电力系统动态负荷建模及其有效性验证的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了总体测辨法的三个主要方面:负荷时变性、负荷动态机理、模型有效性验证中存在的关键问题,该研究对负荷模型的实用化有重要意义。论文的主要研究工作如下:
     由于负荷特性的时变性,对于不同的实测数据可以建立阶次不同,参数不同的负荷模型,这导致模型参数选择使用的困难,因此本文提出了负荷建模的两层思想:一是对于不同的实测数据,尽可能找到同一的模型结构来描述,而不过分追求模型对单组实测数据的拟合效果;二是对于具有相同模型结构的负荷特性,统计其特征参数的分布来把握负荷特性的变化规律。
     过去采用相同阶次的线性离散模型难以描述不同的无功负荷特性,为此本文研究了影响线性离散模型阶次稳定性的因素,首次提出解决无功负荷模型阶次不稳定的办法。在此基础上,本文首次研究了采用同一模型结构描述不同负荷实测数据的可能性,比较了一阶和二阶差分方程模型对不同实测数据的平均拟合度,研究结果表明一阶差分方程可以较好地描述负荷实测有功和无功特性。
     由于离散模型参数意义不够直观,且随采样周期变化,不适合作为负荷特性的特征向量,故此本文提出采用模型的典型响应特征作为负荷特性的特征向量。在此基础上,采用统计的方法对特征向量中各参数的分布规律进行分析,研究结果对负荷模型实用化中参数选择的合理性具有重要的意义。
     同一负荷点存在不同的负荷特性,模型使用时通常采用具有代表性的负荷模型,为此本文首次研究了求取给定负荷点处一般负荷特性的两种方法,并比较了采用两种方法得到的一般负荷特性对不同实测数据的描述能力。
     动态负荷模型是否对仿真有效,需要通过需要通过现场实测数据的验证,故本文采用广东电网的两个实际算例对非机理负荷动态模型的有效性进行了研究,研究结果表明广东地区负荷动态模型对粤西送出截面稳定极限计算和水贝变电站故障电流仿真有效,前者经验静态模型和实测动态模型的各机电暂态仿真结果比较接近,后者动态模型比静态模型的仿真电流更接近实际录波值。研究结果还表明了不同参数的动态模型对两个算例的计算结果均有较大影响,采用动态模型可以提高计算的精度。
     电力系统仿真程序中多支持感应电动机动态负荷模型(IM_DLM),但由于现有IM_DLM不符合综合负荷动态机理,所以不实用。建立符合综合负荷动态机理的负荷模型不但有助于对综合负荷动特性机理研究的深入,而且具有重要的现实意
    
    华北电力大学博士学位论文 摘要
    义,本文提出一个符合综合负荷动态机理的感应电动机动态负荷模型
     (LSVC IM DLM),该模型是在现有感应电动机负荷模型(M DLM)基础上引
    入一个“无功静态补偿(LSVC)”项。首次采用不同类型负荷实测数据对模型结
    构的合理性进行验证,所以具有重要实用价值。
     新的机理式负荷模型是否对仿真有效需要通过验证。为此,本文首次采用广
    东电网的两个实际算例研究了LSVC_IM_DLM的有效性,研究结果表明LSVC_IMDLM
    与非机理动态模型的计算结果十分相近,从而验证了LSVC二M.DLM对电力系统仿
    真的有效性。
This paper studies some important problems in three major respects of Measurement-Based
     Load Identification Method: Time dependence characteristic of load, mechanism of synthetic
     dynamics and model validation. This gives significant contribution to the application of the load
     models. The main points of the research work of this thesis are as follow:
    
     Becauce of load time dependence characteristic, different models, whch have different order
     and parameters, can be built for different set of field data, this results in is a difficulty in choose
     parameters. So a two-step concept in load modeling is proposed as follow: The first step is to
     identify the most likely model structure to describe different sets of measured data, instead of
     pursuing a perfect fitting result from one set of data. The second step is to analyze the distribution of
     parameters of load model, which share the same model structure, by statistical method.
    
