大射电望远镜精调Stewart平台的优化、分析与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文依托新一代大射电望远机电光一体化创新设计方案,针对馈源指向跟踪系统高精度轨迹跟踪要求,以精调Stewart平台为研究对象,进行了6自曲度并联机器人的运动学优化设计、动力学分析与奇异性分析,设计了强鲁棒性自抗扰控制器实现高精度轨迹跟踪控制;提出了新一代大射电望远镜馈源指向跟踪系统轨迹跟踪独立控制策略、轨迹规划策略和控制模型;50米缩比模型实验验证了轨迹跟踪控制策略与方法的工程有效姓和可行性。具体内容如下:
     1.以并联机器人Jacobian矩阵的条件数为优化设计的目标函数,提出了基于遗传算法的并联机器人最优运动学性能结构参数优化设计方法,采用实值遗传算法,对精调Stewart平台进行了优化设计,得到了最优运动学的精调Stewart平台结构参数,为实现新一代大射电望远镜馈源指向跟踪系统高精度轨迹跟踪控制奠定了坚实的基础。
     2.应用虚功原理方法,建立了6自由度并联机器人的动力学分析模型,获得了精调Stewart平台各变位执行器的广义驱动力,为数值仿真分析馈源指向跟踪系统两组成子系统之间的动力学耦合问题奠定了理论基础。
     3.提出了基于遗传算法的并联机器人奇异性分析方法,将机器人的奇异性分析转化为在可达工作空间内寻找Jaeobian矩阵行列式平方最小值问题,有效地解决了并联机器人奇异性分析问题。若该最小值不为零,则可以确切地说,该并联机器人不会发生奇异;否则,就会发生奇异。采用实值遗传算法对优化的精调Stewart平台进行了奇异性分析,证明了所设计的精调Stewart平台在工作空间内不会发生奇异。
     4.采用分散控制策略实现6自由度精调Stewart平台高精度轨迹跟踪控制,在机器人关节空间设计了强鲁棒性的自抗扰控制器(ADRC),应用非线性跟踪微分器获得了在测量噪声和未知扰动情况下的高质量微分信号;将影响伺服精度的非线性摩擦视为对被控系统的未知外扰,通过扩张状态观测器实现了不基于任何模型的非线性摩擦补偿;并采用非线性PD合成控制作用,进一步确保了高精度的实现。数值仿真和实验结果验证了所设计的ADRC方法的工程有效性。而且,相关方法可以应用到其它高精度伺服系统的控制中。
     5.基于第三章的动力学分析结果,数值仿真分析了新一代大射电望远镜馈源指
    
     一
     向跟踪系统两组成子系统之间的动力学耦合问题。提出了新一代大射电望远
     镜馈源指向跟踪系统高精度轨迹跟踪独立控制策略,将粗、精调子系统之间
     的动力学耦合作用视为对精调子系统的未知外扰,通过强鲁棒性的精调子系
     统的自抗扰控制器实现整个大系统的高精度轨迹跟踪控制。提出了相应的简
     单易行的轨迹规划策略和跟踪控制模型。通过新一代大射电望远镜馈源指向
     跟踪系统50米缩比模型,实验验证了控制策略与方法的工程有效性响行
     性。为将来建造500米的新一代大射电望远镜先导模型扫清了关键技格碍
     之一。而且,本文所提的独立控制策略、自抗扰控制方法、轨迹规划策略和
     运动控制模型,为速度要求较低的其它宏一微机器人系统的眈度轨迹础控
     制提供了一个可行的控制方案。
The square kilometre array (SKA) is an ambitious world cooperative project to develop the next generation large radio telescope with the collecting area of one square kilometer. To make full use of the karst formation in Guizhou Province of China, a large spherical radio telescope array of the Arecibo telescope was proposed in China in 1995. Therefore, a completely new design project that integrating mechatronics and optics technologies with several large span cables is proposed to drive the feed-supporting system to realize the high precision positioning.
    For the high requirement of trajectory tracking of the feed-supporting system with large span cables, the feasibility of Stewart platform served as a fine-tuning platform and the accomplishment of the high precision tracking are considered in details in this paper.
    This paper is divided into the following two parts. In the first part, the optimal kinematicaldesign, analysis and control of the fine-tuning Stewart platform for the feed-supporting system are concentrated. In the second parts, the novel independent control strategy is proposed to realize the high precision positioning of the feed-supporting system for the SKA. The main research works can be described as follows.
