a preventive ran-domized controlled trial.Crit Care.2010,14:R1.
    [13]Hua S, Zhang X, Zhang S, et al.Effects of different ventilation strategies on lung injury in newborn rabbits. Pediatr Pulmonol.2012,47(11):1103-12.
    [14]Blum JM, Fetterman DM, Park PK, Morris M, Rosenberg AL. A description of intraoperative ventilator management and ventilation strategies in hypoxic patients. Anesth Analg. 2010,110(5):1616-22
    [15]Fernandez-Perez ER, Sprung J, Alessa B,et al.Intraoperative ven-tilator settings and acute lung injury after elective surgery:a nested case control study.Thorax.2009,64(8):121-7.
    [16]Conrad SA. Zhang S, Arnold TC.et al. Protective effects of low respiratory frequency in experimental ventilator-associated lung injury. Crit Care Med.2005,33(4):835-40.
    [17]Slinger P, Hickey DR. The interaction between applied PEEP and auto-PEEP during one-lung ventilation. J Cardiothorac Vase Anesth.1998,12:133-6.
    [18]Slinger PD, Kruger M, McRae K, Winton T. Relation of the static compliance curve and positive end-expiratory pressure to oxygenation during one-lung ventilation. Anesthesiology.2001,95:1096-1102.
    [19]Olivant Fisher A, Husain K, Wolfson MR, et al. Hyperoxia during one lung ventilation: Inflammatory and oxidative responses. Pediatr Pulmonol.2012,47(10):979-86.
    [20]Vockeroth D, Gunasekara L, Amrein M.Role of cholesterol in the biophysical dysfunction of surfactant in ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol. 2010,298(1):L117-25.
    [21]Bhattacharya S. Sen N, Yiming MT,et al. High tidal volume ventilation induces proinflammatory signaling in rat lung endothelium. Am J Respir Cell Mol Biol. 2003,28(2):218-24.
    [22]Desai LP, Sinclair SE, Chapman KE, et al. High tidal volume mechanical ventilation with hyperoxia alters alveolar type Ⅱ cell adhesion. Am J Physiol Lung Cell Mol Physiol. 2007,293(3):L769-78.
    [23]Eyal FG, Hamm CR, Parker JC. Reduction in alveolar macrophages attenuates acute ventilator induced lung injury in rats. Intensive Care Med.2007,33(7):1212-8.
    [24]You Z, Feng D, Xu H,et al.Nuclear factor-kappa B mediates one-lung ventilation-induced acute lung injury in rabbits. J Invest Surg.2012,25(2):78-85.
    [25]An L, Liu CT, Yu MJ, et al. Heme oxygenase-1 system, inflammation and ventilator-induced lung injury. Eur J Pharmacol.2012,677(1-3):1-4.
    [26]Liu D, Yan Z, Minshall RD, et al. Activation of calpains mediates early lung neutrophilic inflammation in ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol. 2012,302(4):L370-9.
    [27]Li LF, Liao SK, Ko YS, et al. Hyperoxia increases ventilator-induced lung injury via mitogen-activated protein kinases:a prospective, controlled animal experiment. Crit Care. 2007,11(1):R25.
    [28]Samuelsson B. Arachidonic acid metabolism:role in inflammation. Z Rheumatol. 1991,50:3-6.
    [29]Harada Y, Tanaka K, Uchida Y.et al. Changes in the levels of prostaglandins and thromboxane and their roles in the accumulation of exudate in rat carrageenin-induced pleurisy--a profile analysis using gas chromatography-mass spectrometry. Prostaglandins.l982,23:881-895.
    [30]Williams TJ. Prostaglandin E2, prostaglandin 12 and the vascular changes of inflammation. Br J Pharmacol.1979,65:517-524.
    [31]Serhan CN. Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot. Essent. Fatty Acids. 2005,73:141-162.
    [32]Sharma JN, Jawad NM.Adverse effects of COX-2 inhibitors. ScientificWorldJournal.2005, 5:629-45.