     It was difficult to describe different reactive load characteristics by linear discrete models of
     same order in the past. Therefore the elements that might affect the structure stability of the linear
     discrete model is studied. An effective solution to order instability of the reactive load model is
     proposed for the first time. Base on the above research, the author studied the possibility of utilizing
     the same model structure to describe different set of field data. The average fitting level against
     different measured data between the 1 order and 2 order difference equation models has been
     compared. The study reveals that 1 order equation can describes load characteristics well, both on
     real power and reactive power.
    
     The parameters of difference load model are not suitable to be considered as
     character vector because meanings of them is not intuitionistic. and varys along with the
     sample cycle, therefore this thesis presents the methodology for representing load
     characteristics with character vector. The character vector is composed of three characteristics of
     load step response. With statistical theory and methodology, the probability distribution functions of
     load characteristics parameters are analyzed. The analysis of the parameter probability distribution is
     significant for selecting reasonable parameters to utilize the load model
    
     As for the same load spot, there are many different load characteristics; it is usually to use the
     most typical load characteristic in practice, so the author study two methods to identified the general
     load characteristics for the samne load spot. The description ability to different data using general
     load characteristic , which is obtained by two methods, are compared.
    
     Based on two real examples from Guangdong Power Grid, the author studied the validation of
    
    
    
     the non-mechanism load dynamic model. The result shows that the Guangdong power load dynamic
     model is affective to both stability limit calculation of the power across exporting from Yuexi and
     simulation of faults in Shuibei substation. The former came to a very close result between
     experienced static model and the dynamic model from field data. For the later, the dynamic model is
     closer to actual recorded wave than static model. The study confirmed that different parameters for
     dynamic models would great impact on the calculation result and dynamic model would greatly
     increase calculation accuracy.
    
     The induction motor dynamic load model (TM DLM)is supported by most power system
     simuation program, but the model structure of current TM_DLM is not suitable to describe synthetic
     load, therefore it is
引文
1. 贺仁睦,电力系统动态仿真准确度的探究,电网技术, Vol. 24, No. 12, Dec 2000
    2. IEEE, Computer Analysis of Power System Working Group of the Computer and Analytical Methods Subcommittee-Power System Engineering Committee, "System Load Dynamics SimulationEffects and Determination of Load Constants", IEEE Trans. Vol. Pas-92,1973
    3. J.Robert, and Y. Robichaud, "Load Behavior and transient Stability", IEEE Paper 70 Cpl49-PWR, IEEE Winter Power Meeting, 1970
    4. W.Mauricio, and A. Semlyen, "Effect of Load characteristics on the Characteristics on Power System Dynamic Stability", IEEE Trans., Vol. PAS-91,1972
    5. R.Ueda, S. Takata, "Effects of Induction Machine Load on Power System ", Paper 80 SM 530-6,IEEE PES Summer Meeting, 1980
    6. David J.Hill, "Nonlinear Dynamic Load Models with Recovery for Voltage Stability Studies", IEEE PWRS-8,No 1, pp166-176, Feb. 1993
    7. A. Murdoch, Ⅲ, and N.W. Simons, "The Effect of Load Characteristics on Power System Stability ", American Power Conference Paper, 1974.
    8. Stefan Arnborg, Goran Andersson, David J.Hill, Ian A. Hiskens, "On Influence of Load Modeling for Undervoltage Load Shedding Studies" IEEE Trans, on Power Systems, Vol. 13, No. 2, May 1998
    9. Kao Wen-Shiow, Huang Chiang-Tsang, "DYNAMIC LOAD MODELING EN TAIPOWER SYSTEM STABILITY STUDIES ", IEEE Trans, on Power Systems, Vol. 10, No. 2, May 1995
    10. Les M. Hajagos, Behnam Danai, " Laboratory Measurements and Models of Modern Loads and their Effect on Voltage Stability Studies", IEEE Trans, on Power Systems, Vol. 13, No. 2, May 1998
    11. I.A.Hiskens, J.VMilanovic, "Load Modeling in Studies of Power System Damping", IEEE Trans, on Power Systems, Vol. 10, No. 4, Nov. 1995
    12. Dmitry N. Kosterev, Carson W.Taylor, William A. Mittelstadt, "Model Validation for the August 10,1996 WSCC System Outage" IEEE Trans, on Power System, Vol. 14, No. 3, August 1999
    13. Kao Wen-Shiow, "The Effect of Load Models on Unstable Low-Frequency Oscillation Damping in Taippwer System Experience w/wo Power System Stabilizers", IEEE Trans, on Power Systems, Vol. 16, No. 3, Aug. 2001
    14. IEEE Task Force on Load Representation for Dynamic Performance, " LOAD REPRESENTATION FOR DYNAMIC PERFORMANCE ANALYSIS", IEEE Trans, on Power System, Vol.8 No.2,pp472-482,May 1993.
    15. IEEE Task Force on Load Representation for Dynamic Performance, "Standard Load Models for Power Flow and Dynamic Performance Simulation", IEEE Trans, on Power Systems, Vol. 10,No. 3, pp1302-1313, Aug. 1995
    16. IEEE Task Force on Load Representation for Dynamic Performance, "BIBLIOGRAPHY ON LOAD MODELS FOR POWER FLOW AND DYNAMIC PERFORMANCE SIMULATION", IEEE Trans, on Power Systems, Vol. 10, No. 1, pp523-538, Feb. 1995
    17. W.W.Price, KA. Wirgau, A. Murdoch, F. Nozari, "Load Modeling for Power Flow and
    