    1. The Jacobian matrix connecting the dexterity performance of parallel platform is first deduced, and then the condition number of Jacobian matrix is employed as the Objective function to implement the optimal kinematical design of the fine-tuning Stewart platform for the SKA. A real-coded genetic methodology for this optimal kinematical design is presented. A niched-penalty approach is used to transform this optimal kinematical design problem to an unconstrained one. A kinematic accuracy comparison of the genetic designed fine-tuning Stewart platform with the quasi-Newtonian designed one is made. The comparison results have shown that the kinematic accuracy of the genetic designed fine-tuning Stewart platform has a much higher accuracy and a compact structure than that of the quasi-Newtonian designed one, which guarantees the accomplishment of high precision trajectory tracking and reduces the disturbance of wind to the feed-supporting system.
    2. The dynamic model of 6 DOF parallel manipulator is developed using the principle
    
    
    of virtual work. The actuating force of each extensible linear actuator is obtained, which has built a solid base for the simulation analysis of the dynamic coupling between the two comprised subsystems of the feed-supporting system for the SKA.
    3. The singularity analysis of the general 6 DOF parallel manipulator is transformed into the optimal issue in the reachable workspace, the square of the determinant of Jacobian matrix is selected as the objective function, and the minimal of this objective function is searched by a real-coded genetic algorithm. The singularity of the parallel manipulator depends on this minimal objective function, if this value is zero, the singularity of the parallel manipulator will happen, otherwise, the parallel manipulator is singularity-free. The singularity of the optimal designed fine-tuning Stewart platform is analyzed using this new genetic singularity analysis method. The results have shown that the fine-tuning Stewart platform is singularity-free, which has laid a solid base for the high precision trajectory tracking of the SKA.
    4. A robust auto-disturbance rejection controller (ADRC) in linkspace is developed to accomplish the high precision tracking control of the general 6 DOF parallel manipulator. A nonlinear tracking differentiator (TD) in the feedforward patn and an extended-states observer (ESO) in the feedback path are designed to obtain high quality differential signal and the estimate of the states and the real action of the unknown disturbance including the nonlinear friction without any mathematical model, respectively. Moreover, the unmodeled nonlinear friction, being the dominant to degrade the high precision tracking of servo system, is considered as an unknown disturbance, and realized f
引文
[1] R. D. Nan. A proposal of international LT program. Beijing Astronomy Observatory, Beijing, China, 1995.
    [2] T. H. Leggs, A proposal new design for a large radio telescope, Astronomy and Astrophysics Supplement, 1998, 130(2): 369-379.
    [3] B.Y. Duan, A new design project of the line feed structure for large spherical radio telescope and its nonlinear dynamic analysis, Mechatronics, 1999, 9(1): 53-64.
    [4] Klaus Ruf, Technical and engineering challenges for the future of radio astronomy, The Radio Science Bulletin, 1999, No.291: 13-18.
    [5] Jeffrey Mervis, Astronomers hang out help-wanted sign, Science, 1995, 270 (5239): 1146.
    [6] Rendong Nan, Bo Peng, A Chinese concept for the 1 km2 radio telescope, Acta Astronautica, 2000, 46 (10-12): 667-675.
    [7] A proposal for the second Arecibo upgrading program'. National Astronomy and Ionosphere Center, USA, March 1986.
    [8] 段宝岩,苏玉鑫,仇原鹰等,新一代大射电望远镜机电光一体化设技研究,中国机械工程,1999,10(9):1002-1004.
    [9] Qiu, Yuhai H. A novel design for a giant Arecibo-type spherical radio telescope with an active main reflector, Mor. Not. R. Astron. Soc., 1998, 301(3): 827-830.
    [10] Y. X. Su, B. Y. Duan, The application of Stewart platform in the large spherical radio telescope, J. Robot. Syst., 2000, 17(7): 375-383.
    [11] Y. X. Su, B. Y. Duan, R. D. Nan, B. Peng, Development of a pilot of Arecibo-type large spherical radio telescope for the square kilometre array, Proceedings of. IMechE, Part C, Journal of Mechanical Engineering Science, 215: 1321-1329.
    [12] Andre Sharon, Enhancement of robot accuracy using a macro/micro manipulator system, S.M. Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, 1983.
    [13] D. Stewart, A platform with six degrees of freedom, Proc Instr Mech Engrs, 1965, 180(15): 371-386.
    [14] J. -P. Merlet. Parallel robots. Kluwer Academic Publishers, 2000.
    [15] 黄真,孔令富,方跃法.并联机器人机构学理论及控制.北京:机械工业出版社,
    
    1997.
    [16] Jongwon Kim, Frank Chongwoo Park, and Sun Joong Ryu etc., Design and analysis of a redundantly actuated parallel mechanism for rapid machining, IEEE Trans. Robot. Automat., 2001,17 (4) : 423-434.
