监测小儿重症肺炎患者胃粘膜pH值的临床意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     小儿重症肺炎好发于婴幼儿,因年龄越小,呼吸器官发育越不成熟,防御免疫能力越差,肺部越易感染,且感染后易致局部器官发生免疫反应,感染后病原菌及其产生的毒素引起机体释放炎性介质,产生一系列炎症瀑布反应,导致组织缺血缺氧,细胞损伤,进一步死亡,最后导致脏器功能衰竭。在危重病患者由于各种原因导致多个内脏血流灌注减少时,血流进行重新分布,胃肠道是血流减少发生最早的器官,易发生缺血缺氧,且在循环恢复后是最迟恢复的脏器,故能反映全身的脏器灌注情况。一旦胃肠道脏器粘膜急性受损,使其免疫屏障减弱,细菌移位,从而导致毒血症,脓毒血症,甚至再次发生全身炎症反应综合症(Systemic Inflammatory Response Syndrome,SIRS),进一步可引起多脏器功能不全综合症(Multiple Organ Dysfunction Syndrome,MODS)。如何早期发现重症肺炎患儿存在胃肠道缺氧缺血情况?临床上最常用的是胃粘膜pH值(Intramucosal pH,pHi)测定。用标准胃粘膜pH值可以排除全身酸碱平衡的影响,而胃粘膜PCO_2与动脉血PCO2差值(Pg-aCO_2)被认为也能准确反映胃粘膜灌注(内脏灌注)情况。传统的观点认为血乳酸也是评价组织灌注的一项重要指标,在本文中进行了血乳酸与胃粘膜pH值对比,来明确哪项指标能更好地反映组织灌注及氧合情况。由于目前国内未见有关小儿重症肺炎患者胃粘膜pH值的临床意义的相关文献报告。因此,我们进行了本课题研究。
     研究目的
     本课题采用空气张力计法测定PgCO_2、Pg-aCO_2及标准胃粘膜pH值等指标,评估小儿重症肺炎时的胃粘膜灌注情况,并且比较胃粘膜pH值(pHi)与动脉血乳酸(Lac)、血中血红蛋白氧半饱和时氧分压(P50)、动脉氧萃取压(PO_(2(x)))、氧合指数(PaO_2/FiO_2)、胃粘膜PCO_2与动脉血PaCO_2差值(Pg-aCO_2)之间的相关性,通过相关性分析来了解哪项指标在反映组织灌注和氧合情况是最敏感,且对比治疗前后Lac、P50、Po_(2(x))、PaO_2/FiO_2、Pg-aCO_2、pHi有无显著性差异。
     材料与方法
     1.研究对象:随机选择2006年11月~2007年3月浙江大学附属儿童医院PICU行机械通气治疗的重症肺炎患儿30例。其中男18例,女12例;年龄44d~21m,平均年龄6.58±5.22m;体重3.8~9.5kg,平均体重5.83±2.56kg;呼吸衰竭30例。
     2.研究方法:(1)机械通气模式:德国Drager公司Evita-4型号的呼吸机,采用PSV-SIMV模式。(2)镇静方式:采用芬太尼针3~8μg/kg·h和力月西针1~5μg/kg·h,静脉维持。(3)患儿入住后予禁食,并置入空气张力测定管,且与Datex-OhmedaS/5~(TM)监护仪连接进行PgCO_2动态监测。(4)实验指标:30例病人分别于机械通气前15分钟测定1次PgCO_2称T_1,机械通气后1h、3h、8h、13h、18h、24h各监测1次PgCO_2,前后共监测7次,分别获得T_1、T_2、T_3、T_4、T_5、T_6、T_7的PgCO_2数值,监测每一个T值的同时抽取动脉血标本送检血气分析。根据公式计算出Pg-aCO_2和标准pHi值,同时记录血气分析中的P50、Iac、PaO_2/FiO_2、PO_(2(x))。
     实验数据处理用均数±标准差((?)±SD)表示,pHi与Pg-aCO_2、P50、Lac、PaO_2/FiO_2、PO_(2(x))之间相关性采用Pearson相关性分析。治疗前后各指标变化用t检验,P<0.05表示有显著性差异,所有统计通过SPSS10.0统计软件在计算机上完成。
     结果
     1.重症肺炎患儿在机械通气治疗前后24小时Pg-aCO_2和标准pHi、P50、Lac、PaO_2/FiO_2、PO_(2(x))的变化如下:
     (1)Pg-aCO_2随着机械通气的治疗逐步下降,T_1与T_5、T_6、T_7,T_2与T_6、T_7,T_3与T_7有显著性差异(P<0.05),其余各时间点两两比较无显著性差异。
     (2)pHi随着机械通气的治疗逐渐上升,除T_4与T_5、T_5与T_6、T_6与T_7无显著性差异,其余各时间点两两比较有显著性差异(P<0.05)。
     (3)P50随着机械通气治疗后逐渐下降,T_1与T_6、T_7有显著性差异(P<0.05),其余各时间点两两比较无显著性差异。
     (4)Lac随着机械通气治疗后逐渐下降,除T_1与T_2、T_3与T_4、T_4与T_5、T_6、T_7,T_5与T_6、T_7,T_6与T_7比较无显著性差异,其余各时间点两两比较有显著性差异(P<0.05)。
     (5)PO_(2(x))随着机械通气治疗后逐渐上升,T_1与T_2、T_2与T_3、T_3与T_4、T_4与T_5、T_6,T_5与T_6、T_7,T_6与T_7比较无显著性差异,其余各时间点两两比较有显著性差异(P<0.05)。
     (6)PaO_2/FiO_2随着机械通气治疗后逐渐上升,T_1与T_6,T_1与T_7比较有显著性差异(P<0.05),余时间点两两比较均无显著性差异。
     2、24小时所测得的pHi与Pg-aCO_2、P50、Lac、PO_(2(x))、PaO_2/FiO_2指标的相关性比较如下:
     (1)pHi与Pg-aCO_2呈负相关(P<0.001)。
     (2)pHi与P50呈负相关(P<0.001)。
     (3)pHi与Lac呈负相关(P<0.001)。
     (4)pHi与PO_(2(x))呈正相关(P<0.01)。
     (5)pHi与PaO_2/FiO_2呈正相关(P<0.05)。
     结论
     1、重症肺炎患儿存在胃粘膜缺氧缺血情况。
     2、胃粘膜pH值较其他组织氧合指标能更加准确、敏感地反映胃粘膜缺氧缺血及全身组织氧合情况。
Research Background
    Severe pneumonia is a common disease among infants. The younger the infant means the less maturity of his/her respiratory organ and the less immunity to the disease, which raised the possibility for pulmonary infection and immune reaction of local organs. Upon infection, the pathogenic bacteria and the endotoxin it generated will cause the organs to generate inflammatory mediators, which finally leading to organ function failure through a process of cascade effect in which ischemia and hypoxia, injury and death of cells are resulted. The severely infected pediatric patients will suffer a diminishing blood flow in internal organs due to various reasons which induced a redistribution of blood