    [33]Kiyomiya K, Oh-ishi S. Involvement of arachidonic acid metabolites in acute inflammation: detection of 6-keto-PGF1 alpha, thromboxane B2 and PGD2 in rat pleurisy induced by phorbol myristate acetate. Jpn J Pharmacol.1985,39:201-206.
    [34]Sala A, Zarini S, Bolla M. Leukotrienes:lipid bioeffectors of inflammatory reactions. Biochemistry (Mosc).1998,63:84-92.
    [35]Martel-Pelletier J, Lajeunesse D. Reboul P.et al.Therapeutic role of dual inhibitors of 5-LOX and COX. selective and non-selective non-steroidal anti-inflammatory drugs. Ann Rheum Dis. 2003,62(6):501-9.
    [36]Lewis RA, Ansten KF, Soberman RJ. Leukotrienes and other products of the 5-lipoxigenase pathway. Biochemistry and relation to pathobiology in human diseases. N Engl J Med. 2000,192:439-16.
    [37]Bray MA, Ford-Hutchinson AW, Smith MJ. Leukotriene B4:an inflammatory mediator in vivo. Prostaglandins.1981,22:213-22.
    [38]Takashige Miyahara,Kazutoshi Hamanaka.David S. Weber,et al. Cytosolic phospholipase A2and arachidonic acid metabolites modulate ventilator-induced permeability increases in isolated mouse lungs.2008.J Appl Physiol.104:354-362.
    [39]Sawako Yoshikawa,Takashige Miyahara,Susan D. Reynolds.et al. Clara cell secretory protein and phospholipase A2activity modulate acute ventilator-induced lung injury in mice. J Appl Physiol.,2005,98:1264-1271.
    [40]Robertson JA. Sauer D, Gold JA, et al. The role of cyclooxygenase-2 in mechanical ventilation-induced lung injury. Am J Respir Cell Mol Biol.2012,47(3):387-94.
    [41]Niitsu T, Tsuchida S, Peltekova V.et al. Cyclooxygenase inhibition in ventilator-induced lung injury. Anesth Analg.2011,112(1):143-9.
    [42]Caironi P, Ichinose F, Liu R, et al.5-Lipoxygenase deficiency prevents respirator) failure during ventilator-induced lung injury. Am J Respir Crit Care Med.2005,172(3):334-43.
    [43]Ishitsuka Y, Moriuchi H, Hatamoto K, et al. Involvement of thromboxane A2 (TXA2) in the early stages of oleic acid-induced lung injury and the preventive effect of ozagrel, a TXA2 synthase inhibitor, in guinea-pigs. J Pharm Pharmacol.2004,56(4):513-20.
    [44]Ishitsuka Y, Moriuchi H, Isohama Y, et al. A selective thromboxane A2 (TXA2) synthase inhibitor, ozagrel, attenuates lung injury and decreases monocyte chemoattractant protein-1 and interleukin-8 mRNA expression in oleic acid-induced lung injury in guinea pigs. J Pharmacol Sci.2009,111(2):211-5.
    [45]Halbertsma FJ, Vaneker M, Scheffer GJ, et al. Cytokines and biotrauma in ventilator-induced lung injury:a critical review of the literature. Neth J Med.2005,63(10):382-92.
    [46]Peng X, Abdulnour RE, Sammani S, et al.Inducible nitric oxide synthase contributes to ventilator-induced lung injury. Am J Respir Crit Care Med.2005,172(4):470-9.
    [47]Tremblay L, Valenza F, Ribeiro SP,et al. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest.1997,99(5):944-52.
    [48]Amato MB, Barbas CS, Medeiros DM,et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med.1998,338(6):347-54.
    [49]Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med.2000;342(18):1301-8.
    [50]Pinheiro de Oliveira R, Hetzel MP, dos Anjos Silva M, et al. Mechanical ventilation with high tidal volume induces inflammation in patients without lung disease. Crit Care. 2010,14(2):R39.
