机载气象雷达运动补偿算法的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的研究工作属于“863”计划重点项目课题——机载气象雷达云雨探测应用系统的一部分。利用飞机平台的高度机动性可以实现对气象系统近距离、高精度的三维实时观测。由于载机平台在探测过程中,因气流、飞行操作等多种因素的影响会出现飞行速度和空中姿态的偏差,从而影响机载雷达探测波束的发射、接收和探测效果,因此对机载雷达进行运动补偿对于提高高分辨率探测资料的可靠性非常必要。在已发表的研究成果中,对于机载气象雷达运动补偿算法,国内尚无相关的研究成果。国外的研究成果也尚未发表。因此,本文的研究有重要的实际应用价值,填补了我国在该领域的理论空白。
     本论文主要做了以下几个方面的研究工作:
     (1)运动偏差影响机载多普勒气象雷达探测效果的理论分析——依据多普勒气象雷达的探测原理、雷达信号处理方法以及基数据的获得,分析并论证了载机运动误差影响加载的多普勒气象雷达观测资料的理论成因;根据不同的影响成因将运动误差分为空中姿态变化误差和运动速度变化误差。
     (2)载机平台运动状态数据的测量、获得及其精度检验——研究验证了载机平台的运动状态用实时飞行速度、俯仰、偏航和横滚四个参数来表述的合理性和可行性;依据惯性陀螺仪和GPS的观测原理,分析了使用GPS/INS组合观测系统来测量和提供载机运动状态四参数的合理性和可行性;分析和检验了某新型双GPS/INS组合姿态方位系统的观测数据并和某著名高精度观测系统的数据进行精度对比,研究结果表明:用于导航的该姿态方位系统可提供载机运动状态四参数的观测并具有较高精度。
     (3)载机平台姿态变化运动补偿算法的理论研究——分析机载气象雷达观测系统中载机平台、气象雷达和运功误差测量系统分别所属的坐标系及各坐标系之间的转换关系,提出了通过由载机姿态测量数据的坐标系到载机坐标系再到天线坐标系最后到大地坐标系的连续坐标转换,来实现载机平台姿态变化的运动补偿算法;通过在理想个例中的应用,验证了该算法的合理性和可行性;本算法模块仅依靠于运动状态的观测值,因此既可嵌于信号处理系统的前置模块,用于天线平台稳定伺服系统;又可嵌于后置模块,当机械伺服系统出现故障时直接处理观测数据,从而提高观测数据的精度、可靠性及稳定性。
     (4)载机平台运动速度误差补偿算法的理论研究和仿真验证——依据多普勒频移,提出将载机运动速度分解为沿径向和垂直于径向的速度分量分别进行速度误差补偿的算法;在MATLAB/SIMULATION平台上搭建该机载气象雷达系统的仿真系统,并将所提运动速度误差补偿算法模块内嵌于该仿真系统中;进行了X波段相控阵测雨雷达的实际观测数据和仿真系统补偿结果的对比试验,对比结果验证了该算法用于X波段相控阵测雨雷达观测资料补偿的合理性和可行性;进行了W波段测云雷达仿真系统的理想化试验,试验结果验证了该算法用于W波段测云雷达观测资料补偿的合理性和可行性。
     本论文研究工作的创新性主要体现在以下几个方面:
     (1)填补了国内机载多普勒气象雷达运动补偿算法理论的空白,对于后续的工作有重要的指导意义;
     (2)提出了基于补偿算法从软件层面上对机载多普勒气象雷达进行运动补偿的新思路,弥补了已有基于硬件层面的补偿方法的不足;
     (3)将用于导航的新型双GPS/INS组合姿态方位系统的观测数据用于机载多普勒气象雷达的运动补偿中,弥补了现用的惯性陀螺单一观测系统的不足,并极大的提高了运动误差的观测精度;
     (4)搭建了基于MATLAB/SIMULATION平台的机载气象雷达仿真系统并将所研究的运动误差补偿算法模块内嵌于该系统中,在无条件进行外场试验时,实现了算法的仿真验证。
The research of this thesis is a part of the key project of national high tech research and development project (863 project) - the application system for airborne weather radar detection of clouds and rain. Because of the high flexibility of airborne platform, the 3-D real-time observation of weather systems can be realized in a close range and high precision. Due to the influences of many factors (e.g. airflow, flight operation), it is impossible to keep the airborne platform under uniform motion and steady flight attitude. Consequently, the variation of flight motion and attitude will affect the transmitting and receiving of the radar detecting wave beam, and then weaken the detecting veracity. As a result, it is necessary to adopt motion compensation to improve the reliability of high-resolution detection of airborne radar. Among the domestic and abroad research publications, there are not any reports on theoretic researches of motion compensation algorithms for airborne weather radar detecting system. Therefore, the research results of this thesis not only have substantial practical application value, but also fill the theory-gap in this domain and enhance independent intellectual property capabilities of this country.
