曲线公路隧道营运通风关键参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国公路隧道事业的不断发展,纵多复杂化的公路隧道不断的涌现出来,对通风基础理论及隧道通风系统提出了更高的要求。本论文依托目前正在修建的双螺旋曲线隧道即干海子隧道和铁寨子Ⅰ号隧道工程,采用了数值计算、试验及现场测试相结合的手段,对隧道通风的基础理论及曲线隧道营运通风系统中的关键参数进行了系统、详细的研究。研究的结果主要体现在以下几个方面。
     隧道内及管道内非稳态流动条件下,瞬态壁面摩擦阻力较稳态壁面摩擦阻力存在一定的差别。论文以管道系统为研究对象,对流量线性增长和递减多种工况进行了试验研究。研究结果表明,对于流量线性递增工况,瞬态壁面切应力表现出四个阶段,阶段一瞬态壁面切应力迅速提高并高于稳态壁面切应力,阶段二瞬态壁面切应力缓慢增加并逐渐小于相应稳态值,阶段三瞬态壁面切应力又迅速增加超过稳态值,阶段四瞬态壁面切应力与稳态值的变化保持一致。对于流量线性递减工况,瞬态壁面切应力表现出三个阶段,阶段一和阶段二,瞬态壁面切应力均快速减小并小于相应稳态值,阶段三瞬态壁面切应力缓慢增加并超过稳态值。以上瞬态壁面切应力的变化过程主要是由于非稳态流动惯性和湍流滞后性造成的,这种影响程度及瞬态壁面切应力的变化会随着流动加速度或减速度和初始流动状态的变化而变化。
     对曲线隧道沿程阻力采用三维稳态数值计算。结果表明,隧道断面风速和断面形式对沿程阻力系数的影响很小;当半径小于2000m时,沿程阻力系数随曲线隧道半径的减小迅速增大,当半径大于2000m时,曲线隧道沿程阻力系数较直线隧道相差较小。本论文提出了适用于半径小于2000m曲线隧道沿程阻力系数的计算方法。
     采用移动网格技术对曲线隧道内汽车产生的交通风力和交通风进行了三维非稳态模拟计算。研究结果发现,曲线隧道内汽车在不同车道行驶时产生的交通风力差别很小;汽车在不同半径曲线隧道内行驶时产生的交通风力差别较大,汽车行驶产生的交通风力随着曲线隧道半径的减小逐渐增加;车速的提高明显有利于提高隧道内交通风的大小,但对汽车有效空气阻力系数将产生负面影响。行车间距的增加将有利于提高隧道内汽车有效空气阻力系数的大小。
     对两螺旋曲线隧道射流风机的优化布置采用了三维数值计算和现场实测相结合。研究结果表明,风机组向隧道内侧即左侧移动0.5m时,风机升压折减系数较其他位置明显提高;风机组向隧道外侧即右侧移动时,风机升压折减系数明显降低;当风机组间距为2.4m,风机组向隧道内侧移动0.5m时,风机升压折减系数最高。曲线隧道内射流需经过90-120m才能得到充分的发展,断面平均静压达到最大,隧道进入压力通风段。因此,曲线隧道内射流风机组的纵向间距需大于该距离。
With the development of the business of road tunnel, so many complicated road tunnels have been built, which make a higher request for the tunnel ventilation theory and system. Based on the two cueved tunnels-Ganhaizi tunnel and Tiezhaizi No 1 tunnel under construction, Computational Fluid Dynamic(CFD)、experiment and Field measurement were carried out to study the tunnel ventilation theory and the key parameters of ventilation system systemically and carefully. The main results can be found below.