flow. The gastrointestinal organs are the first organs suffered from such a diminishing of blood flow and are inclined to face hypoxic-ischemic, and more importantly, they are also the last organs to recover in the whole recovery process of blood circulation, together make them the best indicators for blood flow conditions throughout the body. Once the gastrointestinal mucosa suffered acute organ damages, the weakening immune barrier and the translocation of intestinal bacteria will cause endotoxemia and sepsis or even cause Systemic Inflammatory Response Syndrome (SIRS) again, which may finally lead to Multiple Organ Dysfunction Syndrome (MODS).
    The most commonly used clinical method for gastrointestinal hypoxic-ischemic detecting in pediatric patients with severe pneumonia in early stages is the
    measurement of Gastric Intramucosal pH (pHi). This method can exclude the influences exerted by acid base balance, while gastric-arterial PCO2 gap is considered to be an accurate indicator for intramucosal or splanchnic perfusion conditions. Traditionally, researchers also believe that Blood Lactate can serve as an effective indicator for tissue perfusion. Upon these considerations, this paper carried out a comparison between Blood lactate and gastric intramucosal pH, so as to identify which one better reflect the tissue perfusion and oxygenation conditions.
    Contemporarily there's still no relative literature or research report about the clinical significance of the monitoring of gastric pH-value of pediatric patients with severe pneumonia, thus provided the necessity for this research.
    Research Objective
    In this research, we utilize air tonometry catheter to measure the indicators of intramucosal perfusion conditions, such as PgCO_2, Pg-aCO_2 and standard pHi. We will also make comparison about the correlations between pHi and arterial blood lactate, P50, PO_(2(x)), PaO_2/FiO_2, gastric-arterial PCO_2 gap so as to provide insights about which indicator is most sensitive as far as the reflection of tissue perfusion and oxygenation conditions to be concerned, and if there exist significant differences in Lac、 P50、Po_(2(x))、 PaO_2/FiO_2、Pg-aCO_2、 pHi before and after the surgical treatment.
    Material and Methods
    1. Research Objects: From November, 2006 to March, 2007, 30 pediatric patients with severe pneumonia which received mechanical ventilation treatment in Pediatric Intensive Care Unit(PICU) of Children's Hospital Affiliated to Zhejiang University School of Medicine were chosen at random. Among the research objects there are 18 males and 12 females, age from 44 days to 21 months with an average age of 6.58±5.22 months, weigh 3.8 to 9.5kg with an average weight of 5.83 ± 2.56kg. Among them there are 8 patients with congenital heart disease (CHD), and 30 patients with respiratory failure.
    2. Research Methods:
    1) Mechanical Ventilation Treatment Methods: Evita-4 ventilator machine made by Drager Corp.(Germany), utilize PSV-SIMV mode.
    2 ) Sedation Methods: 3-8μg/kg.h Fentany Injection and 1-5 μg/kg.h Midazdam Injection, slow continuously transfusion by vein.
    3 ) Fasting and implementation of air tonometric catheters upon hospital
    admissions for pediatric patients, dynamic monitoring of PgCO_2 through a Datex-OhmedaS/5~(TM)monitor.