    Transient Stability Studies," EPRI Report EL-5003, Project 849-7,1987.
    18. L.Ljung, System identification: Theory for the user, Prentice-Hall, Englewood Cliffs, New Jersey, 1987
    19. Swedish and Norwegian Power Companies, "Load Representation in Stability Studies and the Effect of Load-Voltage Characteristics on Transient Stability", Report to CIGRE Committee No. 13, 1964
    20. E. Vaahedi, H. M. Zein El-Din, W. W. Price, "Dynamic Load Modeling in Large Scale Stability Studies" IEEE Trans. PWRS-3, pp.1039-45, 1988
    21. J.V. Milanovic, I.A.Hiskens, "Effects of Load Dynamics on Power System Damping", IEEE Trans. on Power Systems, Vol. 10, No. 2, May. 1995
    22. Y. Mansour, "Application of Eigenanalysis to the Western North American Power System," IEEE Pub. 90TH0292-3, Eigenanalysis and Frequency Domain Methods for System Dynamic Performance, 1990
    23. C. Concordia, and S.Ihara, "Load Representation in Power System Stability Studies", IEEE Trans. on Power Apparatus and Systems, Vol. PAS-101, No.4, pp969-977, April 1982
    24. K. Walve, "Modeling of Power System Components at Severe Disturbances," CIGRE Paper 38-18, 1986
    25. W. W. Price, K. A. Wirgau, A. Murdoch, F. Nozari, "Load Modeling for Power Flow and Transient Stability Computer Studies", IEEE Trans. on Power Systems, Vol. 3, No. 1, Feb. 1988
    26. V, Ramamurthi, and S. S. Venkata, "Load Representation through Dynamic Characteristics in Transient Stability Studies", Paper A79 037-3, IEEE PES Winter Meeting
    27. EPRI Final Report TR-108256 "System Disturbance Stability Studies for Wester System Coordinating Council (WSCC)," Sep. 1997, prepared by Powertech Labs Inc.
    28. P. Ju, E.Handschin and C.Rehtanz, "A Comparative Study on the Nonlinear Dynamic Load Models" 12th Power System Computer Conference, pp1069-1074, Dresden, Aug, 1996
    29. He Renmu, A.J.Germond, "Comparision of Dynamic Load Modeling using Neral Network and Traditional Method", Proc of the second internatioaal forum on ANNPS, Yokohama, Japan, pp253-258,1993
    30. M.Bostanci, J.Koplowitz, C,W. Taylor, "Identification of Power System Load Dynamics Using Artificial Neural Networks", IEEE PWRS-12, No. 4, pp1468-1473, Nov 1997
    31. CIGRE Task Force, "Load Modeling and Dynamics", Electra, No. 130,pp123-141,May 1990
    32.М.г.波尔特诺伊,Р.С.拉比诺维奇著;张金城,郑美特译.电力系统稳定性控制.北京:电力工业出版社,1982年
    33. M. S. Chen, "Determing Load Characteristics for Transient Performance," EPRI Report EL-849, Project RP849-3, Palo Alto, California, 1979
    34. T. Gentile, S. Ihara, A. Murdoch, and N. Simons, "Determing Load Characteristics for Transient Performance" EPRI Report EL-850,Project RP849-1, Palo Alto, California, 1981
    35. IEEE, Computer Analysis of Power System Working Group of the Computer and Analytical Methods Subcommittee-Power System Engineering Committee, "System Load Dynamics Simulation Effects and Determination of Load Constants," IEEE Trans. Vol. PAS-92,1993
    36.段献忠,汪馥英,何仰赞等,负荷模型研究现状综述,电力系统自动化,Vol 18,pp60—80,1994年8月
    37.鞠平,马大强.电力系统负荷建模。北京:水利电力出版社,1995
    