     The transient wall shear stress(WSS) is different from the corresponding steady one under the condition of unsteady flow in tunnels and pipeline. A pipeline is the research objective in this thesis and the ramp-up and ramp-down cases was run in this experiment. The results show that there are four stages for the change of transient WSS in ramp-up cases. It can be found the transient WSS increases rapidly and overshoots the steady value in stage 1, the transient WSS increases slowly and undershoot the steady value in stage 2, the transient WSS increases rapidly and overshoots the steady value again in stage 3 and in stage 4 the transient WSS is almost the same to the steady one. It also can be described three stages for the change of transient WSS in ramp-down cases. The transient WSS decreases significantly and is lower than the steady one in stage 1 and 2, and the transient WSS increases slowly and overshoot the steady one. The behavior of the transient WSS is caused by the flow inertia and turbulence delay, and the extent would change with the change of the acceleration or deceleration and the initial flow state.
     A three numerical method was carried out to analyze the ventilation resistance in curved tunnels. The results show that the influence of the air speed and the cross section shape on the resistant coefficient can be ignored. When the curved radius is less than 2000m, the coefficient would increase significantly with the decrease of the radius. When the radius is more than 2000m, the difference of the coefficient between the curved tunnel and the straight tunnel is small. A method was proposed in this thesis.
     A three dimensional unsteady numerical analysis using the moving mesh was used to study the traffic force in curved tunnels. The results show that the difference traffic force is too small when running on different lines. However, the difference of the traffic force due to in different curved tunnel is great. The traffic force increases with the decrease of the radius of the curved tunnel. A higher traffic speed would improve the traffic force significantly, but make the adverse impact on the effective drag coefficient of traffics. A longer traffic space would improve the effective drag coefficient of traffics.
     A three dimensional numerical analysis and field measurement were used to study the optimal location of jet fans in the two curved tunnel. It also can be found the pressure-rising coefficient would improve when moving the jet fans 0.5m from the centre line towards the convex wall; when moving the jet fans towards the concave wall, the pressure-rising coefficient would decrease significantly. The biggest pressure-rising coefficient is obtained when the fans are arranged according to the distance of 2.4m between the fans, the fans offset of 0.5m from the centre line towards the convex wall. The distance required for pressure to be fully recovered is approximately 90-120m in this study. The cross-sectional static pressure is biggest. Accordingly, the longitudinal distance of jet fans should be more than this value in curved tunnels.
引文
[1]王梦恕.中国是世界上隧道和地下工程最多、最复杂、今后发展最快的国家[J].铁道标准设计,2003,1:1-4
    [2]王建宇.关于我国隧道工程的技术进步[J].中国铁道科学,2001,22(1):72-78
    [3]蒋树屏.2008年全国公路隧道学术会议开幕式上的讲话
    [4]曾艳华,何川.特长公路隧道全射流通风技术的应用[J].公路,2002,7:129-131
    [5]郭建文译.隧道通风用射流风机的高风速化[J].公路,2005,2:179-182
    [6]夏永旭,王永东,赵峰.秦岭终南山公路隧道通风方案探讨[J].2002,22(5):48-50