    [51]Martin-Loeches I, de Haro C, Dellinger RP, et al. Effectiveness of inspiratory pressure-limited approach to mechanical ventilation in septic patients. Eur Respir J. 2013,41(1):157-64.
    [52]Roze H, Lafargue M, Perez P, et al. Reducing tidal volume and increasing positive end-expiratory pressure with constant plateau pressure during one-lung ventilation:effect on oxygenation. Br J Anaesth.2012,108(6):1022-7.
    [53]Liu LL, Aldrich JM, Shimabukuro DW,et al.Rescue therapies for acute hypoxemic respiratory failure.Anesth Analg.2010,111:693-702.
    [54]Xia J, Sun B, He H,et al. Effect of spontaneous breathing on ventilator-induced lung injury in mechanically ventilated healthy rabbits:a randomized, controlled, experimental study. Crit Care.2011,15(5):R244
    [55]Wolthuis EK, Vlaar APJ, Choi G, et al. Mechanical ventilation using non-injurious ventilation settings causes lung injury in the absence of pre-existing lung injury in healthy mice. Crit Care.2009,13:R1
    [56]Ng CSH, Song Wan, Ho AMH, et al. Gene expression changes with a 'non-injurious' ventilation strategy. Crit Care.2009,13:403.
    [57]Yang CL, Tsai PS, Huang CJ. Effects of dexmedetomidine on regulating pulmonary inflammation in a rat model of ventilator-induced lung injury. Acta Anaesthesiol Taiwan. 2008,46(4):151-9.
    [58]Yang CL, Chen CH, Tsai PS,et al.Protective effects of dexmedetomidine-ketamine combination against ventilator-induced lung injury in endotoxemia rats. J Surg Res. 2011,167(2):e273-81.
    [59]De Conno E. Steurer MP, Wittlinger M,et al.Anesthetic-induced improvement of the inflammatory response to one-lung ventilation. Anesthesiology.2009,110:1316-26.
    [60]Schilling T, Kozian A. Kretzschmar M,et al.Effects of propofol and desflurane anaesthesia on the alveolar inflammatory response to one-lung ventilation.Br J Anaesth.2007,99:368-75.
    [61]Faller S, Ryter SW. Choi AMK.et al.Inhaled hydrogen sulfide protects against ventilator-induced lung injury. Anesthesiology.2010.113:104-15
    [62]Bhatia R. Shaffer TH, Hossain J, et al. Surfactant administration prior to one lung ventilation: physiological and inflammatory correlates in a piglet model. Pediatr Pulmonol. 2011,46(11):1069-78.
    [63]Nin N, Lorente JA, Fernandez-Segoviano P.et al. High-tidal volume ventilation aggravates sepsis-induced multiorgan dysfunction in a dexamethasone-inhibitable manner. Shock. 2009,31(4):429-34.
    [64]Waerhaug K, Kuzkov VV, Kuklin VN,et al.Inhaled aerosolized recombinant human activated protein C ameliorates endotoxin-induced lung injury in anesthetised sheep. Crit Care.2009,13: R51
    [65]Matthay M.β-Adrenergic agonist therapy as a potential treatment for acute lung injury.Am J Respir Crit Care Med.2006,173:254-5.
    [66]Perkins GD, McAuley DF, Thickett DR,et al. Theb-agonist lung injury trial. Am J Respir Crit Care Med.2006,173:281-7.
    [67]Kang LJ, Park W, Pack IS,et al.Inhaled nitric oxide attenuates acute lung injury via inhibition of nuclear factor-kB and inflam-mation.J Appl Physiol.2002.92:795-801.
    [1]Wilkes AR, Raj N, Hall JE.Adverse airway events during brief nasal inhalations of volatile anaesthetics:the effect of humidity and repeated exposure on incidence in volunteers preselected by response to desflurane. Anaesthesia.2003,58(3):207-16.
    [2]Nishino T, Kochi T, Ishii M.Differences in respiratory reflex responses from the larynx, trachea, and bronchi in anesthetized female subjects. Anesthesiology.1996,84(1):70-4.