    
    38.鞠平、卫志农.负荷特性的在线测辨——模型及辨识.电力系统自动化,1992(4)
    39.黄梅,贺仁睦.电力系统现象观测装置的初步研究-负荷动态模型的建立.华北电力大学学报,1988(4):1~9
    40.北京立德电力数据设备公司.WFT-Ⅱ型微机负荷特性测辨装置研制技术报告。1977年
    41.河南电力试验研究所郑州自动化技术公司,电力负荷特性参数辨识仪研制技术报告,1996年
    42. Dovan T. "A Microcomputer Based on-line Identification Approach to Power System Dynamic Load Modeling". IEEE Trans. PWRS-2,No.3,pp529-536,Aug 1987
    43. Sabir S A Y. "Dynamic Load Models Derived from Data Acquired during System Transients". IEEE Trans. on PAS-101, No. 9,1982
    44. Chiew-Yann Chiou, et al, "Development of a Micro-Processor-based Transient Data recording System for Load Behavior Analysis", IEEE Trans. PWRS-8,No.1,pp 16-22,Feb 1993
    45. Lin Chiajen, Chiang H D. "Dynamic Load Models in Power System Using the Measurement Approach". IEEE Trans. on Power Systems, Vol. 8, No. 1, Feb. 1993
    46. CIGRE Task Force 38.02.05, "Load Modeling and Dynamics," Electra, May 1990
    47.贺仁睦.负荷模型在电力系统计算中的作用及发展.华北电力学院学报,1985(3):1~8
    48.贺仁睦,魏孝铭,陈厚连,电力系统负荷模型的建立,中国电机工程学报,Vol.12,No.6,1992,11
    49.周文.电力系统负荷建模平台的研究.华北电力大学博士学位论文,1999年6月
    50.李欣然.考虑负荷特性的电压稳定及其负荷建模的研究.华北电力大学博士学位论文,1998年12月
    51.李欣然,贺仁睦,周文,张伶俐,综合负荷的广义电动机模型及其描述能力,华北电力大学学报,1999,1
    52.章建.电力系统负荷建模方法的研究.华北电力大学博士论文,1997年5月
    53.韩民晓.人工神经网络及其在负荷建模中的应用.华北电力学院博士学位,1995年3月
    54. Goodwin, G. C. "Some observations on robust estimation and control", Proc. 7th IFAC Symp. On System Identification 1985
    55.李德丰,鞠平,电力系统综合负荷模型的可辨识性研究,电力系统自动化,Vol 21,pp10-14,1997,7
    56. Daniel Karisson and David J. Hill, "Model and Identification of Nonlinear Loads in Power System", IEEE Trans. PWRE-9, No. 1, pp157-166, Feb 1994
    57.鞠平,马大强.电力负荷的NLRF建模法,中国电机工程学报,Vol.9,No.6,1989
    58.鞠平,李德丰,电力系统综合负荷模型的辨识方法的研究,电力系统自动化,Vol 21,pp11-14,1997,8
    59.贺仁睦、魏孝铭、韩民晓.电力负荷动特性实测建模的外推和内插.中国电机工程学报,1996(3),151-154
    60. Zhou wen, Hen Renmu, Zhang Lingli, Li Xinran, A Load Model Develooped at Hebei Power System, POWERCON'98, The International Conference on Power System Technology Proceedings, Beijing, China, Aug. 1998
    61. Krishnaswamy Srinivasan, Claude Lafond. "Statistical Analysis of Load behavior parameters at Four Major Loads", IEEE Trans. on Power Systems, Vol. 10, No. 1, pp387-392, Feb. 1995
    62.张伶俐,周文,章建,贺仁睦,面向综合的电力负荷动特性建模,中国电机工程学报Vol.19,No.9,Sep 1999
    63. S.Ihara, M. Tanni, K. Tomiyama, "Residential Load Characteristics Observed at KEPCO Power System", IEEE Trans. on Power System, Vol. 9, No. 2, pp1092-1101,May 1994
    