    [7]胡维.广州珠江纵向通风实测简介[J].地下工程与隧道,1995,3:31-33
    [8]冯炼.新龙门隧道射流通风与污染物浓度的数值分析[J].西南交通大学学报,1997,32(2):203-207
    [9]涂耘.雪峰山隧道运营通风模型实验研究[J].公路交通科技,2005,5:115-117
    [10]姚敏丽.锦屏隧洞通风设计和控制方法研究[D].西南交通大学硕士学位论文,2006
    [11]N. Yamada, Y. Ota. Safety Systems for the Trans-Tokyo Bay Highway Tunnel Project[J]. Tunnelling and Underground Space Technology,1999,14(1):3-12
    [12]Axel Bring, Tor-Goran Malmstrom, Carl Axel Boman. Simulation and Measurement of Road Tunnel Ventilation[J]. Tunnelling and Underground Space Technology, 1997,12(3):417-424
    [13]S Bari, J Naser. Simulation of Smoke from A Burning Vehicle and Pollution Levels Caused by Traffic Jam in A Road Tunnel [J]. Tunnelling and Underground Space Technology,2005,20:281-290
    [14]Monica Galdo Vega, Katia Maria Arguelles Diaz, Jesus Manuel Fernandez Oro, Rafael Ballesteros Tajadura, Carlos Santolaria Morros. Numerical 3D Simulation of A Longitudinal Ventilation System:Memorial Tunnel Case[J]. Tunnelling and Underground Space Technology,2008,23:539-551
    [15]Chung-Yi Chung, Pei-Ling Chung. A Numerical and Experimental Study of Pollutant Dispersion in a Traffic Tunnel[J]. Environ Monit Assess,2007,130:289-299
    [16]JTJ 026.1-1999,公路隧道通风照明设计规范[S]
    [17]张光鹏.公路隧道双向换气式纵向通风研究[D].西南交通大学博士学位论文,2008
    [18]L Gidhagen, C Johansson, J Strom, A Kristensson, E Swietlicki. Model Simulation of Ultrafine Particles inside A Road Tunnel[J]. Atmospheric Environment,2003, 37:2023-2036
    [19]井口裕雄.青函トソネルの温度预测[M].鐵道技术研究报告,1984
    [20]E Migoya, A Crespo, J Garcia, J Hernandez. A simplified model of fires in road tunnels. Comparison with three-dimensional models and full-scale measurements [J]. Tunnelling and Underground Space Technology,2009:37-52
    [21]Kanji Wada. Maintenance and control of the Kanmon highway tunnel[J]. Tunnelling and Underground Space Technology,1986:315-322
    [22]M.A.Berner,J.R.Day. A new concept for ventilation long twin-tube tunnels[C]. Proc. 7th International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels. Cranfield UK:1991.811~820.
    [23]Miroslav Sambolek. Model testing of road tunnel ventilation in normal traffic conditions [J]. Engineering Structures,2004,26:1705-1711
    [24]W.K.Chow, M.Y.Chan. Field measurement on transient carbon monoxide levels in vehicular tunnels. Building and Enviroment; 2003,38:227-236.
    [25]F Colella, G Rein, R Borchiellini, R Carvel, J L Torero, V Verda. Calculation and design of tunnel ventilation systems using a two-scale modelling approach[J]. Building and Environment,2009,44(12):2357-2367
    [26]Sung Ryong Lee, Hong Sun Ryou. A numerical study on smoke movement in longitudinal ventilation tunnel fires for different aspect ratio [J]. Building and Environment,2006.41:719-725
    [27]Chi-Ji Lin, Yew Khoy Chuah. A study on long tunnel smoke extraction strategies by numerical simulation[J]. Tunnelling and Underground Space Technology, 2008,23:522-530
    [28]Haukur Ingason. Model scale tunnel tests with water spray[J]. Fire Safety Journal, 2008,43:512-528
    [29]Oddny Indrehus, Per Vassbotn. CO and NO2 pollution in a long two-way traffic road tunnel:investigation of NO2/NOx ratio and modeling of NO2 concentration[J]. Journal of Environ Monit,2001,3:220-225
    [30]Ercument Karakas. The control of highway tunnel ventilation using fuzzy logic[J]. Engineering Applications of Artificial Intelligence,2003,16:717-721.