    [3]Myers CF, Fontao F, Janosi TZ,et al.Sevoflurane and desflurane protect cholinergic-induced bronchoconstriction of hyperreactive airways in rabbits. Can J Anaesth.2011,58(11):1007-15.
    [4]Lele E, Petak F, Fontao F, et al.Protective effects of volatile agents against acetylcholine-induced bronchoconstriction in isolated perfused rat lungs. Acta Anaesthesiol Scand.2006,50(9):1145-51.
    [5]Rooke GA, Choi JH, Bishop MJ.The effect of isoflurane, halothane, sevoflurane, and thiopental/nitrous oxide on respiratory system resistance after tracheal intubation.Anesthesiology.1997,86(6):1294-9
    [6]Burburan SM, Xisto DG Ferreira HC, et al.Lung mechanics and histology during sevoflurane anesthesia in a model of chronic allergic asthma. Anesth Analg.2007,104(3):631-7.
    [7]Habre W. Scalfaro P, Sims C, et al.Respiratory mechanics during sevoflurane anesthesia in children with and without asthma. Anesth Analg.1999,89(5):1177-81.
    [8]Mehr EH, Lindeman KS.Effects of halothane, propofol, and thiopental on peripheral airway reactivity. Anesthesiology.1993,79(2):290-8.
    [9]Volta CA, Alvisi V, Petrini S, et al.The effect of volatile anesthetics on respiratory system resistance in patients with chronic obstructive pulmonary disease. Anesth Analg. 2005,100(2):348-53.
    [10]Dikmen Y, Eminoglu E. Salihoglu Z, et al.Pulmonary mechanics during isofiurane, sevoflurane and desflurane anaesthesia. Anaesthesia.2003,58(8):745-8.
    [11]Sivaci R, Orman A, Yilmazer M, et al.The effect of low-flow sevoflurane and desflurane on pulmonary mechanics during laparoscopic surgery. J Laparoendosc Adv Surg Tech A. 2005,15(2):125-9.
    [12]Satoh JI. Yamakage M, Kobayashi T, et al.esflurane but not sevoflurane can increase lung resistance via tachykinin pathways. Br J Anaesth.2009,102(5):704-13.
    [13]Nyktari VG, Papaioannou AA, Prinianakis G, et al.Effect of the physical properties of isofiurane, sevoflurane, and desflurane on pulmonary resistance in a laboratory lung model. Anesthesiology.2006,104(6):1202-7.
    [14]Conti G Dell'Utri D, Vilardi V, et al.Propofol induces bronchodilation in mechanically ventilated chronic obstructive pulmonary disease (COPD) patients. Acta Anaesthesiol Scand. 1993,37(l):105-9.
    [15]Pedersen CM.The effect of sedation with propofol on postoperative bronchoconstriction in patients with hyperreactive airway disease. Intensive Care Med.1992,18(l):45-6.
    [16]Habre W, Matsumoto I, Sly PD.Propofol or halothane anaesthesia for children with asthma: effects on respiratory mechanics. Br J Anaesth.1996,77(6):739-43.
    [17]von Ungern-Sternberg BS, Frei FJ, Hammer J, et al.Impact of depth of propofol anaesthesia on functional residual capacity and ventilation distribution in healthy preschool children. Br J Anaesth.2007,98(4):503-8.
    [18]Tiefenthaler W, Pehboeck D, Hammerle E, et al.Lung function after total intravenous anaesthesia or balanced anaesthesia with sevoflurane. Br J Anaesth.2011,106(2):272-6.
    [19]Zoremba M, Dette F, Hunecke T,et al.A comparison of desflurane versus propofol:the effects on early postoperative lung function in overweight patients. Anesth Analg.2011,113(1):63-9.
    [20]Ledowski T, Manopas A, Lauer S.Bronchial mucus transport velocity in patients receiving desflurane and fentanyl vs. sevoflurane and fentanyl. Eur J Anaesthesiol.2008,25(9):752-5.