    [17] Jungwon Yoon and Jeha Ryu, Design, fabrication, and evaluation of a new haptic device using a parallel mechanism, IEEE/ASME Trans. Mechatronics, 2001,6 (3) : 221-233.
    [18] J. S. Dai and D. R. Kerr, A six-component contact force measurement device based on the Stewart platform, Proc Instr Mech Engrs, Part C, 2000,214 (6) : 687-697.
    [19] Tamio Tanikawa and Tatsuo Arai, Development of a micro-manipulation system having a two-fingered micro-hand, IEEE Trans. Robot. Automat., 1999,15 (1) : 152-162
    [20] Min Ki Lee, Kun Woo Park, and Byung Oh Choi, Kinematic and dynamic models of hybrid robot manipulator for propeller grinding, J. Robot. Syst, 1999,16 (3) : 137-150.
    [21] Shim J.H., Park J.Y., Kwon D.S. etc., Kinematic design of a six degree-of-freedom in-parallel manipulator for probing task, IEEE Int. Conf. Robot. Automat, 1997, Vol. 4, pp: 2967-2973.
    [22] Z. Jason and Leonard S. Haynes, Six degree-of freedom active vibration control using the Stewart platforms, IEEE Trans. Contr. Syst. Technol., 1994,2 (1) : 45-53.
    [23] Hanqi Zhuang, Self-calibration of parallel mechanisms with a case study on Stewart platforms, IEEE Transactions on Robotics and Automation, 1997,13 (3) : 387-397.
    [24] K. H. Hunt, P. R. McAree, The octahedral manipulator: geometry and mobility, Int. J. Robot. Res., 1998,17 (8) : 868-885.
    [25] Daoxi Xiu. Trajectory control of a new class of CNC machine tools. Ph.D. Thesis, Department of Mechanical Engineering, Florida Atlantic University, 1999.
    [26] J. Lee, J. Duffy, M. Keler, The optimum quality index for the stability of in-parallel planar platform devices, J. Mech. Des., Trans, of the ASME, 1999,121 (1) : 15-20.
    [27] Jiegao Wang, Clement M. Gosselin, Static balancing oft spatial four-degree-of-freedom parallel mechanisms, Mechanism and machine Theory, 2000,35 (4) : 563-592.
    [28] D. J. Sanger, J. Q. Chen, S. J. Zhang and D. Howard, A general method for the stiffness analysis of manipulator mechanisms, Proceedings of IMechE, 2000, Part C: Journal of Mechanical Engineering Science, 214: 673-685.
    [29] Carlo Innocenti, Forward kinematics in polynomial form of the general Stewart platform, J. Mech. Des., Trans. ASME, 2001, 123 (2) : 254-260.
    [30] 黄真,高峰,从并联机器人研究看知识创新和技术创新,机械工程学报,2000,36
    
    (2):18-20.
    [31] 黄田,汪劲松,D.J.Whitehouse,Stewart并联机器人局部灵活度与各向同性条件解析,机械工程学报,1999,35(5):41-45.
    [32] 黄田,汪劲松,D.J.Whitehouse.Gough-Stewart平台运动学设计理论与方法,中国科学(E辑),29(4),1999:310-320.
    [33] 汪劲松,王忠华,黄田,D.J.Whitehouse,Gough-Stewart平台微分运动特性分析与综合,中国科学(E辑),2001,31(5):412-418.
    [34] Y. X. Su, B. Y. Duan, The mechanical design and kinematics accuracy analysis of a fine tuning stable platform for the large spherical radio telescope, Mechatronics, 2000, 10(7): 819-834.
    [35] Y. X. Su, B. Y. Duan, C. H. Zheng, Genetic design of kinematically optimal fine tuning Stewart platform for large spherical radio telescope, Mechatronies, 2001, 11 (7): 821-835.
    [36] 苏玉鑫,段宝岩,基于遗传算法的Stewart型平台结构参数优化设计,机械设计,2000,17(9):10-12.
    [37] 苏玉鑫,段宝岩,大射电望远镜精调平台结构参数优化设计,机械科学与技术,2001,20(3):348-349.
    [38] 赵铁石,黄真,一种三维移动并联平台机构的运动学分析,中国机械工程,2001,12(6):613-615.
    [39] 丁洪生,王迪华,刘惠林,BKX-Ⅰ型变轴数控机床运动学仿真建模及实现,北京理工大学学报,2001,21(4):434-439.
    [40] 刘敏杰,李从心,刘海峰,基于速度变换的Stewart平台机械手动力学分析,机械工程学报,2000,36(5):38-41.