    [31]R O Carvel, A N Beard, P W Jowitt. The influence of longitudinal ventilation systems on fires in tunnels[J]. Tunnelling and Underground Space Technology,2001,16:3-21
    [32]Lukas Ferkl, Gjerrit Meinsma. Finding optimal ventilation control for highway tunnels[J]. Tunnelling and Underground Space Technology,2007,22:222-229
    [33]Y Wu, M Z A Bakar. Control of smoke flow in tunnel fires using longitudinal ventilation systems-a study of the critical velocity [J]. Fire Safety Journal, 2000,35:363-390
    [34]J Modic. Air velocity and concentration of noxious substances in a naturally ventilated tunnel[J]. Tunnelling and Underground Space Technology,2003,18:405-410
    [35]Juan Abanto, Marcelo Reggio, Daniel Barrero, Eddy Petro. Prediction of fire and smoke propagation in an underwater tunnel [J]. Tunnelling and Underground Space Technology,2006,22:90-95
    [36]Prankul Middha, Olav R Hansen. CFD simulation study to investigate the risk from hydrogen vehicles in tunnels[J]. International Journal of Hydrogen Energy,2009, 34:5875-5886
    [37]Jurij Modic. Criterial number by naturally ventilated tunnels[J]. Energy and Buildings, 1998,29:17-22
    [38]Alan N Beard. Tunnel safety, risk assessment and decision-making [J]. Tunnelling and Underground Space Technology,2010,25:91-94
    [39]Guian Sin Kwa. The design of tunnel ventilation system for a long vehicular tunnel [J]. Tunnelling and Underground Space Technology,2004,19:312
    [40]Stjepan Bogdan, Bruno Birgmajer, Zdenko Kovacic. Model predictive and fuzzy control of a road tunnel ventilation system[J]. Transportation Research Part C,2008,16: 574-592
    [41]Roberto Bellasio. Modelling traffic air pollution in road tunnels[J]. Atmospheric Environment,1997,31(10):1539-1551
    [42]Baeksuk Chu, Dongnam Kim, Daehie Hong, Jooyoung Park, Jin Taek Chung, Jae-Hun Chung, Tae-Hyung Kim. GA-based fuzzy controller design for tunnel ventilation systems[J]. Automation in Construction,2008,17:130-136
    [43]Jojo S M Li, W K Chow. Numerical studies on performance evaluation of tunnel ventilation safety systems [J]. Tunnelling and Underground Space Technology,2003,18:435-452
    [44]C C Hwang, J C Edwards. The critical ventilation velocity in tunnel fires-a computer simulation[J]. Fire Safety Journal,2005,40:213-244
    [45]Vittorio Betta, Furio Cascetta, Marilena Musto, Giuseppe Rotondo. Numerical study of the optimization of the pitch angle of an alternative jet fan in a longitudinal tunnel ventilation system[J]. Tunnelling and Underground Space Technology,2009, 24:164-172