    [21]Konrad F, Schraag S, Marx T, et al.The effect of total intravenous anesthesia with propofol, alfentanil and vecuronium (TIVA) on bronchial mucosal transport. Anasthesiol Intensivmed Notfallmed Schmerzther.1998,33(3):171-6.
    [22]Ledowski T, Paech MJ, Patel B, et al.Bronchial mucus transport velocity in patients receiving propofol and remifentanil versus sevoflurane and remifentanil anesthesia. Anesth Analg. 2006,102(5):1427-30.
    [23]Ledowski T, Paech MJ, Patel B,et al.Bronchial mucus transport velocity in patients receiving propofol and remifentanil versus sevoflurane and remifentanil anesthesia. Anesth Analg. 2006,102(5):1427-30.
    [24]lwasaki S, Yamakage M, Satoh J, et al.Different inhibitory effects of sevoflurane on hyperreactive airway smooth muscle contractility in ovalbumin-sensitized and chronic cigarette-smoking guinea pig models. Anesthesiology.2006,105(4):753-63.
    [25]Wiklund CU. Lindsten U, Lim S, et al.Interactions of volatile anesthetics with cholinergic, tachykinin, and leukotriene mechanisms in isolated Guinea pig bronchial smooth muscle. Anesth Analg.2002,95(6):1650-5.
    [26]Chen X,Yamakage M, Namiki A.Inhibitory effects of volatile anesthetics on K.+and Cl-channel currents in porcine trachea] and bronchial smooth muscle. Anesthesiology. 2002,96(2):458-66.
    [27]Yamakage M, Chen X, Kimura A, et al.The repolarizing effects of volatile anesthetics on porcine tracheal and bronchial smooth muscle cells. Anesth Analg.2002,94(1):84-8,.
    [28]Yamakage M, Chen X, Tsujiguchi N, et al-Different inhibitory effects of volatile anesthetics on T-and L-type voltage-dependent Ca2+ channels in porcine tracheal and bronchial smooth muscles. Anesthesiology.2001,94(4):683-93.
    [29]Cheng EY, Mazzeo AJ, Bosnjak ZJ,et al.Direct relaxant effects of intravenous anesthetics on airway smooth muscle. Anesth Analg.1996,83(l):162-8.
    [30]Hirota K, Sato T, Hashimoto Y, et al.Relaxant effect of propofol on the airway in dogs. Br J Anaesth.1999,83(2):292-5.
    [31]Peratoner A, Nascimento CS, Santana MC, et al.Effects of propofol on respiratory mechanic and lung histology in normal rats. Br J Anaesth.2004.92(5):737-40.
    [32]Takemura M, Shiokawa Y, Okamoto S, et al.Volatile anesthetics constrict pulmonary artery in rabbit lung perfusion model. J Anesth.2005;19(4):343-6.
    [33]Liu R, lshibe Y, Okazaki N, et al.Volatile anesthetics regulate pulmonary vascular tension through different potassium channel subtypes in isolated rabbit lungs. Can J Anaesth. 2003,50(3):301-4.
    [34]Beck DH, Doepfmer UR, Sinemus C, et al.Effects of sevoflurane and propofol on pulmonary shunt fraction during one-lung ventilation for thoracic surgery. Br J Anaesth. 2001,86(1):38-43.
    [35]Ishibe Y, Gui X, Uno H, et al.Effect of sevoflurane on hypoxic pulmonary vasoconstriction in the perfused rabbit lung. Anesthesiology.1993,79(6):1348-53.
    [36]Erdemli O, Tel BC, Gumusel B, et al.The pulmonary vascular response to propofol in the isolated perfused rat lung. Eur J Anaesthesiol.1995,12(6):617-23.
    [37]Rich GF, Roos CM, Anderson SM, et al.Direct effects of intravenous anesthetics on pulmonary vascular resistance in the isolated rat lung. Anesth Analg.1994,78(5):961-6.
    [38]Kondo U, Kim SO, Nakayama M, et al.Pulmonary vascular effects of propofol at baseline, during elevated vasomotor tone, and in response to sympathetic alpha-and beta-adrenoreceptor activation. Anesthesiology.2001,94(5):815-23.
