基于组件树模型和双向迭代技术的暂态稳定仿真方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国超大规模互联电网的逐步形成,在电力系统在线动态安全分析中采用超实时仿真技术的需求越来越迫切。本文提出一种新型快速的电力系统暂态稳定仿真方法——基于组件树模型和双向迭代技术的电力系统暂态稳定仿真方法。该方法的研究内容主要包括电力网络分区、仿真数学模型的结构化描述、变量修正量的计算技术、整体算法流程、提高计算效率的措施、并行实现方案等等。本文取得的主要成果如下:
     应用实际电网的地理区域特性和“围线表”分区思想,提出了一套比较完整的网络划分方法来实现大规模实际电网的树形网络划分。提出一种组件化和结构化的描述方法来表示数值仿真中使用的电力系统模型。采用电力系统组件树来描述整个电力系统仿真对象,电力系统组件树考虑了电力网络的分区结果,体现出各种元件的分散性特点,简明宏观地描述了电力系统的组成结构。提出一种基于电力系统组件树的结构化描述方法来表示各种电力系统组件的数学模型,并介绍了其实现步骤。这种描述方法具有结构化、标准化的特点。
     提出一种基于组件树模型的双向迭代技术,用于在基于隐式梯形法和牛顿法的联立求解算法中计算变量的修正量。每个电力系统组件变量的修正量都通过“前向简化”和“后向回代”来完成。介绍了基于组件树模型和双向迭代技术的暂稳仿真算法(双向迭代仿真算法)的实现流程,研究了该算法串行计算实施中的计算优化措施和并行仿真的实现方案构想。算例研究中,将该算法的计算结果与电力系统商业仿真软件BPA的计算结果进行比较,验证了该算法计算结果的准确性。
     本文提出的电力系统暂态稳定仿真新方法,除保持了联立求解法不产生交割误差、迭代次数少的特点外,还具有计算效率高、扩展性强、适于并行计算的突出优势,为电力系统在线安全分析提供了强有力的新工具。
     此外,本文还对低频振荡的分析和控制进行了一些研究。提出了母线处“振荡能量函数”的概念,进而提出了一种运用柔性交流输电系统(FACTS)装置抑制低频振荡的控制思想——“振荡能量下降法”。基于振荡能量下降法,本文采用模糊逻辑技术,提出了一种附加在FACTS上的自适应阻尼控制器。该阻尼控制器采用模糊逻辑单元来调节输出信号的幅度,具有比现有同类型控制器更好的阻尼控制效果。其设计过程不需要整体电力系统的结构和参数。以上工作为低频振荡的研究提供了新的分析工具和控制手段。
As the nation-wide power grid of China has been basically established, power system real-time simulation becomes a necessary tool for implementing on-line dynamic security analysis (DSA). A new fast simulation approach, component tree model and forward/backward iteration based power system transient stability simulation approach, was proposed in this paper. This research included power network partitioning, structured description of the simulation model, computation of correction factors, the overall procedure, measures to speedup the computation, and scheme of parallel implementation.
    Based on the regional characteristics of realistic power grid and contour tableau partitioning, a systematic partitioning method was proposed to decompose large-scale power network into tree structure. A new concept, power system component tree, was proposed to describe the overall power system briefly. The power system component tree can reflect the result of power network partitioning and the distribution of power system components. A component tree based description approach was developed to represent the simulation model of the power system. The feature of this description approach is that the model of the components are normalized and structured.
    A bi-directional iteration technique was proposed to calculate the correction factors of variables in the simultaneous solution of power system equations. The correction factors of variables were computed through a serial of operations called "forward reduction" and "backward evaluation". The algorithm of component tree model and forward/backward iteration based power system transient stability simulation was presented. Measures to speedup the computation and parallel implementation of the proposed approach were also investigated. In case studies, the simulation result obtained by the new approach is compared with that of BPA, a kind of power system commercial simulation software. The comparison validates the correctness of this new approach.
    This new approach inherits some attractive features of the simultaneous solution method such as numerical stability and fast convergence; it also possesses advantages of high computation efficiency, good expansibility and ease of parallel implementation. It would be potentially useful in developing real-time tools for online DSA applications.
    A novel concept called oscillation energy function of bus power was proposed in this paper. On this basis, a control strategy, named oscillation energy function descent
引文
[1] 黄家裕,陈礼义,孙德昌,电力系统数字仿真,北京:中国水力电力出版社,1995
    [2] 倪以信,陈寿松,张宝霖,动态电力系统的理论和分析,北京:清华大学出版社,2002
    [3] 汤涌,宋新立,刘文焯,周孝信,电力系统全过程动态仿真的数值方法——电力系统全过程动态仿真软件开发之一,电网技术 2002,26(9):7~12,28
    [41 Kundar P, Power system stability and control, New York: McGraw~Hill, 1994
    [5] 陈礼义,顾强,电力系统数字仿真及其发展,电力系统自动化,23(23),1999:1~6
    [6] 潘学萍,电力系统数字仿真研究综述,江苏电机工程,2005,24(1):80~84
    [7] 卢强,数字电力系统(DPS),电力系统自动化,2000,24(9):1~4