    [41] Y. X. Su, B. Y. Duan, Q. Wei, R. D. Nan, B. Peng, Mechatronics design of vibration rejection of the feed-supporting system for the square kilometer array, IEEE/ASME Int. Conf. Advanced Intelligent Mechatronics, 2001, Como, Italy, Vol.1, pp.612-617.
    [42] 苏玉鑫,段宝岩,南仁东,大射电望远镜精调稳定平台逆动力学分析,西安电子科技大学学报,2000,27(5):554-558.
    [43] 王玉新,王仪明,柳杨等,基于同伦法的对称并联机器人机构位置分析,天津大学学报,2001,34(4):439-443.
    [44] Zhao Xinhua, Peng Shangxian, Direct displacement analysis of parallel manipulators, J. Robot. Syst., 2000, 17(6): 341-345.
    [45] 梁崇高,荣辉,一种Stewart平台型机械手位移正解,机械工程学报,1991,27(2):
    
    26-30.
    [46]苏玉鑫,段宝岩,迭代初值对Stewart平台位置正解精度的影响,机械科学与技术,2001,20(2):220-221.
    [47]赵新华,彭商贤,并联机器人奇异位形研究,机械工程学报,2000,36(5):35-37.
    [48]Y. X. Su, B. Y. Duan, B. Peng, and R. D. Nan, Singularity analysis of fine tuning Stewart platform for large spherical radio telescopes using genetic algorithms, Mechatronics, 2002 (to appear).
    [49]黄真,杜雄,3/6-SPS型Stewart机器人的一般线性丛奇异分析,中国机械工程,1999,10(9):997-1000.
    [50]仇原鹰,杜敬利,段宝岩等,大型射电望远镜类Stewart平台的奇异性研究,中国机械工程,2001,12(2):135-139.
    [51]苏玉鑫,段宝岩,大射电望远镜精调稳定平台奇异性分析,西安电子科技大学学报,2002,29(2):225-228.
    [52]范晋伟,费仁元,田越等,基于多体系统运动学理论的并联机床运动空间分析及仿真研究,机械工程学报,2001,37(1):32-36.
    [53]姜兵,黄田,求解6-PSS并联机器人操作机姿态空间的瞬时机架法,机械工程学报,2000,36(9):5-10.
    [54]T. Huang, J. Wang, and D. J. Whitehouse, Closed form solution to workspace of hexapod-based virtual axis machine tools, ASME J. Mech. Des., 1999, 121 (1): 26-31.
    [55]黄田,汪劲松,D.J. Whitehouse, Stewart并联机器人位置空间解析,中国科学(E辑),1998,28(2):136-145.
    [56]Huang Tian, Zhao Xingyu, Zhou Lihua etc., Stiffness estimation of a parallel kinematic machine, Science in China Series E, 2001, 44(5): 473-485.
    [57]金振林,高峰,新型机器人6维力/力矩传感器结构的刚度性能指标分析,中国机械工程,2001,12(10):1092-1094.
    [58]余小流,王启义,赵明杨等,基于测量数据反演并联机床非线性位姿误差模型,机械工程学报,2001,37(2):38-42.
    [59]赵新华,解宁,温殿英等,并联6自由度平台机构误差识别算法,机械工程学报,2000,36(12):25-28.
    [60]李嘉,王纪武,陈恳等,基于广义几何误差模型的微机器人精度分析,机械工程学报,2000,36(8):20-24.
    [61]苏玉鑫,段宝岩,六自由度Stewart平台运动精度分析,西安电子科技大学学报,2000,27(4):401-404.
    
    
    [62]王洋,倪雁冰,黄田等,并联机床插补算法与原理性插补误差预估,机械工程学报,2001,37(6):15-18.
    [63]刘文涛,王知行,詹涵菁等,Stewart平台的运动可控制条件,中国机械工程,2001,12(5):502-503.
    [64]方浩,周冰,冯祖仁,基于层迭CMAC网络的6-DOF机器人自适应控制,机器人,2001,23(4):294-299.
    [65]郭涛,李斌,周云飞等,五坐标虚拟轴数控机床运动控制算法的研究,华中理工大学学报,2000,28(3):22-23.
    [66]孔令富.6自由度并联机器人运动控制系统.哈尔滨工业大学博士论文,1995.
    [67]J. Albus, R. V. Bostelman, and N. Dagalakis, The NIST robocrane, J. Robot. Syst., 1992, 10(5): 709-724.
    [68]R. Bostelman, J. Albus, N. Dagalakis etc., Applications of the NIST RoboCrane, Proc. 5th Int. Symposium on Robotics and Manufacturing, Maui, HI, August 14-18, 1994
    [69]R. Bostelman, A. Jacoff, R. Bunch, Delivery of an advanced double-hull ship welding system using robocrane, Third Int. Computer Science Conventions Symposia on Intelligent Industrial Automation and Soft Computing, Genova, Italy, June 1-4, 1999.