    
    64.贺仁睦,韩民晓,电力系统负荷扰动数字特征的研究,北京动力经济学院学报Vol.11,No.3,1994年9月
    65. Aleksandar M. Stankovic Bernard C. Lesieutre, "A Porbabilistic Approach to Aggregate Induction machine Modeling", IEEE Trans. on Power Systems, Vol. 11, No. 4, Nov. 1996
    66. M.Taleb, M.Akbaba, E.A.Abdullah, "Aggregation of Induction Machines for Power System Dynamic Studies", IEEE Trans. Power Systems, Vol.9, No. 4,pp2042-48, Nov 1994
    67. S.Ahmed-Zaid, M.Taleb, "Structural Modeling of Small and Large Induction machines Using Integral manifolds", IEEE Trans. on Energy Conversion, Vol.6, No. 3, Sep. 1991
    68. Graham J. Rogers, et al, "AN AGGREGATE INDUCTION MOTOR MODEL FOR INDUSTURAL PLANTS", IEEE Trans. on Power Apparatus and Systems, Vol. PAS-103, No. 4, April 1984
    69. M. M. Abdel Hakim, G. J. Berg, "DYNAMIC SINGLE-UNIT REPRESENTATION OF INDUCTION MOTOR GROUPS", IEEE Trans. on Power Apparatus and Systems, Vol. Pas-95, No. 1, January/February 1976
    70. F. Iliceto and A. Capasso, "DYNAMIC EQUIVALENTS OF ASYNCHRONOUS MOTOR LOADS IN SYSTEM STABILITY STUDIES", IEEE Trans. on PAS-93,1974
    71. A.H.M.A. Rahim, A.R. Laldin, "AGGREGATION OF INDUCTION MOTOR LOADS FOR TRANSIENT STABILITY STUDIES", IEEE Trans. on Energy Conversion, Vol.EC-2, No. 1, March 1987
    72. Takao Omata Katsuhiko Uemura, "Aspects of Voltage Responses of Induction Motor Loads", IEEE Trans. on Power Systems, Vol. 13, No. 4 November 1998
    73.鞠平,马大强.电力负荷的机理式集结模型.中国电机工程学报,1990,10(3)
    74.张乃尧、阎平凡,神经网络与模糊控制 清华大学出版社,1998,10
    75.郑人杰、殷人昆、陶永雷实用软件工程 北京:清华大学出版社,1997
    76.西安交通大学等,电力系统计算,水利电力出版社,1978
    77.汤涌电力系统稳定计算隐式积分交替求解 电网技术1997(2)
    78.电力科学研究院BPA暂态稳定用户手册,北京:电力科学研究院
    79.马大强,电力系统机电暂态过程,水利电力出版社,1988,11
    80.倪以信.动态电力系统理论和分析.1994
    81.韩祯祥.电力系统稳定,中国电力出版社,1995
    82.[加]余耀南.动态电力系统.北京:水利电力出版社.1985
    83.袁季修.电力系统安全稳定控制.北京:中国电力出版社,1996
    84.高景德,张麟征.电机过渡过程的基本理论及其分析方法(上、下).北京:科学出版社.1983
    85.张伯明,陈寿孙.高等电力网络分析.1993
    86.黄家裕,陈礼义,孙德昌.电力系统数字仿真,北京:中国电力出版社(第二版)1998
    87.王梅义,吴竟昌,蒙定中.大电网系统技术.北京:中国电力出版社,1995
    88.胡寿松等自动控制原理国防工业出版社1987
    89.刘豹,现代控制理论机械工业出版社1992
    90.席少霖,赵凤治.最优化计算方法.上海:上海科学技术出版社,1983年
    91.边肇祺、张学工等模式识别(第二版) 清华大学出版社,2000,1
    92.沈善德.电力系统辨识.北京:清华大学出版社,1993
    93.方崇智,肖德云.过程辨识.北京:清华大学出版社,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700