    4 ) Experimental Indicators: PgCO_2 were measured 15 minutes before mechanical ventilation treatment (T_1) for all of 30 patients, measured again for 1h, 3h, 8h, 13h, 18h, 24h after mechanical ventilation treatment, labeled T_1, T_2, T_3, T_4, T_5, T_6, T7, respectively. Together with each value of T, arterial blood gas was determined at all of the above time points. The Pg-aCO_2 and standard pHi are calculated on the basis of formula, P50, lac, PaO_2/FiO_2 and PO_(2(x)) in the analysis will also be recorded.
    The data in the experiment will be expressed in the form of Mean ± Standard deviation ( X|- ± SD).Pearson Correlate analysis will be employed to analyze correlation between pHi and Pg-aCO_2, P50, Lac, PaO_2/FiO_2, PO_(2(x)). The change in indicators before and after mechanical ventilation treatment will be testified by t-test, in which significant difference are indicated if P<0.05. All the statistical analysis will be realized with SPSS 10.0.
    Research Results
    1. The change in Pg-aCO_2 and standard Phi, P50, Lac, PaO_2/FiO_2, PO_(2(x)) 24 hours before and after the mechanical ventilation treatment for the pediatric patients are as follows:
    1) Pg-aCO_2 was lowered gradually upon the treatment. There's significant difference between T_1 and T_5, T_6, T_7; T_2 and T_6, T_7; T_3 and T_7 (P<0.05). There's no significant difference between each pair of the other time points.
    2) pHi was leveled up gradually upon the treatment. There's significant difference between each pair of the time points, except for T_4 and T_5; T_5 and T_6; T_6 and T_7 (P<0.05).
    3) P50 was lowered gradually upon the treatment. There's significant difference between T_1 and T_6, T_7 (P<0.05). There's no significant difference between each pair of the other time points.
    4) Lac was lowered gradually upon the treatment. There's significant difference between each pair of the time points, except for T_1 and T_2; T_3 and T_4; T_4 and T_5, T_6, T_7; T_5 and T_6, T_7; T_6 and T_7 (P<0.05).
    5) PO_(2(x)) was leveled up gradually upon the treatment. There's significant difference between each pair of the time points, except for T_1 and T_2; T_2 and T_3; T_3 and T_4; T_4 and T_5, T_6; T_5 and T_6, T_7; T_6 and T_7 (P<0.05).
    6) PaO_2/FiO_2 was leveled up gradually upon the treatment. There's significant
    difference between T_1 and T_6; T_1 and T_7 (P<0.05), There's no significant difference between other each pair of the time points.
    2. Correlation between Phi and Pg-aCO_2, P50, Lac, PO_(2(x)), PaO_2/FiO_2 during the 24 hours are as follows:
    1) There's negative correlation between pHi and Pg-aCO_2 (P<0.001).
    2) There's negative correlation between pHi and P50 (P<0.001).
    3) There's negative correlation between pHi and Lac (P<0.001).
    4) There's positive correlation between pHi and PO_(2(x)) (P<0.01).
    5) There's positive correlation between pHi and PaO_2/FiO_2 (P<0.05).
    Conclusion
    1. Hypoxic-ischemic existed among pediatric patients with severe pneumonia.
    2. Gastric Intramucosal pH(pHi) can serve as a better sensitive and accurate
    indicator for tissue perfusion and oxygenation conditions.
引文
[1]Fernandez-Serrano S, Dorea J, Coromines M, eb al. Molecular inflammatory responses measured in blood of patients with severe community-acquired pneunonia [J]. Clin Diagnostic Lab Immounol, 2003,10(5):813-820.
    