     The following contents are discussed in this thesis.
     (1) The theoretic analyses of the influences of motion error on the detection effect of airborne weather radar. Based on the detection theory of Doppler weather radar, the processing method of radar signal and the acquirement of raw data, analysis and demonstrate the theoretic causes of the influences of carrier aircraft motion error on the Doppler weather radar observation data. Classify the motion errors into flight attitude variation error and velocity variation error according to the different influences causes discussed above.
     (2) The measurement, acquirement and precision test of the carrier aircraft motion state data. Research and validate the rationality and feasibility of using real time flight velocity, elevation angle, yaw angle and roll angle to describe the carrier aircraft motion state. Analysis the rationality and feasibility of using GPS/INS combined observing system to detect and provide the four parameters of the carrier aircraft motion state。The observation data from one double GPS/INS attitude and orientation system is analyzed, tested and compared with the data of one famous high precision observation system, the results demonstrate that the proposed navigation-used motion state observation system could be used to provide the parameters of the carrier aircraft motion state with high precision.
     (3) Theoretic research of the motion competition algorithm for the flight attitude variation error. Analysis the different coordinates of carrier aircraft, loaded weather radar and the motion state observation system separately and the transition relationship between different coordinates, proposed the compensation algorithm for flight attitude variation error by continued transacting form motion state observation data coordinates to carrier aircraft coordinates then to antenna coordinates and to Geodetic coordinates finally. Validate the rationality and feasibility of the proposed algorithm by applying it in an ideal case. For the proposed algorithm module only depends on the motion state observation data, it can be implanted either in the prepositive module of signal processing system as the antenna platform stable servo or in the postpositive module to process observed data directly when the mechanical servo breaking down. Consequently, the observation data is improved in precision, reliability and stabilization.
     (4) Theoretic research and simulation validation of the motion competition algorithm for the velocity variation error. Proposed the compensation algorithm for velocity variation error by decompounding the carrier aircraft velocity into the component along radial and the component perpendicular to radial and compensating for the two components respectively. Develop the simulation system of the airborne weather radar system on the MATLAB/SIMULATION platform and implants the proposed algorithm module of velocity variation compensation in the simulation system. Take a comparative test of the observation data of a X band phase array rain radar and the compensation data of the simulation system, the results validate the rationality and feasibility of the application of the proposed algorithm in X band phase array rain radar observation data. Take an ideal test of the W band cloud radar simulation system, the results validate the rationality and feasibility of the application of the proposed algorithm in the W band cloud radar observation data.
     The research results of this thesis show innovations in several aspects.
     (1) The results make up the theory-lack of motion compensation algorithms for airborne Doppler weather radar detecting system in our country, and has guiding significance for the following researches.
     (2) Base on these compensation algorithms, one innovative method of the motion compensation for airborne Doppler weather radar, which uses software, has been invented. It makes up the limitation of the motion compensation method which uses hardware.