    [39]Kaye A, Anwar M, Banister R, et al.Responses to propofol in the pulmonary vascular bed of the rat. Acta Anaesthesiol Scand.1999.43(4):431-7.
    [40]Uezono S, Clarke WR.The effect of propofol on normal and increased pulmonary vascular resistance in isolated perfused rabbit lung. Anesth Analg.1995,80(3):577-82.
    [41]Ouedraogo N, Mounkaila B, Crevel H, et al.Effect of propofol and etomidate on normoxic and chronically hypoxic pulmonary artery.]BMC Anesthesiol.2006,3;6:2.
    [42]Grossherr M, Hengstenberg A, Papenberg H, et al. Propofol in bronchoalveolar lavage during anaesthesia. Clin Chim Acta.2011,412(12):190-3.
    [43]Grossherr M, Hengstenberg A, Dibbelt L, et al.Blood gas partition coefficient and pulmonary extraction ratio for propofol in goats and pigs. Xenobiotica.2009,39(10):782-7.
    [44]Dawidowicz AL, Fornal E, Mardarowicz M,et al.The role of human lungs in the biotransformation of propofol. Anesthesiology.2000,93(4):992-7.
    [45]Hiraoka H, Yamamoto K, Miyoshi S, et al.Kidneys contribute to the extrahepatic clearance of propofol in humans, but not lungs and brain. Br J Clin Pharmacol.2005,60(2):176-82.
    [46]He YL, Ueyama H, Tashiro C, et al.Pulmonary disposition of propofol in surgical patients. Anesthesiology.2000,93(4):986-91.
    [47]Raoof AA, Augustijns PF, Verbeeck RK.In vivo assessment of intestinal, hepatic, and pulmonary first pass metabolism of propofol in the rat. Pharm Res.1996,13(6):891-5.
    [48]Chen YZ, Zhu SM, He HL, et al.Do the lungs contribute to propofol elimination in patients during orthotopic liver transplantation without veno-venous bypass? Hepatobiliary Pancreat Dis Int.2006,5(4):511-4.
    [49]Urner M, Limbach LK, Herrmann IK, et al.Fluorinated groups mediate the immunomodulatory effects of volatile anesthetics in acute cell injury. Am J Respir Cell Mol Biol.2011,45(3):617-24.
    [50]Bedirli N, Demirtas CY, Akkaya T, et al.Volatile anesthetic preconditioning attenuated sepsis induced lung inflammation. J Surg Res.2012,178(1):e 17-23.
    [51]Cho EJ, Yoon JH, Hong SJ, et al.The effects of sevoflurane on systemic and pulmonary inflammatory responses after cardiopulmonary bypass. J Cardiothorac Vase Anesth. 2009,23(5):639-45.
    [52]Zhao S, Wu J, Guo Q, et al.Effect of different concentrations of sevoflurane pretreatmem on acute lung injury induced by endotoxin in rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2010,35(9):921-7.
    [53]Steurer M, Schlapfer M, Steurer M, et al.The volatile anaesthetic sevoflurane attenuates lipopolysaccharide-induced injury in alveolar macrophages. Clin Exp Immunol. 2009,155(2):224-30.
    [54]Voigtsberger S, Lachmann RA, Leutert AC, et al.Sevoflurane ameliorates gas exchange and attenuates lung damage in experimental lipopolysaccharide-induced lung injury. Anesthesiology.2009,111(6):1238-48.
    [55]Kalb R, Schober P, Schwarte LA, et al.Preconditioning, but not postconditioning, with Sevoflurane reduces pulmonary neutrophil accumulation after lower body ischaemia/reperfusion injury in rats. Eur J Anaesthesiol.2008,25(6):454-9.
    [56]Kumakura S, Kikuchi T, Yamaguchi K, et al.Exposure to nitrous oxide may increase airway inflammation during sevoflurane anesthesia. Masui.2008,57(10):1200-6.
