风力机尾流气动性能及风场阵列研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于当前国际能源紧缺以及风电站大规模建立,大型风场存在占地面积大,风力机间相互干扰严重等缺点。因此,如何充分、高效地开发利用风能资源及经济、合理减小风电场占地面积将成为今后值得关注的重要课题。风场中风力机布置以及由风力机之间尾流互扰,会造成的单机功率损失甚至影响整个风场风能利用效率及输出功率。本文运用Fluent对风力机叶片、整机以及双机组不同布置时的气动性能进行数值研究,具有重要的应用价值和理论意义。
     首先:利用FLUENT,采用分离隐式求解器,湍流模型选择SSTk ?ω模型,离散方式为二阶迎风格式,压力-速度耦合采用SIMPLEC。对1.2MW风力机旋转风轮流场进行了数值模拟。比较设计转速为18.44rpm工况下风轮与单叶片流场;三叶片风轮与相同叶片单叶片、双叶片以及四叶片的输出功率、湍动能。通过分析风轮旋转对叶片间流动的影响表明:旋转上游叶片在转动过程中会发生附着涡的脱落,下游叶片的流场环境发生变化,其对叶片转矩及输出功率影响很大。
     其次:着重介绍基础尾流理论以及一系列推导过程,结合尾流理论分别对单机尾流气动性能进行分析,通过比较单机风力机下风向流场分布和尾流模型计算结果,验证数值模拟合理性。之后对两台串列、并列及错列布置的风力机进行了数值模拟。比较各种布置方式的输出功率、流场分布,对风力机间相互影响及互扰损失进行分析。得出结论:单风力机流场呈发散状,由于风力机顺时针旋转,整机尾流偏向叶片旋转下游方向。串列布置时,下风向叶轮对上风向机组发散状尾流有收敛作用,下风向机组受上游尾流影响较大,功率明显降低;并列及错列时被干扰机组受参考机组尾流挤压,但功率受影响较小。
     最后:对固定距离的两个风力机组的不同排列情况进行数值模拟。通过比较单机及各种布置角度的输出功率、流场分布,对风力机间相互影响及互扰造成功率损失进行分析。结果表明:随着风向发生变化,下风向风力机移出上风向阴影,其功率逐渐增加。机组间距离应与当地盛行风向变化范围成正比。
Because of energy-deficiency in the international community, large-scale wind power plants are being built in nowadays. There are many problem in wind power plants such as covering too large area and mutual interference between each other. Therefore, how to fully and effectively use the energy resources and reduce land occupation must be concerned as the important topic for future study. Power loss of single turbine and even wind energy equipment utilization efficiency of wind power plant were caused by array in wind power plants and the wake interference between wind turbines. It is not only the oretically important, but has practical value to study the wake aerodynamic of the wind turbine. Blades, single wind turbine and double roter of different arrangements have been simulated using the Fluent 6.3.
     First,numerical simulation is conduced with software FLUENT. Pressure based, segregated, steady implicit are set in the solver. Turbulence model is SST k ?ω. Pressure-velocity coupling scheme is SIMPLEC. Discretization scheme is Second Order Upwind scheme. Power output and turbulent kinetic energy were compared with different numbers of rotating wind turbine and with single blade’s and rotating blades. Computational results showed that the attaches vortex shedding from upper rotating blades was occurred during the operation,which lead to the change under lower blades environments and has great influence on total moment and power output.
     Secondldy, the numerical simulation is verified for its feasibility by comparing the aerodynamic performance of CFD model and wake model. The aerodynamic interaction between two rotors in both co-axial, arrangement in parallel and stagger arrangement and offset configurations has been simulated. Comparison of different location of both turbines simulation results were used for the analysis of wake interaction and velocity deficit in downstream wind direction. To reach the conclusion, the wake outlet is divergent shape. The wake of wind turbine is bias towards blade rotation downstream direction. Downstream turbine makes the upstream diverging wake to be convergence under co-axial wind conditions, and the output of downstream turbine is affected by upstream wake. Arrangement in parallel and stagger arrangement results in little power loss although their flow field were extruded by the wake effect of the reference turbine.
     Finally, comparison of different location of both turbines simulation results was used for the analysis of wake interaction and velocity deficit in downstream wind direction. The results showed that downstream turbine makes the upstream diverging wake to be convergence under co-axial wind conditions, and the output of downstream turbine is affected by upstream wake. As the wind direction change, down-stream turbines is removed from up-stream wind wake shadows, and the output power increases. The distance between the units should be proportional to the local prevailing winds range.