     (3) Adopt the double GPS/INS attitude and orientation navigation system observation data which is used for navigation before in the motion compensation for airborne Doppler weather radar, makes up the limitation of the traditional unitary observation system with inertia gyroscope and greatly improves the observation precision of the motion error.
     (4) The simulation system of airborne weather radar is developed on the MATLAB/SIMMULATION platform. Furthermore, the motion compensation algorithm module is implanted into this system and validated without field experiment.
引文
[1]王静,导师:程明虎,用神经网络方法对雷达资料降水类型的分类,中国气象科学研究院,大气物理与大气环境专业,硕士论文,2006。
    [2]张亚萍,导师:程明虎,利用新一代天气雷达观测资料制作流域径流预报的研究,南京信息工程大学,大气物理与大气环境专业,博士论文,2007。
    [3]郑国光、陈洪滨、卞建春等译,进入21世纪的大气科学,北京:气象出版社,2008,600pp。
    [4]李柏、高玉春等,机载载气象雷达云雨探测系统项目建议书,内部资料,2007。
    [5]李小文等主持,国家863计划课题“机载多角度、多光谱成像系统”,1998-2000。
    [6]贲德、韦传安、林幼权,机载雷达技术,北京:电子工业出版社,2006,485pp。
    [7]Guide to Meteorological Instruments and Methods of Observation WMO-No.8,2006.
    [8]郑国光、陈跃、王鹏飞等译,人工影响天气研究中的关键问题,北京:气象出版社,2005,387pp。
    [9]张祖稷、金林、束咸荣编著,雷达天线技术,北京:电子工业出版社,2005,488pp。
    [10]高玉春、杨金红、程明虎、柴秀梅,相扫天气雷达扫描方式研究,电子学报,2009 (3),24-32.
    [11]杨金红、高玉春、程明虎,相控阵技术在大气探测中的应用及面临的挑战,地球科学进展,2008(2),11-20.
    [12]杨金红、高玉春、程明虎,相控阵技天气雷达天线方向图模型的建立,中国气象学会2006年年会论文集,2006年,88-92.
    [13]杨金红、高玉春、程明虎,相控阵天气雷达对多普勒雷达的探测精度与探测能力对比研究,气象,2008(5),32-40.
    [14]Svante Bjorklund, JouniRantakokko, An Interactive software demonstrator of radar array processing. IEEE Proceedings of the Nordic signal processing.
    [15]杰里L.伊伏斯、爱德华K.里迪,现代雷达原理,北京:国防工业出版社,1991,737pp。
    [16]B.S Manjunath, W.Y.Ma, Texture Features for Browsing and Retrieval of Image Data, IEEE TRANSACTIONS on pattern analysis and machine intelligence, Vol.18,1996(8), 837-842.
    [17]柳钦火,导师:李小文,机载遥感数据的定量化研究,中国科学院研究生院,地图学于地理信息系统专业,博士论文,2002.
    [18]丁鹭飞、耿富录,雷达原理(修订版),西安:西安电子科技大学出版社,1997,332pp。
    [19]John C.Kirkjr. Motion Compensation for Synthetic Aperture Radar. IEEE TRANSACTIONS on aerospace and electric system. Vol.11,1975(3),388-348.
    [20]Judo R. Moreira, A New Method of Aircraft Motion Error Extraction From Radar Raw Data For Real Time Motion Compensation. IEEE TRANSACIONS on Geo-science and remote sensing. Vol.28,1990(4),620-626.
    [21]Charles L. Frush, Jacques Testud, Francois Baudin, The ELDORA ASTRAIA Airborne Doppler Weather Radar: Goals, Design, and First Field Tests, Proceeding of IEEE, Vol.82,1994(12),1873-1888.
    [22]S.Madson, Estimating the Doppler Central of SAR data, IEEE Geo-science and Sensing letters, Vol.2,2001,81-86.