    [8] 郭炳庆,孙元章,卢强,电力系统稳定性分析与控制实时仿真决策系统,电力系统自动化,2000,24(18):5~7
    [9] 熊光楞,数字仿真算法与软件,北京:宇航出版社,1991
    [10] 郑三立,电力系统实时仿真测试技术研究,博士学位论文,清华大学,2002.4
    [11] RTDS,http://www.rtds.com
    [12] Dommel H W, Sato N, Fast transient stability solutions, IEEE Trans. on Power Apparatus and Systems, 1972, 91(3): 1643~1650
    [13] Aloisio G, Bochicchio M A, La Scala M, Sbrizzai R, A distributed computing approach for real~time transient stability analysis, IEEE Trans. on Power Systems, 1997, 12(2): 981~987
    [14] Chai J S, Bose A, Bottlenecks in parallel algorithms for power system stability analysis, IEEE Trans. on Power Systems, 1993, 8(1): 9~15
    [15] Stott B, Power system dynamic response calculations, Proc. of IEEE, 1979, 67(2): 219~241
    [16] Gear C W, Simultaneous numerical solution of differential-algebraic equations, IEEE Trans. on Circuit Theory, 1971, 18(1): 90~95
    [17] Araujo A E A, Dommel H W, Marti Jr, Simultaneous solution of power and control-systems equations, IEEE Trans. on Power Systems, 1993, 8(4): 1483~1489
    [18] 汤涌,电力系统稳定计算隐式积分交替求解,电网技术,1997,21(2):43~52
    [19] EPRI, Ontario Hydro, Extended tra_nsient-midterm stability program (ETMSP), in User's Manual: Version 3,1, EPRITR-102004-V2R1, Final Report, May, 1994, 1~6
    [20] Stubbe M, Bihain A, Deuse J, Baader J C, STAG-a new unified software program for the study of the dynamic behaviour of electrical power systems, IEEE Trans. on Power Systems, 1997, 11(1): 129~138
    [21] Sanchez-Gasca C J J, et al, Extended-term dynamic simulation using variable time step integration, IEEE Computer Application in Power, 1993, 6(5): 23~28
    [22] Sancha J L, et al, Application of long-term simulation programs for analysis of power system islanding, IEEE Trans. on Power Systems, 1997, 12(1): 189~197
    [23] ABB Power Systems Analysis Department, SIMPOW power system simulation and analysis software user manual
    [24] Hans R Frankhauser, et al, Advanced simulation techniques for the analysis of power system dynamics, IEEE Computer Application in Power, 1990, 3(5): 31~36
    [25] 潘志宏,孙宏斌,张伯明,等,新一代DTS中的动态仿真程序,清华大学学报,1999,39(9):18~21
    [26] 汤涌,卜广全,印永华,等,中国版BPA暂态稳定程序用户手册,中国电力科学研究院,2000
    [27] DeMello F P, Feltes J W, Laskowski T F, et al, Simulating fast and slow dynamic effects in power system, IEEE Computer Applications in Power, 1992, 5 (3): 33~39
    [28] 薛巍,舒继武,严剑峰,基于集群机的大规模电力系统暂态过程并行仿真,中国电机工程学报,2003,23(8):38~43
    [29] 西安交通大学等,电力系统计算,北京:水利电力出版社,1978
    [30] Xia D Z, On-line transient evaluation by system decomposition aggregation and high order derivatives, IEEE Trans. on Power Apparatus and Systems, 1983, 102:2038~2054
    [31] 郭志忠,柳焯,快速高阶Taylor级数法暂态稳定计算,中国电机工程学报,1991,11(3):7~15
    [32] Bandeno P L, Kundur P, A non-iterative transient stability program including the effects of variable load-voltage characteristics, Proceedings of IEEE PES Winter Meeting, 1973, 91~96
    [33] Moon Y H, Cho B H, Choi B K, Analysis of polarized linear electric network with two-reactance components, Proc, of the 37th CDC, 1998, 2028~2034
    [34] Moon Y H, Cho B H, Ryu H S, Saliency reflected noniterative approach to transient stability simulation of power systems, Proceedings of IEEE PES Winter Meeting, 1999, 1:689~694
    [35] Moon Y H, Cho B H, Choi B K, Fast noniterative algorithm based on polarized-system partitoning for transient stability simulation, Proceedings of IEEE PES Winter Meeting, 2000, 2:1022~1027
    [36] Moon Y H, Cho B H, Fast time simulation technique using noniterative algorithm of transient stability analysis, Proceedings of IEEE PES Winter Meeting, 2000, 1: 23~27
    [37] Jerosolimski M, Levacher L, A new method for fast calculation of Jacobian matrices: automatic differentiation for power system simulation, IEEE Trans. on Power Systems, 1994, 9(2): 700~706
    [38] Kurita A, Okubo H, Oki K, Agematsu S, et al, Multiple time-scale power system dynamic dimulation, IEEE Trans. on Power Systems, 1993, 8(1): 216~223