    [57]Takala RS. Soukka HR, Salo MS,et al.Pulmonary inflammatory mediators after sevoflurane and thiopentone anaesthesia in pigs. Acta Anaesthesiol Scand.2004,48(1):40-5.
    [58]Chu CH, David Liu D, Hsu YH, et al. Propofol exerts protective effects on the acute lung injury induced by endotoxin in rats. Pulm Pharmacol Ther.2007;20(5):503-12.
    [59]Yeh CH, Cho W, So EC, et al.Propofol inhibits lipopolysaccharide-induced lung epithelial cell injury by reducing hypoxia-inducible factor-1 alpha expression. Br J Anaesth. 2011,106(4):590-9.
    [60]Hu XM, Lu Y, Yao SL.Propofol reduces intercellular adhesion molecular-1 expression in lung injury following intestinal ischemia/reperfusion in rats. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue.2005,17(1):53-6.
    [61]Kwak SH. Choi JI. Park JT.Effects of propofol on endotoxin-induced acute lung injury in rabbit. J Korean Med Sci.2004,19(1):55-61.
    [62]Chen RM, Wu CH. Chang HC, et al.Propofol suppresses macrophage functions and modulates mitochondrial membrane potential and cellular adenosine triphosphate synthesis. Anesthesiology.2003,98(5):1178-85.
    [63]Chen HI, Hsieh NK, Kao SJ, et al. Protective effects of propofol on acute lung injury induced by oleic acid in conscious rats. Crit Care Med.2008,36(4):1214-21.
    [64]Lee CJ, Subeq YM, Lee RP, et al.Low-dose propofol ameliorates haemorrhagic shock-induced organ damage in conscious rats. Clin Exp Pharmacol Physiol. 2008,35(7):766-74.
    [65]Vasileiou 1, Kalimeris K, Nomikos T, et al.Propofol prevents lung injury following intestinal ischemia-reperfusion. J Surg Res.2012,172(1):146-52.
    [66]An K, Shu H, Huang W,et al.Effects of propofol on pulmonary inflammatory response and dysfunction induced by cardiopulmonary bypass. Anaesthesia.2008,63(11):1187-92.
    [67]Gao J, Zeng B, Zhou L.The protective effects of early treatment with propofol on endotoxin-induced acute lung injury in rats. Middle East J Anesthesiol.2003,17(3):379-401.
    [68]De Conno E, Steurer MR, Wittlinger M,et al.Anesthetic-induced improvement of the inflammatory response to one-lung ventilation. Anesthesiology.2009,110(6):1316-26.
    [69]Sugasawa Y, Yamaguchi K, Kumakura S, et al.Effects of sevoflurane and propofol on pulmonary inflammatory responses during lung resection. J Anesth.2012,26(1):62-9.
    [70]Schilling T, Kozian A, Senturk M, et al.Effects of volatile and intravenous anesthesia on the alveolar and systemic inflammatory response in thoracic surgical patients. Anesthesiology. 2011,115(1):65-74.
    [71]Allaouchiche B, Debon R, Goudable J,et al.Oxidative stress status during exposure to propofol, sevoflurane and desflurane. Anesth Analg.2001,93(4):981-5.
    [72]Kozian A, Schilling T, Rocken C, et al.Increased alveolar damage after mechanical ventilation in a porcine model of thoracic surgery. J Cardiothorac Vase Anesth. 2010,24(4):617-23.
    [73]Lee JJ, Kim GH, Kim JA, et al.Comparison of Pulmonary Morbidity Using Sevoflurane or Propofol-Remifentanil Anesthesia in an Ivor Lewis Operation. J Cardiothorac Vase Anesth. 2012,26(5):857-62.
    [74]Kalimeris K, Christodoulaki K, Karakitsos P,et al.Influence of propofol and volatile anaesthetics on the inflammatory response in the ventilated lung. Acta Anaesthesiol Scand. 2011,55(6):740-8.