引文
[1] 2010年上半年全球风电装机数据统计.中国风电材料设备网:http://www.cnwpem.com/news/7520.html
    [2] Kenisarin,Murat,KarslAA,Vedat.M.AAaAAlar,Mehmet,Wind power engineering in theworld and perspectives of its development in Turkey,Renewable and Sustainable Energy Review,2006,10(4),341~369
    [3]郭新生.风能利用技术.北京,化学工业出版社.2009年1月.26~28
    [4]李巨峰,张云华.风力发电与我国复合材料叶片产业的发展.玻璃钢学会第十五届全国玻璃钢/复合材料学术年会论文集,2003.331~334
    [5] Magdalena R V,Maria S,Jacobson M Z.Examining the effects of wind farms on array efficiency and regional meteorology.Los Angeles:Stanford University,2007.15~20
    [6]李宇红,张庆麟.风力机叶片三维流动特性与气动性能的数值分析.太阳能学报,2009,29(8):1172~1176
    [7]包能胜,蔡佳炜,倪维斗等.小型水平轴风力机襟翼增升实验研究.太阳能学报,2008,29(1):85~89
    [8]李宇红,刘洋,蒋洪德.风力机翼型气动性混合计算方法的研究.动力工程学报,2010,30(9):705~710
    [9]任年鑫欧进萍.大型风力机二维翼型气动性能数值模拟.太阳能学报,2009,30(8):1088~1090
    [10]单蕾.风力机塔架结构选型与受力性能研究:[硕士学位论文].哈尔滨:哈尔滨工业大学,2009.25~30
    [11]刘勇风力发电机气动性能数值模拟:[硕士学位论文],哈尔滨:哈尔滨工业大学,2007.27~50
    [12]赵先民水平轴风力机动力特性和流场的数值模拟:[硕士学位论文],上海:同济大学,2007.40~65
    [13]陈雨,袁国青.水平轴风力机叶片自振频率计算方法研究,玻璃钢/复合材料,2008,5(3):35~38
    [14]徐贵营,黄争鸣.水平轴风力机叶片的逆向设计与分析,玻璃钢/复合材料,2008,1(1):41~44
    [15]贾斌.全程变桨距风能转换装置的气动研究:[硕士学位论文],内蒙古:内蒙古工业大学,2005.23~40
    [16]张智羽.带小翼的风力机叶片气动性能的数值模拟及其优化:[硕士学位论文],内蒙古:内蒙古工业大学,2006.37~54
    [17]贾瑞博.风力机叶尖加小翼动力放大的数值模拟研究:[硕士学位论文],内蒙古:内蒙古工业大学,2005.33~48
    [18]全建军.风力机叶尖加小翼动力放大特性实验研究:[硕士学位论文],内蒙古:内蒙古工业大学,2006.41~57
    [19]张玉良.水平轴大功率高速风力机风轮空气动力学计算:[硕士学位论文],兰州:兰州理工大学,2006.29~35
    [20]李昆.大型水平轴风力机风轮结构动力分析:[硕士学位论文],兰州理工大学,2008:20~44
    [21]程兆雪,李仁年,杨从新等.大型近海水平轴风力机转轮的空气动力学性能优化判据,应用数学和力学,2010,31(1):12~18
    [22] Thomas Hahm Jürgen Kr?ning,Tüv Nord E V.In the wake of a wind turbine .Fluent News,2002,xi(i):5~7.
    [23] Sten Frandsen,Rebecca Barthelmie,Sara Pryor,et al.The necessary distance between large wind farms offshore study[R].Roskilde Denmark:Ris? National Laboratory,2004.2~11
    [24] Barthelemie R J,Rathmann O,Frandsen S T,et al.Modelling and measurements of wakes in large wind farms .Journal of Physics:Conference Series,2007(37):12~49.
    [25] Carlo Enrico Carcangiu . CFD-RANS Study of Horizontal Axis Wind Turbines[M].Cagliari:DIMeCa Universita degli Studi di Cagliari,2008:5~24
    [26] Alexandros Makridis,John Chick.CFD modeling of the wake interactions of two wind turbines on a Gaussian hill[C]//EACWE,Florence,2009:9~13
    [27] Fletcher T M,Brown R E.Simulation of wind turbine wake interaction using the vorticity transport model .Wind Energy,2009,1002(10):587~602.
    [28] Anders Bj?rck.Numerical computations of wind turbine wakes.Stefan Ivanell,Energimyndigheten,2009:15~19
    [29] D. Medici,P. H. Alfredsson. Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding. Wind Energy,2006,9:219~236
    [30] Ivan Dobrev, Bassem Maalouf, Niels Troldborg. Investigation of the Wind Turbine Vortex Structure. 14th Int Symp on Applications of Laser Techniques to Fluid Mechanics Lisbon, Portugal, 07-10 July, 2008:23~29
    [31] L.J.Vermeera,J.N. Srensenb, A.Crespo. Wind turbine wake aerodynamics. L.J. Progress in Aerospace Sciences 39 (2003):467~510
    [32] Charles Meneveau, Raul B. Cal. Wind turbine-atmospheric boundary layer interactions: detailed model experiments and multiscale analysis. Hopkins University 2007,9.15:16~21
    [33] Stefan S. A. Ivanell. Numerical Computations of Wind Turbine Wakes. Technical Reports from Royal Institute of Technology Linne Flow Centre, Department of Mechanics Sweden January 2009:24~27
    [34]王芳,王同光.基于涡尾迹方法的风力机非定常特性计算.太阳能学报,2009,30(9):1286~1291.
    [35]祝贺,徐建源,滕云等.风力机风轮气动性能三维流场数值模拟.中国电机工程学报,2010,30(17):85~90.
    [36]胡丹梅,欧阳华,杜朝辉.水平轴风力机尾迹流场试验.太阳能学报,2006,27(6):606~612.
    [37]陈坤,贺德馨.风力机尾流数学模型及尾流对风力机性能的影响研究.流体力学实验与测量,2003,17(1):84~87.
    [38]郭婷婷,吴殿文,王成荫等.风力发电机叶片预弯设计及其数值研究.动力工程学报,2010,30(6):450~455
    [39]吴殿文.风力机优化设计及气动性能的数值模拟:[硕士学位论文].吉林:东北电力大学,2010.51~70
    [40]王福军.计算流体动力学分析-CFD软件原理与应用.北京:清华大学出版社,2004:78~85
    [41]谭传智.FLUENT在汽车空调领域的应用:[硕士学位论文].重庆:重庆大学,2007.43~67
    [42]邹晓辉.燃气轮机叶片气膜冷却的数值模拟:[硕士学位论文].吉林:东北电力大学,2008.65~70
    [43]李雪梅.电除尘器内部气流分布特性的数值研究:[硕士学位论文].吉林:东北电力大学,2009.32~54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700