    [70]Rodney G Roberts, Todd Graham and Thomas Lippitt, On the inverse kinematics statics, and fault tolerance of cable-suspended robots, J. Robot. Syst., 1998, 15(10): 581-597.
    [71]J. W. Jeong, S. H. Kim, Y. K. Kwak etc., Development of a parallel wire mechanism for measuring position and orientation of a robot end-effector, Mechatronics, 1998, 8(8): 845-861.
    [72]Claudio Melchiorri, Gabriele Vassura, Development and application of wire-actuated haptic interfaces, Journal of Robotic Systems, 2001, 18(12): 755-768.
    [73]段宝岩.天线结构分析、优化与测量.西安:西安电子科技大学,1998.
    [74]Y. X. Su, B. Y. Duan, R. D. Nan, B. Peng, Development of a large parallel cable manipulator for feed supporting system of next generation large radio telescope, J. Robot. Syst., 2001, 18 (11): 633-643.
    [75]孙欣,段宝岩,巨型柔性Stewart平台解空间、工作空间的研究及悬索张力的优化设计,机械工程学报,2002,38(2):16-21.
    [76]邱金波,段宝岩,彭勃,南仁东,大型球面射电望远镜控制系统研究,自动化学报,2001,27(1):93-97.
    [77]苏玉鑫,段宝岩,魏强,南仁东,彭勃,基于电流变液的大射电望远镜馈源支撑系统风振阻尼控制,机械工程学报,2001,37(3):46-50.
    
    
    [78] 苏玉鑫,段宝岩,大射电望远镜馈源轨迹跟踪自适应控制,控制理论与应用,2002,19(1):121-124.
    [79] 苏玉鑫,段宝岩,彭勃,南仁东,大射电望远镜馈源轨迹跟踪的模糊预测控制,控制与决策,2002,17(1):85-88.
    [80] 苏玉鑫,段宝岩,南仁东,模糊控制在大射电望远镜中的应用,中国机械工程,2001,12(增刊):177-179.
    [81] Andre Sharon, The macro/micro manipulator: an improved architecture for robot control, Ph.D. Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, 1988.
    [82] Andre Sharon, Neville Hogan, David E. Hardt, High bandwidth force regulation and inertia reduction using a macro/micro manipulator system, IEEE Int. Conf. Robot. Automat., 1988, Vol.1, pp.126-132.
    [83] Andre Sharon, The Macro/Micro Manipulator: An improved architecture for robot control, Robotics and Computer Integrated Manufacturing, 1993, 10(3): 209-222.
    [84] Tatsuo Narikiyo, Hiroyuki Nakane etc., Control system design for macro/micro manipulator with application to electrodischarge machining, IEEE/RSJ Proc. Intelligent Robotics and Systems, 1994, pp. 1454-1460.
    [85] Tsuneo Yoshikawa, Kensuke Harada, and Atsushi Matsumoto, Hybrid position/force control of flexible-macro/rigid-micro manipulator systems, IEEE Trans. Robot. Automat., 1996, 12(4): 633-640.
    [86] Degao Li. Dynamics of macro-micro manipulator systems. Ph.D. Thesis, Department of Mechanical and Industrial Engineering, University of Toronto, 1997.
    [87] Van Vliet, J., Sharf, I., A frequency matching algorithm for active damping of macro-micro manipulator vibrations, IEEE/RSJ Int. Conf. Intelligent Robots and Systems, 1998, Vol.2, pp.782-787.
    [88] Heidi C. Schubert. Impedance control of flexible macro/mini manipulators. Ph.D. Thesis, Stanford University, Department of Aeronautics and Astronautics, 2000.
    [89] 陈启军,王月娟,陈辉堂,运动学补偿的宏.微机器人连续轨迹控制研究,控制理论与应用,2001,18(1):12-16.
    [90] 苏玉鑫,段宝岩,彭勃,南仁东,大射电望远镜轨迹跟踪模糊学习控制,自动化学报,2002,28(待发表).
    [91] 熊有伦.机器人学.北京:机械工业出版社,1993.
    [92] P. R. McAree, A. E. Samuel, and K. H. Hunt etc., A dexterity measure for the kinematic
    
    control of a multifinger, multifreedom robot hand, Int. J. Robot. Res., 1991, 10(5): 439-453.
    [93] Macro Ceccarelli, Massimo Sorli, The effects of design parameters on the workspace of a turin parallel robot, Int. J. Robot. Res., 1998, 17(8): 886-902.