    [39] M Stubbe, A Bihain, J Deuse, STAG-a new unified software program for the study of the dynamic behavior of power systems, IEEE Trans. on Power Systems, 1989, 4(1): 129~138
    [40] 杨志新,华东电力系统DTS动态全过程仿真的模型和算法,博士学位论文,东南大学,1996
    [41] Demello R W, Podmore R, Stanton K N, Coherency based dynamic equivalents for transient stability studies, Final Report on EPRI Project RP 90~4, phase Ⅱ, December 1974
    [42] Podmore R, Germond A J, Development of dynamic equivalents for transient stability studies, Final Report on EPRI Project 763, 1977
    [43] 赵勇,苏毅,陈峰,等,福建电网在线稳定控制系统中华东电网的实时动态等值研究,电网技术,2005,29(4):18~21
    [44] 毛承雄,樊俊,Kulicke B,电力系统动态仿真新的交替迭代解法,电力系统自动化,1998,22(3):23~26
    [45] Mao C X, Fan J, Malik O P, et al, Simulation of power system dynamics by the singular perturbation technique, Proceedings of the IEEE Western Canada Conference on Computer, Power and Communications Systems in a Rural Environment, 1991
    [46] 周保荣,电力系统阻尼控制器参数优化设计研究,博士学位论文,天津大学,2004.9
    [47] 薛巍,舒继武,王心丰,郑纬民,电力系统暂态稳定仿真并行算法的研究进展,系统仿真学报,2002,14(2):177~182
    [48] 吉兴全,王成山,电力系统并行计算方法比较研究,电网技术,2003,27(4):22~26
    [49] Chai J S, Zhu N, Parallel Newton methods for power system stability analysis using local and shared memory multiprocessors, IEEE Trans. on Power Systems, 1991, 6(4): 1539~1545
    [50] Decker I C, Falcao D M, Kaszkurewicz E, Parallel implementation of a power system dynamic simulation methodology using the conjugate gradient method, IEEE Trans. on Power Systems, 1992, 7(1): 458~465
    [51] 苏新民,毛承雄,对角块加边模型的并行潮流计算,电网技术,2002,26(1):22~25
    [52] 汪芳宗,电力系统并行计算,北京:中国电力出版社,1998
    [53] 贺仁睦,周庆捷,郝玉国,电力系统机—网暂态仿真的并行算法,中国电机工程学报,1995,15(3):179~184
    [54] 毛承雄,吴增华,电力系统并行仿真计算的一种新算法,华东电力,1999,3(1):21~23
    [55] 苏新民,毛承雄,陆继明,张昌,电力系统并行仿真的PVM实现,电力系统及其自动化学报,2002,14(1):5~9
    [56] 洪潮,沈俊明,电力系统暂态稳定计算的一种空间并行算法,电网技术,2000,24(5): 20~24
    [57] 王成山,张家安,基于支路分割和区域迭代的暂态稳定性仿真并行算法,电网技术,2004,28(1):22~26
    [58] 王成山,张家安,改进的暂态稳定分布式并行仿真算法,电力系统自动化,2003,27(19):30-~33,60
    [59] Crow M L, Ilic M, The parallel implementation of the waveform relaxation method fortransient stability simulations, IEEE Trans. on Power Systems, 1990, 5(3): 922~932
    [60] Ilic M, Crow M L, M A Pai, Transient stability simulation by waveform relaxation methods, IEEE Trans. on Power Systems, 1987, 2(4): 943~952
    [61] Hou L, Bose A, Implementation of the waveform relaxation algorithm on a shared memory computer for the transient stability problem, IEEE Trans. on Power Systems, 1997, 12(3): 1053~1060
    [62] 韩晓言,韩祯祥,电力系统暂态稳定分析的内在并行算法研究,中国电机工程学报,1997,17(3):145~148
    [63] 洪潮,电力系统暂态稳定计算的一种时间并行算法,电网技术,2003,27(4):31~35
    [64] 汪芳宗,电力系统暂态稳定性并行牛顿计算方法,电力系统自动化,1995,19(9):5~9
    [65] 何宇,彭志炜,张 靖,喻谋,电力系统暂态稳定性并行参数牛顿计算方法,贵州工业大学学报:自然科学版,2003,32(5):33~36
    [66] Scala M L, Brucoli M, Torelli F, et al, A Gauss-Jacobi-Block-Newton method for parallel transient stability analysis, IEEE Trans. on Power Systems, 1990, 5(4): 1168~1177
    [67] Scala M L, Sbrizzai R, A pipelined-in-time parallel algorithm for transient stability analysis, IEEE Trans. on Power Systems, 1991, 16(2): 715~722
    [68] Scala M L, Bose A J, et al, A highly parallel method for transient stability analysis, IEEE Trans. on Power Systems, 1990, 5(4): 1439~1446
    [69] Scala M L, Sblendorio G, Sbrizzai R, Parallel-in-time implementation of transient stability simulations on a transputer network, IEEE Trans. on Power Systems, 1994, 9(2): 1117~1125
    [70] 汪芳宗,电力系统暂态稳定性空间—时间并行计算方法,计算技术与自动化,1996,15(2):11~14
    [71] 汪芳宗,基于高度并行松弛牛顿方法的暂态稳定性实时分析计算的并行算法,中国电机工程学报,1999,19(11):14~17
    [72] 汪芳宗,基于高度并行松弛牛顿方法的暂态稳定性实时分析计算方法的并行装配,中国电机工程学报,1999,19(11):18~21
    [73] Rajkumar Buyya, High Herformance Cluster Computing: Architectures and Systems, Prentice Hall, 1995
    [74] Jorge Ariel Hollman, José Ramón Marti, Real time network simulation with PC-Cluster, IEEE Trans. on Power Systems, 2003, 18(2): 563~569
    [75] 李亚楼,周孝信,吴中习,一种可用于大型电力系统数字仿真的复杂故障并行计算方法,中国电机工程学报,2003,23(12):1~5
    [76] 黄瀛,姜恺,何奔腾,基于Linux集群的电力系统并行仿真系统,电网技术,2004,28(20):38~42