    [75]Hu XL, Tang HH, Zhou ZG,et al.The effect of sevoflurane inhalation anesthesia only and propofol total intravenous anesthesia on perioperative cytokine balance in lung cancer patients. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi.2011,27(6):659-61.
    [76]Schlapfer M, Leutert AC, Voigtsberger S, et al. Sevoflurane reduces severity of acute lung injury possibly by impairing formation of alveolar oedema. Clin Exp Immunol. 2012,168(1):125-34.
    [77]Sun YH, Zhang Q, Wang JK, et al.Effects of sevoflurane on membrane permeability of alveolar capillaries in rats with acute lung injury caused by endotoxin. Zhonghua Wai Ke Za Zhi.2004,42(16):1014-7.
    [78]Kandatsu N, Nan YS, Feng GG, et al.Opposing effects of isoflurane and sevoflurane on neurogenic pulmonary edema development in an animal model. Anesthesiology. 2005,102(6):1182-9.
    [79]Yumoto M, Nishida O, Nakamura F, et al.Propofol attenuates oxidant-induced acute lung injury in an isolated perfused rabbit-lung model. J Anesth.2005,19(4):287-94.
    [80]Takao Y, Mikawa K, Nishina K, et al.Attenuation of acute lung injury with propofol in endotoxemia. Anesth Analg.2005,100(3):810-6.
    [81]Gao J, Zhao WX, Xue FS, et al.Early administration of propofol protects against endotoxin-induced acute lung injury in rats by inhibiting the TGF-betal-Smad2 dependent pathway.]Inflamm Res.2010,59(7):491-500.
    [82]Casanova J. Garutti I, Simon C, et al.The effects of anesthetic preconditioning with sevoflurane in an experimental lung autotransplant model in pigs. Anesth Analg. 2011,113(4):742-8.
    [83]Casanova J, Garutti I, Simon C, et al.The effects of anesthetic preconditioning with sevoflurane in an experimental lung autotransplant model in pigs. Anesth Analg. 2011,113(4):742-8.
    [84]Song Q, Wang M, Huang X. et al.Effect of propofol on protecting Rhesus macaques from reperfusion lung injury during hemorrhagic shock and resuscitation. Zhonghua Yi Xue Za Zhi. 2002.82(17):1203-6.
    [85]Balyasnikova IV, Visintine DJ, Gunnerson HB. et al.Propofol attenuates lung endothelial injury induced by ischemia-reperfusion and oxidative stress. Anesth Analg. 2005,100(4):929-36.
    [86]Alvarez-Ayuso L, Calero P, Granado F, et al.Antioxidant effect of gamma-tocopherol supplied by propofol preparations (Diprivan) during ischemia-reperfusion in experimental lung transplantation. Transpl Int.2004,17(2):71-7.
    [87]Allaouchiche B, Debon R, Goudable J, et al.Oxidative stress status during exposure to propofol, sevoflurane and desflurane. Anesth Analg.2001,93(4):981-5.
    [88]Annecke T, Kubitz JC, Langer K,et al.Lung injury following thoracic aortic occlusion: comparison of sevoflurane and propofol anaesthesia. Acta Anaesthesiol Scand. 2008,52(7):977-86.
    [89]Liang H, Gu MN, Yang CX, et al.Sevoflurane inhibits proliferation, induces apoptosis, and blocks cell cycle progression of lung carcinoma cells. Asian Pac J Cancer Prev. 2011,12(12):3415-20.
    [90]Liang H, Gu M, Yang C,et al.Sevoflurane inhibits invasion and migration of lung cancer cells by inactivating the p38 MAPK signaling pathway. J Anesth.2012,26(3):381-92.
    [91]Melamed R, Bar-Yosef S, Shakhar G, et al.Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental, and halothane, but not by propofol: mediating mechanisms and prophylactic measures. Anesth Analg.2003,97(5):1331-9.
    [92]Ren XF, Li WZ, Meng FY,et al.Differential effects of propofol and isoflurane on the activation of T-helper cells in lung cancer patients. Anaesthesia.2010,65(5):478-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700