    [94] C. M. Gosselin and E. Lavoie, On the kinematic design of spherical three-degree-of-freedom parallel manipulators, Int. J. Robot. Res., 1993, 12(4): 394-402.
    [95] Clement M. Gosselin, Louis Perreault, and Charles Vaillancourt, Simulation and computer-aided kinematics design of three-degree-of freedom spherical parallel manipulators, J. Robot. Syst., 1995, 12(12), 857-869.
    [96] Ronen Ben-Horin, Moshe Shoham, and Shlomo Djerassi, Kinematics, dynamics and construction of a planarly actuated parallel robot, Robotics and Computer-Integrated Manufacturing, 1998, 14(2): 163-172.
    [97] H. R. Mohammadi Daniali, P. J. Zsombor-Murray, and J. Angeles, The isotropic design of two general classes of planar parallel manipulators, J. Robot. Syst., 1995, 14(12): 795-805.
    [98] Kenneth H. Pittens, and Ron P. Podhorodeski, A family of Stewart platforms with optimal dexterity, J. Robot. Syst., 1993, 10(4): 463-479.
    [99] Jaehoon Lee, Joseph Duffy, and Kenneth H. Hunt, A practical quality index based on the octahedral manipulator, Int. J. Robot. Res., 1998, 17(10): 1081-1090.
    [100] J. Lee, J. Duffy, and M. Keler, The optimum quality index for the stability of in-parallel planar platform devices, J. Mech. Des., Trans. ASME, 1999, 121(1): 15-20.
    [101] R. Boudreau and Clement. M. Gosselia, The synthesis of planar parallel manipulators with a genetic algorithms, J. Mech. Des., Trans. ASME, 1999, 121(4): 533-537.
    [102] D. E. Goldberg, Genetic algorithms in search, optimization and machine learning, Addison-Wesley, Reading, MA, 1989.
    [103] J.H. Holland, Adaptation in nature and artificial systems, MIT Press, Cambridge, MA, 1992.
    [104] Mitsuo Gen, and Runwei Cheng, Genetic algorithms and engineering design, John Wiley, New York, 1997.
    [105] 陈国良等.遗传算法及应用.北京:人民邮电出版社,1996.
    [106] 孙增圻等编著.智能控制理论与技术.北京:清华大学出版社,1997.
    [107] Hangqi Zhuang, Jie Wu, Weizhen Huang, Optimal planning of robot calibration experiments by genetic algorithms, Journal of Robotic Systems, 1997, 14 (10): 741-752.
    
    
    [108] Bin-Da Liu; Chuen-Yau Chen; Ju-Ying Tsao, Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms, IEEE Trans. Systems, Man and Cybernetics, Part B, 2001, 31(1): 32-53.
    [109] Y. X. Su, B. Y. Duan, B. Peng, R. D. Nan, A real-coded genetic optimal kinematic design of a Stewart fine tuning platform for large radio telescope, J. Robot. Syst., 2001,18(9): 507-516.
    [110] 彭召旺,杨洪柏,钟廷修,实值编码遗传算法的行星齿轮传动优化,上海交通大学学报,1999,33(7):833-836.
    [111] 李松晶,鲍文,王莹,许耀铭,采用遗传算法的新型节能电磁换向阀的优化设计,机械工程学报,2001,37(7):79-81.
    [112] 何永勇,褚福磊,郭丹,钟秉林,基于遗传算法的旋转机械转子裂纹识别的研究,机械工程学报,2001,37(10):69-74.
    [113] 孙宇,尹芳,用遗传算法进行串行生产线缓冲器设计,自动化学报,2001,27(6):863-866.
    [114] 徐智,席裕庚,韩兵,基于遗传算法的一类带缓冲区的生产调度,控制理论与应用,2001,18(5):675-680.
    [115] C. A. Klein and B. E. Blaho, Dexterity measures for the design and control of kinematicalty redundant manipulators, Int. J. Robot. Res., 1987, 6(2): 72-83.
    [116] Kalyanmoy, Deb and Samir Agrawal, A niched-penalty approach for congraint-handling in genetic algorithms, Proc. Int. Conf. Artificial Neural Nets and Genetic Algorithms, A. Dobnikar, N. C. Steele, D. W. Pearson, and R. F. Albrecht (Editors), Springer Wien, New York, 1999, pp.249-255.
    [117] Z. Michalewicz, Genetic algorithms + data structures = evolution programs, 2nd ed. Berlin, Springer-Verlag, 1994.
    [118] 楼顺天.MATLAB 5.0程序设计语言.西安电子科技大学出版社,2001.