    [23]Karlus Macedo, Rolf Scheiber, Precise Topography-and Aperture-Dependent Motion Compensation for Airborne SAR, IEEE Geo-science and Sensing letters, Vol.2,2005(2), 172-176.
    [24]A.Meta, J.F.M, Lorga, J.J.M.de Wit, Motion Compensation for a High Resolution Ka-Band Airborne FM-CW SAR, IEEE Microwave Conference, Vol3,2005(3),4pp.
    [25]James Ward, SPACE-TIME Adaptive Processing for airborne radar, IEEE Radar Conference,1999,114-118.
    [26]Hildebrand, P.H., Walther, C., Wen-Chau Lee, The ELDORA/ASTRAIA airborne Doppler weather radar:Results、Fromrecent、Field tests IEEE on Aerospace and Electric System, Vol.1,1999(11),662-710.
    [27]HIAPER Project Office, HIAPER Reliability report,2005,82pp.
    [28]熊峰,机载雷达伺服系统研究与仿真,电讯技术,Vol2,2003(1),38-50。
    [29]LIU Jing、LI Xing-guo、LI Yue-hua, Application of entropy minimization to motion compensation of MMW COSTAS Frequency-Hopping Radar, International Conference on Microwave and Millimeter Wave Technology Proceedings,2004,639-642.
    [30]聂旭涛、范大鹏等,基于COSMOSWORKS的优化三轴稳定平台框架的优化设计,机电工程技术,Vol.34,2005(1),4-11.
    [31]雷沃妮,机载雷达空域稳定算法,南京理工大学学报(自然科学版),Vol.29,2005(2),25-31.
    [32]陈国虎、徐俊、俞竹青,天线稳定平台控制系统的研究,江苏工业学院学报,Vol.18,2006(1),53-54.
    [33]龚伟、向茂生,利用惯导与GPS数据对雷达成像做运动补偿,电子测量技术,Vol.29,2006(6),11-13.
    [34]何丽、俞竹青,基于PLD稳定平台控制系统的设计,江苏工业学院学报,Vol.19,2007(3),54-57.
    [35]黄岩、李春升、陈杰、周萌清,星载SAR天线指向稳定度对成像质量的影响,北京航空航天大学学报,Vol.26,2000(3),282-285.
    [36]邢孟道、保铮,基于运动参数估计的SAR成像,电子学报,2001(1),35-43.
    [37]黄源宝、保铮,一种新的机载条带式SAR沿航向运动补偿方法,电子学报,2005(3),110-117.
    [38]Weiguang Guo、Yan Wang, SAR Motion Compensation Based on Signal Processing Method, Proceedings of the 2003 IEEE,2003,1240-1244.
    [39]曾宪伟、张智军等,某型机载雷达的地面标校方法,现代雷达,2005(12),41-48.
    [40]周峰、王琦、邢孟道、保铮,一种机载大斜视SAR运动补偿方法,电子学报,Vol.34,2007(3),463-468。
    [41]韦立登、向茂生、吴一戎,POS数据在机载干涉SAR运动补偿中的应用,遥感技术与应用,Vol.22,2007(2),188-194.
    [42]涂飞,张品生,172B雷达测试技术在某飞行试验项目中的应用研究,2007年航空试验测试技术学位交流会文集,2007。
    [43]郑卫平、张秋玲、冯宏川、王岩飞,基于SCFT处理算法的机载SAR运动补偿,电子与信息学报,Vol.27,2005(9),1375-1378.
    [44]姜斌、黎湘、陈行勇、郭桂蓉,调频步进雷达扩展目标运动补偿研究,信号处理,Vol.22,2006(6),873-878.
    [45]李燕平、邢孟道、保铮,结合非线性CS算法的UWB-SAR运动补偿,系统工程与电子技术,Vol.29,2007(4),515-519.
    [46]苗慧、王岩飞、张冰尘,一种距离向偏移的SAR运动补偿方法,武汉理工大学学报,Vol.29,2007(1),93-99.