    [77] Gordon Bell, Jim Gray, What's next in high-performance computing? Communications of the ACM, 2002, 45(2): 91~95,
    [78] 张伯明,陈寿孙,高等电力网络分析,北京:清华大学出版社,1996
    [79] 岳程燕,周孝信,李若梅,电力系统电磁暂态实时仿真中并行算法的研究,中国电机工程学报,2004,24(12):1~7
    [80] 舒继武,薛巍,郑纬民,一种电力系统暂态稳定并行计算的优化分区策略,电力系统自动化,2003,27(19):6~10
    [81] Liu J, A graph partitioning algorithm by node separators, ACM Trans. on Mathematical Software, 1989, 15(3): 198~219
    [82] Pai M A, Energy Function Analysis for Power System Stability, Boston: Kluwer Academic Publisher, 1989
    [83] 薛巍,全国联网巨系统的暂态稳定并行计算研究,博士学位论文,清华大学,2003
    [84] Vale M H M, Falcao D M, Kaszkurewicz E, Electrical Power Network Decomposition for Parallel Computations, Proceedings of the 1992 IEEE International Symposium on Circuits and Systems, 1992, 6:2761~2764
    [85] Chan K W, Dunn R W, Daniels A R, Efficient heuristic partitioning algorithm for parallel processing of large power systems network equations, IEE Proc.-Generation Transmission and Distribution, 1995, 142(6): 625~630
    [86] 洪潮,单巍,在IBM—SP2上实现电力系统暂态稳定计算的一种并行算法,电力系统及其自动化学报,2001,13(1):18~22
    [87] Banerjee R Jones M H, Sargent J S, Parallel simulated annealing algorithms for cell placement on hypercube multiprocessors, IEEE Trans. on Parallel and Distributed Systems, 1990, 1(1): 91~06
    [88] Irving M R, Sterling M J H, Optimal network tearing using simulated annealing, IEE Proc.-Generation, Transmission and Distribution, 1990, 137(1): 69~72
    [89] Hendrickson B, Leland R, An improved spectral graph partitioning algorithm for mapping parallel computations, SIAM Journal on Scientific Computing, 1995, 16(2): 452~469
    [90] Simon H D, Teng Shanghua, How good is recursive bisection? SIAM Journal on Scientific Computing, 1997, 18(5): 1436~1445
    [91] Karypis G, Kumar V, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM Journal on Scientific Computing, 1999, 20(1): 359~392
    [92] Sangiovanni~Vincentelli A, Chen L K, Chua L O, An efficient heuristic cluster algorithm for tearing large~scale networks, IEEE Trans. on Circuits and Systems, 1977, 24(12): 709~717
    [93] Gomez A, Franquelo L G, A new contribution to the cluster problem, IEEE Trans. on Circuits and Systems, 1987, 34(5): 546~552
    [94] Zhu N, Anjan B, A dynamic partitioning scheme for parallel transient stability analysis, IEEE Trans. on Power Systems, 1992, 7(2): 940~946
    [95] 李亚楼,周孝信,吴中习,基于PC机群的电力系统机电暂态仿真并行算法,电网技术,2003,27(11):6~12
    [96] 张家安,市场条件下多区域电力系统分布式暂态稳定仿真,博士学位论文,天津大学,2005.6
    [97] 夏道止主编,电力系统分析,北京:中国电力出版社,1995
    [98] 苏格兰学历管理委员会,系统开发:结构化设计方法,北京:中国时代经济出版社
    [99] Hager W W, Applied Numerical Linear Algebra, Englewood Cliffs: Prentice Hall, 1998
    [100] 余贻鑫,陈礼义,电力系统的安全性和稳定性,北京:科学出版社,1988
    [101] 李传栋,房大中,杨晓东,改进的暂态稳定双向模块简化仿真算法,电力系统及其自动化学报,2005,17(1):1~5
    [102] 王锡凡,方万良,杜正春,现代电力系统分析,北京:科学出版社,2003
    [103] Su H T, Fang D Z, Song W N and Wang H F, Constant Jacobian matrix and its application to fast trajectory simulation of power systems, IEE Proc.-Generation, Transmission and Distribution, 2002, 149(2): 210~214
    [104] Yu Yaonan, Electric Power System Dynamics, Academic Press, 1983
    [105] 马大强,电力系统机电暂态过程,北京:水利电力出版社,1988
    [106] 鞠平,电力系统低频振荡研究概观,河海大学科技情报,1990,12(2):20~28
    [107] 郭剑波,姚国灿,等,我国未来大区电网互联可能出现或应该注意的若干技术问题,电网技术,1998,22(6):63~67
    [108] Heffron W G, Phillips R A, Effect of modem amplidyne voltage regulators on underexcited operation of large turbine generators, IEEE Trans. on Power Apparatus and Systems, 1952, 71: 692~697
    [109] De Mello F P, and Concordia C, Concepts of synchronous machine stability as affects by excitation control, IEEE Trans. on Power Apparatus and Systems, 1969, 88(4): 316~329
    [110] De Mello F P, Nolan P J, Coordinated application of stabilizers in multimachine power systems, IEEE Trans. on Power Apparatus and Systems, 1980, 99(3): 892~899
    [111] Voumas C D, Papadias B C, Power system stabilization via parameter optimization application to the Hellenic interconnected system, IEEE Trans. on Power Systems, 1987, 2(3): 615~623