    [119] Timo Ropponen and Tatsuo Arai, Accuracy analysis of a modified Stewart platform manipulator, Proc. IEEE Int. Conf. Robot. Automat., 1995, pp. 521-524.
    [120] Liu Minjie, Li Congxin and Liu Haifeng, Dynamics analysis of the Gough-Stewart platform manipulator, IEEE Trans. Robot. Automat., 2000, 116(1): 94-98.
    [121] W. Q. D. Do, and D. C. H. Yang. Inverse dynamic analysis and simulation of a platform type of robot. J. Robot. Syst., 1988, 5(3): 209-227.
    [122] Bhaskar Dasgupta, and Prasun Choudhury, A general strategy based on the Newton-Euler approach for the dynamic formulation of parallel manipulators,
    
    Mechanism and Machine Theory 6 (1999) , 801-824.
    [123] G Lebret, K. Liu, and F. L. Lewis. Dynamic analysis and control of a Stewart platform manipulator, J. Robot. Syst., 1993,10 (5) : 629-655.
    [124] Hyunsok Pang, and Mohsen Shahinpoor. Inverse dynamics of a parallel manipulator. J. Robot. Syst, 1994,11 (8) : 693-702.
    [125] Gosselin C. M, Parallel computational algorithm for the kinematics and dynamics planar and spatial parallel manipulators. ASME J. Dyn. Syst., Meas. Contr., 1996, 118 (1) : 22-84.
    [126] Chang-De Zhang, and Shin-Min Song, An efficient method for inverse dynamics of manipulators based on the virtual work principle. J. Robot. Syst., 1993,10 (5) : 605-627.
    [127] Lung-Wen Tsai, Solving the inverse dynamics of a Stewart-Gough manipulator by the principle of virtual work, Trans. ASME, J. Mech. Des., 2000,122 (1) : 3-9.
    [128] C. M. Gosselin, and J. Angeles, Singularity analysis of closed-loop kinematic chains, IEEE Trans. Robot. Automat., 1990,6 (3) : 281-290.
    [129] Fangli Hao, J. Michael McCarthy, Conditions for line-based singularities in spatial platform manipulators, J. Robot. Syst., 1998,15 (1) : 43-55.
    [130] St-Onge, Boris Mayer, Gosselin, Clement M., Singularity analysis and representation of the general Gough-Stewart platform, Int. J. Robot. Res., 2000,19 (3) : 271-288.
    [131] Bruno Monsarrat, and C. M. Gosselin, Singularity analysis of a 3-leg 6-dof parallel platform mechanism based on the grassmann-line geometry, bit. J. Robot. Res., 2001, 20 (4) : 312-326.
    [132] Doik Kim and Wankyun Chung, Analytic singularity equation and analysis of six-DOF parallel manipulators using local structurization method, IEEE Trans. Robot. Automat., 1999,15 (4) : 612-622.
    [133] 蔡自兴.机器人学.北京:清华大学出版社,2000年9月.
    [134] Dong Hwan Kim, Ji-Yoon Kang, Kyo-Il Lee, Robust tracking control design for a 6 DOF parallel manipulator', J. Robot. Syst., 2000,17 (10) : 527-547.
    [135] John E. McInroy, and Jerry C. Hamann, Design and control of flexure Jointed Hexapods, IEEE Trans. Robot. Autom., 2000,16 (4) : 372-381.
    [136] Z. Jason Geng, and Leonard S. Haynes, Six degree-of-freedom active vibration control using the Stewart platforms, IEEE Trans. Contr. Syst. Technol., 1994, 2 (1) : 45-53.
    [137] Charles C. Nguyen, Sami S. Antrazi, and Zhen-Lei Zhou, Adaptive control of a
    
    Stewart platform-based manipulator, J. Robot Syst., 1993,10 (5) : 657-687.
    [138] Luc baron, and Jorge Angles, The direct kinematics of parallel manipulators under joint-sensor redundancy, IEEE Trans. Robot. Automat., 2000,16 (1) : 12-19.
    [139] Roger Boudreau, Salah Darenfed, and Clement M. Gossdin, On the computation of the direct kinematics of parallel manipulators using polynomial networks, IEEE Trans. Syst., Man, Cybem., 1998,28 (2) : 213-220.
    [140] B. Armstrong-Helouvry, P. Dipont, and C. Canudas de Wit, A survey of models, analysis, tools and compensation methods for the control of machines with friction, Automat., 1994, 30 (6) : 1083-1138.
    [141] Jason T. Teeter, Mo-yuen Chow, and James J. Brickley Jr., A novel fuzzy friction compensation approach to improve the performance of a DC motor control system, IEEE Trans. Ind. Electron., 1996,43 (1) : 113-120.
