交直流电力系统动态特性分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国电网正处于高速发展时期,随着“全国联网、西电东送”战略的进一步实施,不远的将来将形成全国性的交直流混合电网。随之会出现一系列的重大技术问题,如低频振荡问题、多直流落点问题等。本文利用电力系统仿真软件PSS/E,结合我国“全国联网,西电东送”战略规划,重点研究了交直流系统的动态特性分析方法。主要内容包括:
     (1)研究了交直流电力系统机电暂态仿真中的直流输电系统模型,按照是否考虑直流系统高频控制和直流线路的动态特性,将直流系统模型分为响应特性模型和详细模型,并指出了PSS/E的直流模型的适用范围。通过对PSS/E中直流模型的分析和比较,表明响应特性模型CDC4简单明了,参数容易选定,能够满足实际大规模交直流系统仿真分析的要求。
     (2)提出一种实用的大规模交直流电力系统低频振荡分析方法,该方法结合了QR特征值分析算法和Prony分析方法的优势,可以很容易在现有程序中实现。对多机系统的低频振荡分析计算表明,发电机采用经典模型与采用详细模型并计及励磁模型相比,系统各振荡模式的频率、振型和参与因子基本保持不变。因而大规模交直流电力系统的低频振荡分析可以分为两步:第一步发电机采用简化模型并利用QR算法计算出系统低频振荡的结构性特征,第二步发电机采用详细模型并考虑励磁控制等模型,再通过Prony方法求出低频振荡主导模式的阻尼。
     (3)提出了一种基于同步相量测量单元(PMU)的直流附加控制器。该控制器以PMU得到的区域间电压相角差信号作为输入信号,能够直接有效地反映区域间低频振荡特性。小信号稳定分析结果表明,该控制器在系统较大的运行范围内能够较好地阻尼系统低频振荡,同时提高了交流系统传输能力,具有较好的鲁棒性。时域仿真验证了该控制器在系统大扰动下也能较好地发挥作用。
     (4)提出了一种基于PMU的观测线性化最优直流附加控制器。该控制器利用由PMU测量得到的系统实际运行状态量,实现系统状态方程的观测线性化,再应用最优控制原理来实现直流附加控制器。该控制器设计不但避免了设计线性控制器时进行一点线性化的不精确性,而且也避免了设计非线性控制器时进行精确线性化模型的复杂性。小信号稳定分析和时域仿真分析结果表明该直流附加控
China's power grids are developing quickly. With the application of nation-wide power grid interconnection and China's power transmission from the West to the East, a national hybrid AC/DC power grid will be formed in the future. However, that will bring some technical problems, such as low frequency oscillations, security problem in the system with several HVDC converters terminating in it. By using the power system simulation software PSS/E and combining the strategic planning of China's national power grids, this dissertation focuses on the dynamic analysis of AC/DC power systems. The main works are organized as follows:The HVDC models for electromechanical transient simulations of AC/DC power systems are studied. According to whether considering the inductive transient processes in DC transmission line and the dynamic characteristics of the high frequency DC controller or not, the HVDC models can be classified into two kinds: HVDC response model and HVDC detail model. And the validity of these HVDC models is discussed. Through the analysis and comparison of the HVDC models in PSS/E, it is shown that the HVDC response model CDC4 is simple and suitable for the transient stability analysis of real large-scale AD/DC power systems.A practical analysis method of low frequency oscillations for large power systems is presented. This method combines the advantages of the QR eigenvalue algorithm and the Prony method. And it is easy to be realized in the existing power system software. The computation results of multi-machine power systems show that the frequency, mode shape and participation factors of each oscillation modes calculated with the classical generator models are basically identical to those with detailed generator models and exciter models. Thus, this proposed method has two steps: first, the basic inherent characteristics of the system oscillation modes are calculated using the QR eigenvalue algorithm with the classical generator models; second, the damping can be calculated using the Prony analysis method with detail generator models and exciter models.A novel HVDC supplementary controller based on Phasor Measurement Unit (PMU) is proposed. This controller's input signal is the voltage phase angle difference between two areas obtained by PMU, which can effectively reflect the inter-area low frequency oscillation characteristics. The analysis results show that the proposed controller is capable of enhancing the
    system damping and the AC system's transfer capability over a wide range of operation conditions. This controller can efficiently damp the system's low frequency oscillation and works well under the condition of large disturbances. In addition, it is also robust.An observational linearization and optimal HVDC supplementary controller based on Phasor Measurement Unit (PMU) is presented. This controller utilizes the real-time state variables obtained by PMU to linearize the state equations of the system, and then the linear optimal control strategy is used to design HVDC supplementary controller. Compared with the controllers based on the models linearized in one operation point, the non-linearity of the system is considered in the presented controller, and its control rule varies with the real-time status of the system.Several important computations for the strategic planning of nation-wide power grid interconnection are accomplished, including the analysis of the low frequency oscillations and transient stability in the interconnection schemes of national power grids in the year of 2015, and the transient stability analysis in the pure DC interconnection scheme in the year of 2030. And the AC/DC interaction characteristics within the multi-infeed HVDC systems are also investigated.