    [46]Ju-seog Ko, Chan-hoon Yoon, Sung-wook Yoon, Jin Kim. Determination of the applicable exhaust airflow rate through a ventilation shaft in the case of road tunnel fires[J]. Safety Science,2010,48:722-728
    [47]Hartman P F, Huijben J W. Tunnel ventilation and safety in escape routes[J]. Tunnelling and Underground Space Technology,2006,21:293-294
    [48]Lukas Ferkl, Oto Sladek, Jan Porizek. Tunnel ventilation simulation of the city ring in Prague[J]. Tunnelling and Underground Space Technology,2006,21:443
    [49]Sung Ryong Lee, Hong Sun Ryou. An experimental study of the effect of the aspect ratio on the critical velocity in longitudinal ventilation tunnel fires[J]. Journal of Fire Sciences,2005,23:119-138
    [50]PIARC Committee on Road Tunnels. Road safety in tunnels[R].1995
    [51]PIARC Technical Committee on Road Tunnel Operation. Road tunnels:vehicle emissions and air demand for ventilation[R].2004
    [52]PIARC Committee on Road Tunnels. Reduction of operational cost of road tunnels report and recommendations[M].1999
    [53]PIARC Technical Committee C3.3 Road Tunnel Operation. Human factors and road tunnel safety regarding users [M].2008
    [54]重庆市重点公路建设指挥部、西南交通大学等.公路长隧道纵向通风研究[R].1998
    [55]郭春信.关于公路隧道自然通风问题的探讨[J].地下工程与隧道,1994,3:42-43
    [56]张坚,李宁军,谢永利,王余富.公路隧道通风计算中交通量的研究[J].现代隧道技术,2005,42(6):71-75
    [57]王明年,杨其新,曾艳华,袁雪戡,杨忠.秦岭终南山特长公路隧道网络通风研究[J].公路交通科技,2002,19(4):65-68
    [58]李景银.公路隧道射流风机设计和选型综述[J].公路,2004,3:141-144
    [49]史力生,彭立敏.公路隧道纵向通风分析与计算[J].长沙铁道学院学报,1997,15(2):100-105
    [60]王明年,杨其新,曾艳华,袁雪戡,杨忠.终南山特长公路隧道火灾模式下网络通风研究[J].地下空间,2002,22(1):65-71
    [61]曾艳华,李永林,何川,关宝树.隧道通风网络调节[J].西南交通大学学报,2003,38(2): 183-187
    [62]王永东,夏永旭.公路隧道纵向通风系统局部影响数值模拟[j].西安公路交通大学学报,2001,21(4):50-54
    [63]韩星,张旭.不同坡度下柴油车比例对隧道通风需风量计算指标的影响[J].现代隧道技术,2005,42(6):76-80
    [64]徐琳,张旭.水平隧道火灾通风纵向控制风速的合理确定[J].中国公路学报,2007,20(2):92-96
    [65]闫治国,朱合华,杨其新.火灾时隧道火风压及其对通风影响的试验研究[J].同济大学学报(自然科学版),2006,34(12):1592-1596
    [66]喻映华,雷波,毕海权.隧道紧急停车带流场和局部阻力数值模拟[J].现代隧道技术,2006,43(1):49-52
    [67]许云峰,高孟理.隧道射流通风流场数值的计算方法[J].兰州铁道学院学报(自然科学版):2003,22(4):138-142
    [68]王晓雯.摩阻损失对隧道通风影响的研究[J].公路交通科技,2004,3:87-91
    [69]戴国平,王日升,尚春鸽.射流风机在公路隧道中的应用及选型[J].公路,2001,12: 66-68
    [70]途耘.雪峰山隧道运营通风模型实验研究[J].公路交通科技,2005,5:115-117
    [71]张光鹏,雷波.公路隧道纵向通风神经网络在线控制[J].西南交通大学学报,2005,40(6):765-768
    [72]彭伟,霍然,李元洲,陈映隆,李念慈,游宇航,胡隆华.二郎山公路隧道火灾排烟及人车疏散应急方案研究[J].安全与环境学报,2007,7(5):113-116
    [73]彭伟,霍然,胡隆华,王浩波,杨瑞新.隧道火灾的全尺寸试验研究[J].火灾科学,2006,15(4):212-218
    [74]王晓雯.公路隧道送排式纵向通风流体力学分析与计算模型[J].重庆交通学院学报,2004,23(2):16-20
    [75]王生昌,刘浩学,王贺武.基于公路隧道的汽车CO基准排放量试验研究[J].公路交通科技,2004,153-157
    [76]王贺武,刘浩学,王生昌.隧道内路面坡度和车速对车辆烟雾排放量影响的研究[J].公路交通科技,2003,20(5):152-154
    [77]张光鹏,雷波,李琼.公路隧道纵向通风的神经网络在线控制研究.现代隧道技术,2004,3(4):52-55.
    [78]王永东,夏永旭.公路隧道纵向通风数值模拟.中国公路学报,2002,(1):83-85.