    [112] Pourbeik P, Gibbard M J, Damping and synchronizing torque coefficients induced on generators by FACTS stabilizers in multimachine power systems, IEEE Trans. on Power Systems, 1996, 11(4): 1920~193
    [113] Pourbeik P, Gibbard M J, Simultaneous coordination of power system stabilizers and FACTS device stabilizers in a multimachine power system for enhancing dynamic performance, IEEE Trans. on Power Systems, 1998, 13(2): 473~479
    [114] Byerlyr T, Renon R J, Sherman D E, Eigenvalue analysis of synchronizing power flow oscillation in large electric power system, IEEE Trans. on Power Apparatus and Systems, 1982, 101(1): 235~243
    [115] Perez~Arriage I J, Verghese F C, Schweppe F C, Selective modal analysis with application to electric power system, IEEE Trans. on Power Apparatus and Systems, 1982, 101(9): 3117~3125
    [116] Uchide N, Nagao T, A new eigenvalue method of steady state stability studies for large power systems: S matrix method, IEEE Trans. on Power Systems, 1988, 3(2): 706~714
    [117] Lima L, Bezerra L, Tomei C, et al, New methods for fast small signal stability assessment of large-scale power system, IEEE Trans. on Power Systems, 1995, 1(4): 1979~1985
    [118] 何南强,王新超,赵遵廉,等,电力系统随机振荡的频谱分析,电力系统自动化,1988,12(5):34
    [119] Martins N, Efficient eigenvalue and frequency response methods applied to power system small-signal stability studies, IEEE Trans. On PWRS, 1986, 1(1): 217~226
    [120] Jing C, McCalley J D, Kommareddy M, An energy approach to analysis of interarea oscillations in power systems, IEEE Trans. on Power Systems, 1996, 11 (2): 734~740
    [121] Messina A R, Ochoa M, Barocio E ,Use of energy and power concepts in the analysis of the inter-area mode phenomenon, Electric Power Systems Research, 2001, 59(2): 111~119
    [122] Stanton S E, and Dykas W P, Analysis of a local transient control action by partial energy functions, IEEE Trans. on Power Systems, 1989, 4(3): 996~1003
    [123] 刘晓鹏,吕世荣,郭强,等,电力系统低频振荡稳定极限的直接算法,电力系统自动化,1999,23(10):5~7,44
    [124] 刘劲,吴小尼,孙扬声,等,电力系统静态失稳和周期振荡的局部分又分析,电力系统自动化,1995,19(12):25~28,34
    [125] 邓集样,边二曼,低频振荡中的Hopf分歧研究,中国电机工程学报,1997,17(6):391~394
    [126] Snyder A, Hadjsaid F, Georges N, et al, Interarea oscillation damping with power system stabilizers and synchronized phasor measurements, Proceedings of International Conferenceon power system technology, Beijing, 1998, 790~794
    [127] Ray P S, Duttagupta P B and Bhakta P, Co-ordinated multimachine PSS design using both speed and electric power, IEE Proc.-Generation, Transmission and Distribution, 1995, 142(5): 503~510
    [128] Aboul-Ela M E, Sallam A A, James D M, Fouad A A, Damping controller design for power system oscillations using global signals, IEEE Trans. on Power Systems, 1996, 11(2): 767~773
    [129] Hingorani, Narain G, Understanding FACTS: concepts and technology of flexible AC transmission system, New York : IEEE Press, 2000
    [130] R Mohan Mathur, Rajiv K, Varma, Thyristor-Based FACTS Controllers for Electrical Transmission Systems, A John Wiley and Sons, Inc, IEEE Press 2002
    [131] CIGRE Task Force 38,01,07, "Analysis and Control of Power System Oscillations", Ref, no, 111, CIGRE Technical Brochure, Dec, 1996
    [132] Larsen E V and Swann D A, Applying power system stabilizers, part 1: general concepts, IEEE Trans. on Power Apparatus and Systems, 1981, 100(6): 3017~3023
    [133] Larsen E V and Swami D A, Applying power system stabilizers, part Ⅲ: practical considerations, IEEE Trans. on Power Apparatus and Systems, 1981, 100(6): 3034~3046
    [134] Ostojic D, Stabilization of multimodal electromechanical oscillations by coordinated application of power system stabilizers, IEEE Trans. on power systems, 1991, 6(4): 1439~1445
    [135]Xiaoqing Yang, Feliachi A, Stabilization of inter-area oscillation modes through excitation systems, IEEE Trans, on power systems, 1994, 9(1): 494~502
    