引文
[1] 吕伟业.中国电力工业发展及产业结构调整.中国电力,2002,35(1):pp.1-7
    [2] 全国联网规划深化研究工作组.西电东送规模及区域电网之间电力流向研究.全国联网规划深化研究报告:第二卷,2003
    [3] 张贵行.总结经验,开拓进取,努力实现全国联网的宏伟目标—在27届中国电网调度运行大会开幕式上的讲话.电网技术,2001,25(11):pp.1-5
    [4] 吴敬儒,徐永禧.中国互联电网的发展.电网技术,2005,29(3):PP.1-4
    [5] 曾德文.全国电力系统联网的基本格局及其分析.中国电力,1999,32(10):pp.29-33
    [6] 陈德裕,温克昌,蔡洋.形成全国联合电力系统的时机和需要解决的问题.中国电机工程学报,1995,15(3):pp.145-149
    [7] 曾德文.实现全国电网互联的基本原则和措施建议.中国电力,2000,33(7):pp.38-41
    [8] 郭剑波,姚国灿,徐征雄,等.我国未来大区电网互联可能出现或应该注意的若干技术问题——全国联网和更高一级交流电压等级技术问题研究之一.电网技术,1998,22(6):pp.63-67
    [9] 周孝信.研究开发面向21世纪的电力系统技术.电网技术,1997,21(11):pp.11-15
    [10] 刘溟.互联电网低频振荡分析及其对策的探讨.华中电力,2002,15(4):pp.14-17
    [11] 吴彤,涂光瑜,康健.湖北鄂西电网低频振荡抑制及PSS试验研究.电力系统自动化学报,2003,15(4):PP.1-4,45
    [12] 史洪德,范维维.二滩水电站PSS对抑制系统低频振荡的作用.水力发电,2000,(5):pp.20-23
    [13] G. Rogers. Power System Oscillations. Kluwer Academic Publishers, USA. 2000
    [14] 王梅义,吴竞昌,蒙定中.大电网系统技术.北京:中国电力出版社,1995
    [15] 陈建业,王仲鸣.1996年夏季美国西部电力系统停电事故.国际电力,1998,2(2):PP:52-56
    [16] 何大愚.对于美国西部电力系统1996年7月2日大停电事故的初步认识.电网技术,1996,20(9):pp.35-39
    [17] 何大愚.对美国西部系统1996年两次大事故的后续认识(分层分析).电网技术,1998,31(5):pp.37-40,43
    [18] P. Kundur. Power System Stability and Control. McGraw-Hill, Inc., New York,1994
    [19] 夏道止.电力系统分析(下册).北京:中国电力出版社,1995
    [20] 王锡凡,方万良,杜正春.现代电力系统分析.北京:科学出版社,2003
    [21] 倪以信,陈寿孙,孙宝霖.动态电力系统的理论和分析.北京:清华大学出版社,2002
    [22] 李光琦.电力系统暂态分析(第二版).北京:水利电力出版社,1995
    [23] 马大强.电力系统机电暂态过程.北京:水利电力出版社,1988
    [24] 徐政.交直流电力系统动态行为分析.北京:机械工业出版社,2004
    [25] 王铁强.电力系统低频振荡共振机理的研究[博士论文].北京:华北电力大学,2001
    [26] F.P. Demello, C. Concordia. Concepts of synchronous machine stability as affected by excitation control. IEEE Trans. on Power Apparatus and System, 1969, 88(4): 316-329
    [27] N. Martins. Overview of numerical algorithms for small signals stability analysis and control design. Technical report CEPEL/DSE- 167, 2004
    [28] J.F. Hauer. Application of Prony analysis to the determination of modal content and equivalent models for measured power system response. IEEE Trans on Power System, 1991, 6(3): 1062-1068
    [29] R. Prony. Essai experimentale et analytique. J. Ecode Polytechnique,1795, pp:24-76
    [30] 刘国平.基于Prony法的电力系统低频振荡分析与控制[硕士论文].浙江杭州:浙江大学,2004
    [31] R Wumaresan. A Prony Method for Noisy Data: Choosing the Signal Components and Selecting the Order in Exponential Signal Models. Proceedings of the IEEE, 1984, vol.72
    [32] Zheng Xu, Wei shao, Changchun Zhou. Power system small signal stability analysis based on test signal[C]. 14th Power System Computation Conference, Sevilla, 2002
    [33] 浙江大学发电教研组直流输电科研组.直流输电.北京:水利电力出版社,1985
    [34] 戴熙杰.直流输电基础.北京:水利电力出版社,1990
    [35] R.L.Cresap, D.. Scott, W.A. Mittelstadt, et al. Operating Experience with Modulation of the Pacific HVDC Inter-tie. IEEE Trans. on Power Apparatus and Systems, 1978, 97(4): 1053-1059
    [36] D.E. Martin, W.K. Wong, D.L. Dickmander, et al. Increasing WSCC power system performance with modulation controls on the Intermountain Power Project HVDC system. IEEE Trans. on Power Delivery, 1992, 7(3): 1634-1642
    [37] S. Arabi, P. Kunder, J. H. Sawada. Appropriate HVDC transmission simulation models for various power system stability studies. IEEE Trans. on Power System, 1998, 13(4): 1292-1297.