    [2]Deitch EA, Berg R. Bacterial translocation from the gut: a mechanism of infection. J Burn Care Rehab, 1987,8:475-482.
    
    [3]Wyke RJ. Problem of bacterial infection in patient with liver disease. Gut,1987,28:623-641.
    
    [4]Liovet JM, Bartoli R, Cabre E, et al. Bacterial translocation in cirrhotic rats: its role in the development of spontaneous bacterial peritonitis. Gut, 1998, 1648-1652.
    
    [5] Fiddian-Green RG Gastric intramucosal pH, tissue oxygenation, and acid-base balance. Br J Anaesth, 1995,74:591-606.
    
    [6]Chapman MV, Mythen MG, Webb AR, Vincent JL. Report from the meeting: Gastrointestinal Tonometry: state of the Art. Intensive Care Med, 2000,26:613-622.
    
    [7] Taylor DE, Gutierrez G, clark C, et al. Measurement of gastric mucosal carbon dioxide tension by saline and air tonometry. J Crit Care, 1997,12:208-213.
    
    [8]Maynard N, Bhari D, Beal R, et al. Assessment of splanchnic oxygenation by gastric tonometry in patients with acute circulatory failure. JAMA, 1993,270:1203-1210.
    
    [9] 李毅. 儿科疾病诊断标准[M] . 第6版. 北京: 人民卫生出版社, 2004.309-318.
    
    [10]. Fiddian-Green RG, McGough E, Pittenger G, et al. Predictive value of intramural pH and other risk factors for massive bleeding from stress ulceration Gastroenterology, 1983,85:613-620.
    [11]Knichwitz G, Aken HV, Brussel T, et al. Gastrointestinal Monitoring Using Measurement of intramucosal PCO_2. Anesh Analy, 1998,87:134-141.
    [12]Simon RH, Paine R. Participation of pulmonary alveolar epithelial cells in lung inflammation. J Lab Clin Med, 1995.126:108-118.
    [13]Tuomanen EI, Austrian R, Masure HR. Pathogenesis of pneumocollal infection. N Engl J Med, 1995,332:1280-1284.
    [14]Maus U, Rosseau S, knies U, et al. Expression of pro-inflammotory cytokines by flow-sorted alveolar macrophages in severe pneumonia. Eur Respir J, 1998, 11:534-541.
    [15]Bauer TT, Monton C, Torres A, et al. Comparison of Systemic cytokine levels in patients with acute respiratory distress syndrome severe pneumonia, and controls. Thorax, 2000, 55:46-52.
    [16]Esche C, Cai Q, Peron JM, et al. Interleukin -12 and Flt3 Ligand differentially promote dendropoiesis in vivo. Eur J Immunol, 2000,30:2565-2575.
    [17]Moore KW, de-waal-Malefyt R, Coffman RL, et al. Interleukin-10 and the interleukin-10 receptor [J]. Annu Rev Immunol, 2001,19:683-765.
    [18]Lars WA, Laurence L, LeifB, et al. Association between gastric intramucosal pH and splanchnic endotoxin, antibody to endotoxin, and tumor necrosis factor-a concentrations in patients undergoing cardiopulmonary bypass. Crit Care Med, 1993,21:210-221.
    [19]American Thoractc Society, Infection Diseases Society of America. Guidelines for the management of aclults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia [J]. Am J Respir & crit care med, 2005,174(4):388-416.
    [1]Nelson DP, King CE, Dodd SL, et al. Systemic and intestinal limits of O_2 extraction in the dog. J Appl Physiol, 1987, 63:387-394.
    