    [79]夏永旭,石平.公路隧道扩(缩)径风道局部损失数值模拟[J].中国公路学报,2006,19(6):83-86
    [80]郭春,王明年,李玉文,田尚志,周仁强.公路隧道通风CO、烟雾基准排放量折减率研究.公路交通科技,2008,25(10):105-109
    [81]蔡增基,龙天渝编.流体力学泵与风机[M].中国建筑工业出版社,2002
    [82]He S, Ariyaratne, Vardy A E. A computational study of wall friction and turbulence dynamics in accelerating pipe flows[J]. Computer and Fluids,2008,37(6):674-689
    [83]Ivo Pothof. A turbulent approach to unsteady friction[J]. Journal of Hydraulic Research,2008,46(5):679-690
    [84]Daily J W, Hankey W L, Olive R W, Jordaan J M. Resistance coefficients for accelerated and decelerated flows through smooth tubes and orifices [J]. Trans ASME, 1956,78:1071-1077
    [85]Brunone B, Golia U M, Greco M. Some remarks on the momentum equation for fast transients[C]. Proceeding of Internation Conference on Hydraulic Transients with Water Column Separation, IAHR,1991, Spain,210-209
    [86]Bergant A, Simpson A R, Vitkovsky J. Developments in unsteady pipe flow friction modeling[J]. Journal of Hydraulic Research,2001,39(3):249-257
    [87]Zielke W. Frequency dependent friction in transient pipe flow[J]. J Basic Eng Trans ASME,1968,90(1):109-115
    [88]Vardy A E, Hwang K L, A characteristics model of transient friction in pipes[J]. Journal of Hydraulic Research,1991,29:669-684
    [89]Vardy A E, Brown J M. Transient turbulent friction in smooth pipe flows [J]. Journal of Sound and Vibration,2003,259(5):1011-1036
    [90]Vardy A E, Brown J M.. Transient turbulent friction in fully rough pipe flows[J]. Journal of Sound and Vibration,2004,270:233-257
    [91]Vardy A E, Asce F, Brown J M. Approximation of turbulent wall shear stresses in highly transient pipe flows[J]. Journal of Hydraulic Research,2007, 133(11):1219-1228
    [92]Mao Z X, Hanratty T J. The use of scalar transport probes to measure wall shear stress in a flow with imposed oscillations [J]. Experiments in Fluids,1985,3:129-135
    [93]Mao Zhouxiong. Analysis of wall shear stress probes in large amplitude unsteady flows[J]. Int J Heat Mass Transfer,1991,34(1):281-290
    [94]Junichi Kurokawa, Masahiro Morikawa. Accelerated and decelerated flows in a circular pipe[J]. Bulletin of JSME,1986,29:758-765
    [95]Shuy E B. Wall shear stress in accelerating and decelerating turbulent pipe flows[J]. Journal of Hydraulic Research,1996,34(2):173-183
    [96]He S, Jackson J D. Wall shear stress in accelerating pipe flows[J]. Int Conf on Energy Conversion and Application,2001, China,17-20
    [97]Douglas J F, Gasiorek J M, Swaffield J A. Fluid Mechanics[M]. Produced by Longman Singapore Publisher Ltd,1995
    [98]金文良.秦岭终南山特长公路隧道通风环境参数测试研究[D].长安大学硕士学位论文,2006
    [99]喻映华.锦屏隧道流动阻力及射流风机升压力研究[D].西南交通大学硕士学位论文,2006
    [100]重庆高速公路发展有限公司、西南交通大学.长大公路隧道智能控制系统效果测评报告[R].2006
    [101]Hong-Ming Jang, Falin Chen. On the determination of the aerodynamic coefficients of highway tunnels [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002,90:869-896
    [102]陈湘君译.公路隧道运营通风效果的实验[J].隧道译丛,1982,4:56-60.
    [103]Chen T Y, Lee Y T, Hsu C C. Investigarions of piston-effect and jet fan-effect in model vehicle tunnels[J]. Journal of Wind Engineering and Industrial Aerodynamics,1998, 73:99-110
    [104]Stroppa W, Pucher K, Rodler J. Aerodynamic forces exerted by vehicles and their impact on tunnel installations [C]. Proceeding of 10th International symposium on Aerodynamics and Ventilation of vehicle Tunnels. BHRA.2000:343-354.
    [105]Hong-Ming Jang, Falin Chen. A novel approach to the transient ventilation of road tunnels[J]. Journal of Wind Engineering and Industrial Aerodynamics,2000,86: 15-36.
    [106]Jaroslav Katolicky, Miroslav Jicha. Eulerian-Lagrangian model for traffic dynamics and its impact on operational ventilation of road tunnels [J]. Journal of Wind Engineering and Industrial Aerodynamics,2005; 93:61-77.