    [38] B.K. Johnson. HVDC models used in stability studies. IEEE Trans. on Power Delivery, 1989, 4(2): 1153-1163
    [39] S. Lefebvre, A.M. Gole, J. Reeve et al. Working group on dynamic performance and modeling of DC systems and power electronics for transmission systems-report on test systems for AC/DC interaction studies. IEEE Trans. on Power Delivery, 1995, 10(2): 2027-2034
    [40] Garng M. Huang, Vikram Krishnaswamy. HVDC Controls for Power System Stability. IEEE PES Summer Meeting, Chicago, USA, July.21-25, 2002, vol. 1:597-602
    [41] IEEE Committee Report. Functional model of two-terminal HVDC system for transient and steady-state stability. IEEE Trans. on Power Apparatus and System, I984, 103(6): 1249-1255
    [42] 杨卫东,徐政,韩祯祥.基于NETOMAC软件的直流输电系统的混合仿真及参数优化.电网技术,2002,24(12):pp.11-16
    [43] 毛晓明,管霖,张尧,等.含有多馈入直流的交直流混合电网高压直流建模研究.中国电机工程学报,2004,24(9):pp.68-73
    [44] 徐政.含多个直流换流站的电力系统中交直流相互作用特性综述.电网技术,1998,22(2):pp.16-19
    [45] 杨卫东,徐政,韩祯祥.多馈入交直流电力系统研究中的相关问题.电网技术,2000,24(8):pp.13-17
    [46] G. Andersson, Paulo Fischer de Toledo, G. liss. HVDC multi-infeed performance. http://www.abb.com/.
    [47] J. Reeve, S.P. Lane-Smith. Multi-infeed HVDC Transient Response and Recovery Strategies. IEEE Trans. on Power Delivery, 1993, 8(4): 1995-2001
    [48] L.X. Bui, et al. Dynamic Interactions Between HVDC Systems Connected to AC Buses in Close Proximity. IEEE Trans. on Power Delivery, 1991, 6(1): 223-230
    [49] Working Group on Dynamic Performance and Modeling of DC Systems and Power Electronics for Transmission Systems. Report on Test Systems for AC/DC Interactions Studies. IEEE Trans. on Power Delivery, 1995, 10(4): 2027-2033
    [50] M. Szechtman, L.A.S. Pilotto, W.W. Ping, et al. The behavior of Several HVDC Links Terminating in the Same Load Area. CIGRE, 1992 Session, Group 14, Paper 14-201, Paris
    [51] L.A.S. Pilotto, M. Szechtman, A. Wey, et al. Synchronizing and Damping Torque Modulation Controllers for Multi-infeed HVDC Systems. IEEE Transactions on Power Delivery, 1995, 10(3):1505-1513
    [52] 中国电力百科全书(第二版),电力系统卷.北京:中国电力出版社,2001
    [53] T. Smed, G. Andersson. Utilising HVDC to damp power oscillations. IEEE Trans. on Power Delivery, 1993, 8(2):620-627
    [54] The IEEE Special Stability Controls Working Group and the Dynamic Performance and Modeling of DC Systems Joint Working Group. HVDC controls for system dynamic performance. IEEE Trans. on Power System, 1991, 6(2):743-752
    [55] Chang Hao. Design of modulation controller to damp power oscillations of parallel AC line in the Tianshengqiao to Guangdong HVDC Transmission. IEEE TECCON'93, Beijing, China, 1993:244-247
    [56] J. Chand. Auxiliary power controls on Nelson River HVDC scheme. IEEE Trans. on Power Systems, 1992, 7(1):398-401
    [57] R. K. Johnson, H. de laneuville, S. G. Koetschau. Power modulation of Sidey HVDC schem Part 1: RAS control concept, realization and field tests. IEEE Trans. on Power Delivery, 1989, 4(4):2145-2152
    [58] A. E. Hammad, J. Gagnon, D. McCallum. Improving the dynamic performance of a complex AC/DC system by HVDC control modifications. IEEE Trans. on Power Delivery, 1990, 5(4): 1934-1943
    [59] J. Reeve, M. Sultan. Gain Scheduling Adaptive Control Strategies for HVDC Systems to Accommodate Large Disturbances. IEEE Trans. on Power Delivery, 1994, 9(1): 366-372