    [2]Bergofsky EH Determination of tissue O_2 tensions by hollow visceral tonometers:effect of breathing enriched O_2 mixtures. J Clin Invest, 1964,43:193-200.
    
    [3]Fiddian-Green RG, McGough E, Pittenger G, et al. Predictive value of intramural pH and other risk factors for massive bleeding from stress ulceration Gastroenterology, 1983,85:613-620.
    
    [4]AntonasonJB, Boyle CC, Wang H, et al. Validation of tonometric measurement of gut intramuscoal PH during endotoxemia and mesenteric occlusion in pigs. Am J Physiol, 1990,259:519.
    
    [5]Gru CM, Pitteger GL, Crant BJB, et al. Adequacy of tissue oxygenation in intact dog intestine. J Appl Physics, 1985, 56:1065.
    
    [6]Takala J,Parviainen I, Siloajo M, et al. Saline PCO_2 is an important source of error in the assessment of gastric intramucosal pH.Crit Care Med,1994,22:1877-1879.
    
    [7]Knichwitz G,Kuhmann M,Brodner G,et al.Gastric tonometry: precision and reliability are improved by a phosphate buffered solution. Crit Care Med, 1996, 24:512-516.
    
    [8] Guzman JA, Kruse JA. Development and validation of a technique for continuous monitoring of gastric intramucosal pH.AmJ Respir Crit Care Med,1996,153:694-700.
    
    [9]Kolkman JJ, Otte JA, Groeneveld AB.Gastrointestinal PCO_2 tonometry:an update on physiology, methodology and clinical applications. Br J Anaesth, 2000, 84:74-86.
    
    [10]Creteur J, De Backer D, Vincent JL.Monitoring gastric mucosal carbon dioxide pressure using gas tonometry:in vitro and in vivo validation studies. Anesthesiology, 1997, 87:504-510.
    [11] Knichwitz G, Rotker J, Brussel T, et al. A new method for continuous intramucosal PCO_2 measurement in the gastrointestinal tract. Anesth Analg, 1996, 86:6-11.
    [12] 王学凤,张铁铮,周锦等.胃张力计法与胃管法检测Phi的相关性.中华麻醉学杂志,2000,20(1):21-23.
    [13] Heard SO,Helsmoortel, Kent JC et al. Gastric tonometry in healthy volunteers: effect of ranitidine on calculated intramural pH. Crit Care Med, 1991, 19(2):271-274.
    [14] Gutierrez G, Palizas F, Doglio G, et al. Gastric intramucosal pH as a therapeutic index at tissue oxygenation incritically ill patients. Lancet, 1992,339:195.
    [15] Sutcliffe NP, Mostafa SM, Gannon J, et al. The effect of epidural blockade on gastric intramucosal pH in the peri-operative period. Anaesthesia, 1996, 51(1):37-40
    [16] Antonsson JB, Boyle CC, Kruithoff KL, et al. Validation of tonometric measurement of gut intramural pH during endotoxemia and mesenteric occlusion in pigs. Am J Physiol, 1990,259:G519-523.
    [17] Tang W, Weil MH, Sun S, et al. Gastric intramural PCO_2 as monitor of perfusion failure during hemorrhagic and anaphylactic shock. J Appl Physiol, 1994,76:572-577.
    [18] Guzman JA, Lacoma FJ, Kruse JA. Relationship between systemic oxygen supply dependency and gasteic intramucosal PCO_2 during pregressive hemorrhage. J Trauma, 1998,44:696-700.
    [19] Oldner A, Wanecek M,Goiny M, et al. The endothelin receptor antagonist bosentan restores gut oxygen delivery and reverses intestimal mucosal acidosis in porcine endotoxin shock. Gut, 1998,42:696-702.
    