    [107]Sinisa Krajnovic, Lars Davidson. Flow around a simplified car, part 1:Large Eddy Simulation. J Fluids Eng Trans ASME,2005,127:907-918
    [108]Sinisa Krajnovic, Lars Davidson. Flow around a simplified car, part 2 Understanding the Flow. J Fluids Eng Trans ASME,2005,127:919-928
    [109]Ali M Sahlodin, Rahmat Sotudeh-Gharebagh, Yifang Zhu. Modeling of dispersion near roadways based on the vehicle-induced turbulence concept. Atmospheric Environment,2007,41:92-102
    [110]Efisio Solazzo, Xiaoming Cai, Sotiris Vardoulakis. Modelling wind flow and vehicle-induced turbulence in urban streets. Atmospheric Environment,2008,42:4918-4931
    [111]Li Xian-Xiang, Liu Chun-Ho, Leung Dennis Y C, Lam K M. Recent progress in CFD modeling of wind field and pollutant transport in street canyons[J]. Atmospheric Environment,2006,40:5640-5658
    [112]傅立敏,沈俊,王靖宇.汽车流场及尾部涡系数值模拟[J].吉林工业大学自然科学学报,2000,30(2):6-9
    [113]张英朝,傅立敏.简单外形汽车隧道中回车过程的瞬态空气动力学数值模拟[J].吉林大学学报(工学版),2006,36(3):302-306
    [114]傅立敏,吴允柱,贺宝琴.队列行驶车辆的空气动力特性[J].吉林大学学报(工学版),2006,36(6):871-875
    [115]谷正气,姜乐华,吴军,方刚.汽车绕流的数值分析及计算机模拟[J].空气动力学学报,2000,18(2):188-193
    [116]严鹏,吴光强,傅立敏,胡兴军.轿车外流场数值模拟[J].同济大学学报,2003,31(9):1082-1086
    [117]K R Mutama, A E Hall.The experimental investigation of jet fan aerodynamics using wind tunnel modeling[J]. Journal of Fluid Engineering,1996,118:322-328
    [118]高孟理.公路隧道射流通风原理和计算方法的探讨[J].兰州铁道学院学报,1989,8(4):14-22
    [119]高孟理.公路隧道射流通风的模型试验[J].兰州铁道学院学报,1989,8(1):1-13
    [120]孙三祥高孟理,武金明等.双向行车公路隧道射流通风系统优化分析[J].公路交通科技,2006,23(12):106-110
    [121]高孟理,武金明,孙三祥.隧道射流通风系统的优化分析[J].中国公路学报,2007,15(3):64-67.
    [122]金学易,陈文英编著.隧道通风几隧道空气动力学[M].中国铁道出版社,1983
    [123]Oldengarm J, Van Krieken A H, Van Der Klooster H W. Velocity profile measurements in a liquid film flow using the laser Doppler technique[J]. Journal of Physics E: Scientific Instruments,1975,8:203-205
    [124]He S. On transient turbulent pipe flow[D]. A thesis for the degree of Ph.D of University of Manchester,1992
    [125]Eggels J G M, Unger F, Weiss M H, Westerweel J, Adrian R J, Friedrich R, Nieuwstadt F T M. fully developed turbulent pipe flow:a comparison between direct numerical simulation and experiment [J]. Journal of Fluid Mechanics,1994,268:175-209
    [126]Durst F, Jovanovic J, Sender J. LDA measurements in the near-wall region of a turbulent pipe flow[J]. Journal of Fluid Mechanics,1995,295:305-335
    [127]He S, Jackson J D. A study of turbulence under condition of transient flow in a pipe[J]. Journal of Fluid Mechanics,2000,408:1-38
    [128]Fontaine A A, Deutsch S. Three-component time-resolved velocity statistics in the wall region of a turbulent pipe flow[J].Experiments in Fluids,1995,18:168-173