    [60] P. K. Dash, A. C. Liew, A. Routray. High-Performance controllers for HVDC transmission links, IEE Proceedings—Generation, Transmission and Distributjon, 1994, 141(5): 422-428
    [61] H. J. C. Peiris. Frequency regulation of rectifier side AC system of an HVDC scheme using coordinated fuzzy logic Control. Electric Power System Research, 1998, 48(2):89-95
    [62] M. A. Choudhry, A. S. Emarah, K.A. Etlithy. Stability analysis of a modulated AC/DC system using the Eigenvalue sensitivity approach. IEEE Trans. on Power Systems, 1986, 1(2):128-137
    [63] N. Rostamkolai, A. G. Phadke, W.K. Long, et al. An adaptive optimal control strategy for dynamic stability enhancement of AC/DC power systems. IEEE Trans. on Power Systems, 1988, 3(3):1139-1145
    [64] 傅周兴.基于GPS同步时钟的相量测量在电力系统中的应用研究.继电器,2001,29(7):pp.31-34
    [65] P. Moore, P. Crossley. GPS application in power system: part 1 introduction in power systems. Power Engineering Journal, 1999, 13(1): 33-39
    [66] 周孝信.面向21世纪的电力技术.电气时代,2000,(2):pp.6-8
    [67] 韩英铎,王仲涛,林孔兴,等.电力系统中的三项前沿课题—柔性输电技术,智能控制,基于GPS的动态安全分析与监测系统.清华大学学报(自然科学版),1997,37(7):pp.1-6
    [68] 闵勇,丁仁杰,任勇,等.电力系统全网同步监测系统.清华大学学报(自然科学版),1997,37(7):pp.86-88
    [69] Jingtao Wu, Wong Chi Kong, et al. Dynamic monitoring and control system based on synchronized phasor measurements in Heilongjiang eastern power system. Power Engineering Society Winter Meeting, 2000, (3): 1689-1693
    [70] Joe-Air Jiang, Ying-Hong Lin, et al. An adaptive PMU based fault detection/location technique for transmission lines—Part Ⅱ: PMU implementation and performance Evaluation. IEEE Transactions on Power Delivery, 2000, 15(4): 1136-1146
    [71] M. B. Dewe, S. Sankar, et al. The application of satellite time reference to HVDC fault location. IEEE Trans. on Power Delivery, 1993, 8(3): 1295-1302
    [72] 王克英,穆钢,陈学允.计及PMU的状态估计精度分析及配置研究.中国电机工程学报,2001,21(8):pp.29-33
    [73] Steven Rovnyak, Chih-Wen Liu, et al. Predicting future behavior of transient events rapidly enough to evaluate remedial control options in real-time. IEEE Transactions on Power System, 1995, 10(3): pp.1195-1203
    [74] Staton S E, Application of phasor measurements and partial energy analysis in stabilizing large disturbances. IEEE Transactions on Power System, 1995,10(1): pp.297—306
    [75] 时伯年,崔文进,吴京涛,等.基于GPS同步相量的电力系统暂态稳定的预测控制.清华大学学报(自然科学版),2002,42(3):pp.316-320
    [76] 郭强,刘晓鹏,吕世荣,等.GPS同步时钟用于电力系统暂态稳定性预测和控制.电力系统自动化,1998,22(6):PP.11-13
    [77] 闵勇,丁仁杰,任勇,等.黑龙江东部网区域稳定控制系统的研究与开发.清华大学学报(自然科学版),1997,37(7):PP.106-108
    [78] Burnett R O, Butts M M, et al. Synchronized phasor measurements of a power system event. IEEE Trans. on Power System, 1994, 9(3): 1643-1650
    [79] Developments in the use of GPS in power systems Section 3: testing and future applications. Future of Global Positioning System in power systems. IEE colloquium, 8 February, 1994
    [80] Task Force 17 of Advisory Group 02 of Study Committee 38. Advanced angle stability controls. CIGRE Technical Brochure. December 1999
    [81] Steven Rovnyak, Yong Sheng. Using measurements and decision tree processing for response-based discrete-event control. Power Engineering Society Summer Meeting, 1999, (1): 10-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700