    [142] Hensen R. H. A., van de Molengraft M. J. G, and Steinbuch M., Frequency domain identification of dynamic friction model parameters, IEEE Trans. Contr. Syst. Technl., 2002,10 (2) : 191-196.
    [143] K. K. Tat), Tong Heng Lee, Huixing X. Zhou, Micro-position of linear-piezoelectric motors based on a learning nonlinear PID controller, IEEE/ASME Trans. Mechatron., 2001,6 (4) : 428-436.
    [144] Jason T. Teeter, Mo-yuen Chow, and James J. Brickley Jr., A novel fuzzy friction compensation approach to improve the performance of a DC motor control system, IEEE Trans. Ind. Electron., 1996,43 (1) : 113-120.
    [145] Gou-Jen Wang, Chuan-Tzueng Fong, Kang J. Chang, Neural-network-based self-tuning PI controller for precise motion control of PMAC motors, IEEE Trans. Ind. Electron., 2001,48 (2) : 408-415.
    [146] 梅雪松,陶涛,堤正臣等,高速、高精度数控伺服工作台摩擦误差的研究,机械工 程学报,2001,37(6) :76-81.
    [147] Makoto Iwasaki, Tomohiro Shibata, and Nobuyuki Matsui, Disturbance-observer-based nonlinear friction compensation in table drive system, IEEE/ASME Trans. Mechatron., 1999,4 (1) : 3-8.
    [148] Liu Xu and Bin Yao, Output feedback adaptive robust precision motion control of linear motors, Automat., 2001, 37 (7) : 1029-1039.
    [149] R. Martinez-Guerra, A. Poznyak, E. Gortcheva, and V. Diaz de Leon, Robot angular link velocity estimation in the presence of high-level mixed uncertainties, IEE
    
    Proc.-Control Theory Appl., 2000, 147(5): 515-522.
    [150] 韩京清,王伟,非线性跟踪-微分器,系统科学与数学,1994,14(2):177-183.
    [151] 韩京清,一类不确定对象的扩张状态观测器,控制与决策,1995,10(1):85-88.
    [152] 韩京清,非线性PID控制器,自动化学报,1994,20(4):487-490.
    [153] 韩京清,自抗扰控制器及其应用,控制与决策,1998,13(1):19-23.
    [154] 韩京清,袁露林,跟踪-微分器的离散形式,系统科学与数学,1997,19(3):268-273.
    [155] 王伟,张晶涛,柴天佑,PID参数先进正定方法综述,自动化学报,2000,26(3):347-355.
    [156] W.J. Rugh, Design of nonlinear PID controllers, AIChE J., 1987, 33 (10): 1738-1741.
    [157] S. M. Shahruz, and A. L. Schwartz, Design and optimal tuning of nonlinear Ⅰ compensators, J. Optimization Theory Applicat., 1994, 83(1): 181-198.
    [158] Brain Armstrong, David Neevel, and Todd Kusik, New results in NPID control: tracking, integral control, friction compensation and experimental results, IEEE Trans. Contr. Syst. Technol., 2001, 9 (2): 399-406.
    [159] Homayoun Seraji, A new class of nonlinear PID controllers with robotic applications, J. Robot. Sys., 1998, 15(3): 161-181.
    [160] 苏玉鑫,段宝岩,一种新型非线性PID控制器,控制与决策,2002,(待发表).
    [161] 苏玉鑫,段宝岩,张永芳,陈光达,米建伟,并联机器人的非线性PID控制,控制与决策,2002,(待发表).
    [162] Rong-Jong Wai, Total sliding-mode controller for PM synchronous servo motor drive using recurrent fuzzy neural network, IEEE Trans. Ind. Electron., 2001, 48(5): 926-944.
    [163] 郭庆鼎,王成元编著.交流伺服系统.北京:机械工业出版社,1998年6月.
    [164] 何福忠,孙优贤,基于稳定参数空间的PID调节器遗传优化设计,控制与决策,2000,15(4):507-509.
    [165] 段宝岩.大射电望远镜馈源支撑与指向跟踪系统仿真与实验研究总结报告.西安:西安电子科技大学,2002年.
    [166] H. D. Stevens and Jonathan How, The limitations of independent controller design for a multiple-link flexible macro-manipulator carrying a rigid mini-manipulator, Proc. 2nd ASCE Conf. Robot. Challenging Environments, Albuquerque NM, June 1996: 93-99.
    [167] 黄一,许可康,韩京清.Stewart平台精定位控制方案可行性论证报告.北京:中国科学院系统科学研究所,2000年1月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700