    [47]肖青、柳钦火、李小文等,高分辨率机载遥感数据的交叉辐射影响极其校正,遥感学报,2005(6),625-633.
    [48]李朝阳,导师:李小文、阎光健、周国清,高压线路走廊特征物提取和高程计算研究,北京邮电大学,信号与信息处理专业,博士论文,2006.
    [1]程明虎,暴雨系统的多普勒雷达反演理论和方法,北京:气象出版社,2004,628pp。
    [2]张培昌等,雷达气象学,北京:气象出版社,2001,511pp.
    [3]俞小鼎、姚秀萍等,多普勒天气雷达原理与业务应用,北京:气象出版社,2007,314pp.
    [4]Battan L J., Radar Observation of the Atmosphere, Chicago:The University of Chicago Press,1973,677pp.
    [5]Brown R. A. and Lemon L. R., Single Doppler radar vortex recognition:Part Ⅱ-Tornadic vortex signatures, Preprints,17th Conf. on Radar Metror., Boston, Amer. Meteor. Soc.,1976,104-109.
    [6]Brandes E. A., Davies-Jones R. P. and B. C. Johnson, Streamwise vorticity effects on supercell morphology and persistence, J. Atoms. Sci., Vol.45,1988,947-963.
    [7]Collier C. F., Applications of Weather Radar Systems-A guide to uses of radar data in meteorology and hydrology, Ellis Horwood Limited,1989,294pp.
    [8]Burgess D. W. and Lemon L. R., Severe thunderstorm detection by radar, Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc.,1990,619-647.
    [9]Businger S et al., A bow echo and severe weather associated with a Kona Low in Hawaii, Wea. Forecasting,1998,576-591.
    [10]Crum T. D. et al., An Update on the NEXRAD Program and Future WSR-88D Support to Operations, Wea. Forecasting,2003(13),253-261.
    [11]Doviak R. J. and Zrnic D. S., Doppler Radar and Weather Observations, Academic Press, Inc.,1993,562pp.
    [12]WSR-88D Operations Course,美国天气局雷达支持中心,1996,600 pp.
    [13]3830雷达技术说明书,安徽四创电子股份有限公司,2001,50pp。
    [14]Crum T. D. et al., The WSR-88D and the WSR-88D Operational Support Facility, Bull Amer. Meteor. Soc., Vol.74,1993,1669-1688.
    [15]Fulton R. A. and Co-authors, The WSR-88D rainfall algorithm, Wea. Forecasting, 1998(13),377-395.
    [16]Donaldson R. J., Vortex signature recognition by a Doppler radar, J. Appl. Meteor., 1970(9),661-670.
    [17]Grum T. D. et al., An update on the NEXRAD program and future WSR-88D support to operations. Wea. Forecasting,1998(13),253-261.
    [18]Forsythe D. E., Real time forecasting of echo-centroid motion, M. S. thesis, Department of Meteorology, University of Oklahoma,1979,79pp.
    [19]Sauvageot H., Radar Meteorology, Artech House,1992,365pp.
    [20]Chisholm A. J., Alert hailstorms, Part I:Radar case studies and airflow models, Met. Mon.,Vol36,1973(14),1-36.
    [21]刘志澄、李柏、翟武全,新一代天气雷达系统环境及运行管理,北京:气象出版社,2002,110-117.
    [22]Eilts M. D. et al., Damaging downburst prediction and detection algorithm for the WSR-88D, Preprints,18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc.,1996a,541-544.
    [23]Joss J. and Waldvogel A., Precipitation measurement and hydrology, Radar in Meteorology, D.Atlas, Ed.,Amer. Meteor. Soc.,1990,577-606.
    [24]Klimowski B. A., Hjelmfelt M. R. and Bunkers M. J., Radar observation of the early evolution of bow echoes, Wea. Forecasting,2004(19),727-734.