    [129]David Greenblatt, Edward A Moss. Rapid temporal acceleration of a turbulent pipe flow[J]. Journal of Fluid Mechanics,2004,514:65-75
    [130]Romano G P. PIV and LDA velocity measurements near walls and in the wake of a Delta wing[J]. Optics and Lasers in Engineering,1992,16:293-309
    [131]Ryan T Reynolds, Ian P Castro. Measurements in an urban-type boundary layer[J]. Experiments in Fluids,2008,45:141-156
    [132]Anders Darelius, Anders Rasmuson, Ingela Niklasson Bjorn, Staffan Folestad. LDA measurements of near wall powder velocities in a high shear mixer[J]. Chemical Engineering Science,2007,62:5770-5776
    [133]Ray S Fatemi, Stanley E Rittgers. Derivation of shear rates from near-wall LDA measurements under steady and pulsatile flow conditions [J]. Journal of Biomechanical Engineering,1994,116:361-368
    [134]尹泽明,丁春利等编著.精通MATLAB 6[M]清华大学出版社,2002
    [135]陶文铨.数值传热学(第1版)[M].西安交通大学出版社,2008
    [136]Versteeg H K, Malalasekera W. An introduction to computational fluid dynamics [M].2007
    [137]Hong Huang, Ryozo Ooka, Hong Chen, et al. CFD analysis on traffic-induced air pollutant dispersion under non-isothermal condition in a complex urban area in winter[J]. J Wind Eng Ind Aerodyn;2008,96:1774-1788
    [138]Karim Van Maele, Bart Merci. Application of RANS and LES field simulations to predict the critical ventilation velocity in longitudinally ventilated horizontal tunnels[J]. Fire Safety Journal,2008,43:598-609
    [139]B.E.Launder, D.B.Spalding.The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering,1974,3:269-289.
    [140]章梓雄等.粘性流体力学[M].北京:清华大学出版社,1998
    [141]Fluent Inc. FLUENT 6.2 User's Guide; 2005
    [142]王峰,邓园也,王明年.地铁隧道带与不带竖井列车活塞效应模拟研究[J].地下空间与工程学报,2009,5(6):1081-1085
    [143]骆建军,王梦恕,高波.高速列车穿越有竖井隧道流场的特性研究[J].计算力学学报,2006,23(4):464-469
    [144]骆建军,高波,王梦恕.高速列车突入隧道时的三维非定常流的数值模拟[J].中国铁道科学.2005,26(1):15-19
    [145]张英朝,傅立敏.简单外形汽车隧道中回车过程的瞬态空气动力学数值模拟[J].吉林大学学报,2006,36(3):302-306
    [146]张世英,孙振生.移动网格技术在求解固体火箭发动机侵蚀流场中的应用[J].弹箭与制导学报,2006,26(4):204-206
    [147]翟晓超,陈亚军,姜毅.动网格在仿真发射装置内弹道中的应用[J].现代防御技术,2006,34(2):24-28
    [148]张玉东,纪楚群.包含动边界的非定常流场动网格数值模拟[J].计算物理,2006,23(2):165-170
    [149]罗马吉,黄震,陈国华,蒋炎坤.发动机进气流动的三维瞬态数值模拟研究[J].空气动力学学报,2005,23(1):74-78
    [150]张志荣,冉景煜,张力,蒲.内燃机缸内气体CFD瞬态分析中动态网格划分技术[J].重庆大学学报(自然科学版),2005,28(11):97-100
    [151]杨青真,施永强,黄秀全,周新海.振荡栅三维非定常流动数值分析[J].空气动力学学报,2006,24(1):62-66
    [152]谢象春编著.湍流射流理论与计算[M].北京:科学出版社.1975
    [153]H Ohashi, T Kawamura, T Baba. A study on a longitudinal ventilation system using the enlarged jet fans[C]. Proc 2nd Int Symp on the aerodynamics and ventilation of vehicle tunnels,1976.
    [154]温玉辉,谢永利,李宁军.射流风机升压力影响的计算机辅助试验仿真分析[J].2007,3(1):172-175
    [155]杨秀军,王晓雯,陈建忠.公路隧道通风中射流风机纵向最小间距的研究[J].重庆交通大学学报(自然科学版),2008,27(1):40-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700