    [20]Hartman M, Montgomery A, Jonsson K, et al. Tissue oxygenation in hemorrhagic shock measured as transcutaneous oxygen tension, subcutaneous oxygentension and gastrointestinal intramucosal PH in pigs. Crit Care Med, 1991,19:205.
    
    [21]Maynard N, Bhari D, Beal R, et al. Assessment of splanchnic oxygenation by gastric tonometry in patients with acute circulatory failure. JAMA,1993,270:1203-1210.
    
    [22]Fiddian-Green RG, Haglund U,Gutierrez G, et al. Goals for the resuscitation of shock. Crit Care Med, 1993,21:25.
    
    [23] Gutierrez G, Palizas F, Doglio Getal, Gastric intramucosal pH as a therapeutic index of tissue oxgenation in critically ill patients, Lancet, 1992,339:195-199.
    
    [24]Hurtado FJ,Beron M,Olivera W, et al. Gastric intramucosal pH and intraluminal PCO2 during weaning from mechanical ventilation. Crit Care Med,2001,29(1):70-76.
    
    [25]Scalia S, Sharma P,Rodrigueez, J, et al. Dereased mesenteric blood flow in experimental mutiple organ failure. J Surg Res,1992,52:415.
    
    [26]Fiddian-Green RG, Baker S,Predictive value of the stomach wall pH for complications after cardiac operation: comparison with other monitoring. Crit Care Med,1987,15:153-156.
    
    [27]Bennett-Guerrero E, Panah MH, Bodian CA, et al. Automated detection of Gastric Luminal Partial Pressure of Dioxide during Cardiovascular Surgery using the Tonocap. Anesthesiology,2000,92:38-44.
    
    [28]Casado-Flores J, Mora E, Perez-corral F, et al. Prognostic value of gastric intramucosal pH in criically ill children. Crit Care Med, 1998,26:1123-1127.
    
    [29]Fiddian-Green RG. Gastric intramucosal pH, tissue oxygenation and acid-base balance. Br J Anaesth,1995,74:591-606.
    
    [30] Miller PR,Kincaid FH,Meredith JW,et al. Threshold value of intramucosal pH and mucosa-arterial CO_2 gap during shock resuscitation. J Trauma,1998,45(5):868.
    
    [31] Levy B,Gawalkiewicz P,Vallet B, et al. Gastric capnometry with air-automated tonometry predicts outcome in critically ill patients. Crit Care Med,2003,31(2):474-480.
    
    [32]Paul E,Marik, Alejandro, et al. The effect of tube feeding on the measurement of gastric intramucosal pH. Crit Care Med,1996,A84:149.
    
    [33] Arnold J, Hendriks J, Ince C, etal. Tonometry to assess the adequacy of splanchnic oxygenation in the critically ill patiant. Intensive Care Med, 1994,20:452-456.
    
    [34]Chapman MV, Mythen MG, Webb AR, et al. Report from the meeting:Gastrointestinal Tonometry: State of the Art. Intensive Care Med, 2000,26:614.
    
    [35]TakaIa J, Parviainen I, Siloaho M, et al. Saline PCO_2 is an important soruce of error in the assessment of gasric intramucosal pH. Crit Care Med, 1994, 22(11):1877-1879.
    
    [36]Meier-Hellmann A, Hannemann L, Specht M, et al. The relationship between mixed venous and hepatic venous O_2 saturation in patients with septic shock. Adv Exp Med BioI.1994,345:701-707.
    
    [37]Kishimoto T, Fujino Y, Nishimura S, T et al. Validity of gastric intramucosal pH(pHi) for circulatory evaluation in pediatric patients. J Clin Monit 2002;17:87-92.
    
    [38] Russell RA, Phang PT. The oxygen delivery/consumption controversy-Ap proaches to management of the critically ill. Am J Respir Crit Care Med,1994,149:533.
    [39]Grum CM, Fiddian-Green RG, Pittenger GL, et al. Adequacy of tissue oxygenation in intact dog intenstine. J Appl Physiol, 1984,56:1065.
    [40]Elliot DC. An evaluation of the end points of resuscitation. J Am Coll Surg, 1998,187(5):536.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700