    [136] Swift F J, Wang H F, The connection between modal analysis and electric torque analysis in studying the oscillation stability of multi-machine power systems, Electrical Power and Energy Systems, 1997, 19(5): 321~330
    
    [137] Wang H F, Swift F J, A unified model for the analysis of FACTS devices in damping power system oscillation part II: multi-machine power system, IEEE Trans, on Power Delivery, 1998, 13(4): 1355-1362
    
    [138]Gibbard M J, Interactions between and effectiveness of power system stabilizers and FACTS stabilizers in multimachine systems, IEEE Trans, on Power Systems, 1999, 15(2): 748—755
    
    [139]卢强,孙元章,电力系统非线性控制,北京:科学出版社,1993
    
    [140] Dol A, Abe S, Coordinated synthesis of power system stabilizers in multimachine power systems, IEEE Trans, on Power Apparatus and Systems, 1984, 103(2): 1473-1479
    
    [141] Tse C T, Tso S K, Approach of the study of small-perturbation stability of multimachine systems, IEE Proc.-Generation, Transmission and Distribution, 1988, 135(5): 396-405
    
    [142] Tse C T, Tso S K, Design optimisation of power system stabilisers based on modal and eigenvalue-sensitivity analyses, IEE Proc.-Generation, Transmission and Distribution, 1988, 135(5): 406-415
    
    [143]Vournas C D, Papadias B C, Power system stabilization via parameter optimization application to interconnected system, IEEE Trans, on Power Systems, 1987, 2(3): 615-623
    
    [144]Vournas C D, Maratos N, Papadias B C, Power system stabilizer co-ordination using a parameter optimization method, Proceeds of IEE Control Conference, 1994, 403-408
    
    [145]Maslennikov V A, Ustinov S M, Method and software for coordinated tuning of power system regulators, IEEE Trans, on Power Systems, 1997, 12(4): 1419-1424
    
    [146] Hong Y Y, Wu W C, A new approach using optimization for tuning parameters of power system stabilizers, IEEE Trans, on Energy Conversion, 1999, 14(3): 780—786
    
    [147]Bomfim A L B, Taranto G N, Falcao D M, Simultaneous tuning of power system damping controllers using genetic algorithms, IEEE Trans, on power systems, 2000, 15(4): 163—169
    
    [148]Abido M A, Abdel-Magid Y L, Optimal design of power system stabilizers using evolutionary programming, IEEE Trans. on Energy conversion, 2002, 17(4): 429—436
    
    [149] Abido M A, Abdel-Magid Y L, Coordinated design of a PSS and an SVC-based controller to enhance power system stability, Electrical Power and Energy Systems, 2003, 25(2): 695—704
    
    [150] Cai H, Qu A, Dorsey J F, A comparison and simulation study of nonlinearly designed robust controllers for power system transient stability, Electrical Power and Energy Systems, 2000, 22(1): 15-28
    
    [151] Gronquist J F, Sethares W A, Alvarado F L, Lasseter R H, Power oscillation damping control strategies for facts device using locally measurable quantities, IEEE Trans. on Power Systems, 1995, 10(3): 1598-1605
    [152] Cao Y J, Wu Q H, Jiang L, Nonlinear control of power system multi-mode oscillation, Electrical Power and Energy Systems, 1998, 20(1): 61~68
    [153] 尹建华,江道灼,可控串补的非线性控制对电力系统稳定性的影响研究,电工技术学报,1999,14(3):73~79
    [154] 栗春,姜其荣,王仲鸿,增强系统阻尼并保证电压精度的SVC非线性控制器,电力系统自动化,1998,22(6):35~38
    [155] 葛友,李春文,孙政顺,逆系统方法在电力系统综合控制中的应用,中国电机工程学报,2001,21(4):5~10
    [156] 戴先中,陈珩,何丹等,神经网络逆系统及其在电力系统控制中的应用,电力系统自动化,2001,25(3):11~19
    [157] 于占勋,陈德树,尹相根,可控串联补偿装置的智能变结构控制,电力系统自动化,1998,22(6):8~10
    [158] Li G J, Lie T, Sch C B, Decentralized nonlinear control for stability enhancement in power systems, IEE Proc.-Generation, Transmission and Distribution, 1999, 146, (1): 19~24
    [159] 王爱霞,田支军,泰安文,基于鲁棒控制理论的电力系统稳定器设计,山东电力技术 1999,190(1): 50~53
    [160] Srivastava K N, Srivastava S C, Elimination of dynamic bifurcation and chaos m power systems using facts devices~I: fundamental theory and applications, IEEE Trans. on Circuits and Systems, 1998, 45(1): 70~78
    [161] 王仲鸿,王强,张东霞,姜齐荣,电力系统暂态稳定问题和迭代学习控制的研究,电力系统自动化,1999,23(8):6~11
    [162] Sharaf A M, et al, A Hybrid Neuro-Fuzzy Power System Stabilizer, Proceedings of IEEE International Conference on Neural Networks, 1994, 3:1760~1765
    [163] Payman Shamsollahi, Malik O P, Application of neural adaptive power system stabilizer in a multi-machine power system, IEEE Trans. on Energy Conversion, 1999,14(3): 731~740
    [164] Hiyama T, Application of Neural Network to real time tuning of fuzzy logic PSS, In: Proceedings of the 2nd International Forum on Applications of Neural Networks to Power System, 1993, 421~42
    [165] Hiyama T, Kugimiya Masahiko, Advanced PID type fuzzy logic power system stabilizer, IEEE Trans. on Energy Conversion, 1994, 9(3): 514~520
    [166] Hiyama T, Robustness of fuzzy logic power system stabilizers applied to multimachine power system, IEEE Trans. on Energy Conversion, 1994, 9(3): 451~459
    [167] Hiyama T, Miyazaki Koushi, Fuzzy logic excitation system for stability enhancement of power systems with multi-mode oscillations, IEEE Trans. on Energy Conversion, 1996, 11(2): 449~454
    [168] Hiyama T, Ueki Y, Andou H, Integrated fuzzy logic generator controller for stability enhancement, IEEE Trans. on Energy Conversion, 1997, 12(4): 400~406
    [169] 谭西梅,周双喜,新型模糊逻辑控制器的研究,电力系统自动化,1998,22(8):8~11
    [170] Hiyama T, Development of fuzzy logic power system stabilizer and further studies, Proceedings of the IEEE International Conference on Systems, Man. and Cybernetics, 1999, 6:545~550
    [171] Choi J G, Hwang G H, Kang H T, Park J H, Design of fuzzy logic controller for HVDC using an adaptive evolutionary algorithm, IEEE International Symposium on Industrial Electronics, 2001, 3:1816~1821
    [172] 鞠平,付蓉,倪辉,可控串联补偿的模糊神经网络控制,电力系统自动化,2000,24(2):28~30
    [173] Xiaob Tan, Zhang N Y, Tong L Y, Wang Z H, Fuzzy control of thyristor-controlled series compensator in power system transients, Fuzzy Sets and Systems, 2000,110(3):429~436
    [174] Changaroon B, Srivastava S, Thukam D, Neural network based power system damping controller for SVC, IEE Proc.-Generation, Transmission and Distribution, 1999,146(4): 370~377
    [175] Hiyama T, Mishiro M, Kihara H, Ortmeyer T H, Fuzzy logic switching of thyristor controlled braking resistor considering coordination with SVC, IEEE Trans. on Power Systems, 1995, 10(4): 2020~2026
    [176] Hiyama T, Kihara H, et al, Fuzzy logic switching of FACTS devices for stability enhancement, IEEE International Symposium on Circuits and Systems, 1996, 605~608
    [177] Hiyama T, Hubbi W, Fuzzy logic control scheme with variable gain for static VAR compensator to enhance power system stability, IEEE Trans. on Power Systems, 1999, 14(2): 186~191
    [178] Schoder K, Azra Hasanovic, et al, Enhancing transient stability using a fuzzy control scheme for the unified power flow controller (UPFC), Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, 2000, 3:1382~1385
    [179] Limyingcharoen S, U D Annakkage, Fuzzy logic based UPFC for transient stability improvement, IEE Proc.-Generation, Transmission and Distribution, 1998, 145(3): 225~232
    [180] 黄振宇,刁勤华,孙 岩,等,UPFC的模糊调制控制研究,电力系统自动化,2000,24(2): 23~29
    [181] Zhou E Z, Application of static Var compensators to increase power system damping, IEEE Trans. on Power Systems, 1993, 8(2): 655~661
    [182] Noroozian M, Andersson G, Tomsovic K, Robust, near time-optimal control of power system oscillations with fuzzy logic, IEEE Trans. on Power Delivery, 1996, 11(1): 393~400
    [183] Fang D Z, Yang X D, Chung T S, Wong K P, Adaptive fuzzy-logic SVC daxnping controller using strategy of oscillation energy descent, IEEE Trans. on Power Systems, 2004, 19(3): 1414~1421
    [184] Athay T, Podmore R, and Virmani S, A practical method for direct analysis of transient stability, IEEE Trans. on Power Apparatus and Systems, 1979, 98:573~584
    [185] 李士勇,模糊控制·神经控制和智能控制论,哈尔滨工业大学出版社,1998年
    [186] 房大中,孙景强.基于最优控制原理的暂态稳定预防控制模型,电力系统自动化,2005,29(1):18~21
    [187] 孙景强,电力系统暂态稳定约束下的预防控制新算法研究,博士学位论文,天津大学,2005.9
    [188] D Z Fang, Yang Xiaodong, Sun Jingqing and Zhangyao. An Optimal Generation Rescheduling Approach for Transient Stability Enhancement. 已投IEEE Trans. on Power Systems, 收到修改意见并改回
    [189] 刘笙,汪静.电力系统暂态稳定的能量函数分析.上海:上海交通大学出版社,1996
    [190] D Z Fang, Yang Xiaodong, Song Wennan and H F Wang. Oscillation transient energy function applied to the design of a TCSC fuzzy logic damping controller to suppress power system interarea mode oscillations. IEE Proceedings-Generation, Transmission and Distribution, 2003, 150(2): 233~238
    [191] T S Chung, Yang Xiaodong, Fang D Z, C Y Chung. Development of adaptive UPFC supplementary fuzzy controller for power system stability enhancement. Proceedings of IEEE DRPT Conference, Hong Kong, 2004, 1:216~221

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700