    [25]Savage,P.Strapdown Inertial Navigation Integration Algorithm Design Part2:Velocity and Position Algorithms. AIAA Journal of Guidance,Control and Dynamics,Vol.21,1998(2),209-219.
    [26]Ryzhkov A. and Zrnic D., Precipitation and attenuation measurements at a 10-cm wavelength, J. Appl. Meteor.,1995(34),2121-2134.
    [27]Stumpf G. J. and Co-authors, The NSSL mesocyclone detection algorithm for the WSR-88D, Wea. Forecasting,1998(13),304-326.
    [28]JOJO R. MOREIRA, A New Method of Aircraft Motion Error Extraction From Radar Raw Data For Real Time Motion Compensation, IEEE TRANSACIONS on Geo-science and remote sensing, Vol.28,1990(4),620-626.
    [1]JOJO R. MOREIRA, A New Method of Aircraft Motion Error Extraction From Radar Raw Data For Real Time Motion Compensation, IEEE TRANSACIONS on Geo-science and remote sensing, Vol.28,1990(4),620-626.
    [2]CHARLES L. and FRUSH, J., The ELDORA, ASTRAIA Airborne Doppler Weather Radar:Goals,Design,and First Field Tests, IEEE PROCEEDINGS, Vol.82,1994(12), 1873-1888.
    [3]李征航、徐德宝、董挹芙等,空间大地测量理论基础,武汉:武汉测绘科技大学出版社,1998,109pp。
    [4]刘经南,三维基线向量与大地坐标差间的微分公式及其应用,武汉测绘科技大学学报,Vol.7,1991(3),67-71。
    [5]沈镜祥、施品浩、刘基余等,空间大地测量,武汉:中国地质大学出版社,1990,254pp。
    [6]Emerson, R. C.: Some Pulsed Doppler MTI and AMTI Techniques, Rand Corporation Rept. Reprinted in Ref.6,2006,177-180.
    [7]George, T.S.:Fluctuations of Ground Clutter Return in Airborne Radar Equipment, Proc. IEE (London), Vol.99,1952,92-99.
    [8]Dickey, F. R., Jr.:Theoretical Performance of Airborne Moving Target Indicators, IRE Trans., Vol.8,1953,12-23.
    [9]韦立登、向茂生、吴一戎等,POS数据在机载干涉SAR运动补偿中的应用,遥感技术与应用,Vol.22,2007(2),188-194。
    [10]苗慧、王岩飞、张冰尘等,一种距离向偏移的SAR运动补偿方法,武汉理工大学学报,Vol.29,2007(1),93-99。
    [11]李燕平、邢孟道、保铮,结合非线性CS算法的UWB-SAR运动补偿,系统工程与电子技术,Vol.29,2006(4),515-519。
    [12]龚伟、向茂生,利用惯导与GPS数据对雷达成像做运动补偿,电子测量技术,Vol.29,2007(2),11-13。
    [13]郑卫平、张秋玲、冯宏川等基于SCFT处理算法的机载SAR运动补偿,电子与信息学报,Vol.27,2003(9),1375-1378。
    [14]陆恺,陀螺仪原理及应用,北京:国防工业出版社,1981,65pp。
    [15]陆元久,陀螺及惯性导航原理,北京:科学出版社,1964,156pp。
    [16]青成俊,陀螺仪及惯性导航原理,海军航交工程学院,1986,244pp。
    [17]陀螺仪与惯性导航专业情报网编,国外惯性技术手册,北京:国防工业出版社,1983,583pp。
    [18]恰耳兹布罗克斯梅耶,致学译,惯性导航系统,北京:国防工业出版社,1972,547pp。
    [19]C.F.奥唐奈等,群英译,惯性导航分析与设计,北京:国防工业出版社,1972,79pp。
    [20]Lefevre H C.,光纤陀螺仪,北京:国防工业出版社,2002,143pp。
    [21]B. Hofmann, Eellenhof, H. Lichtenegger, J. Collins. GPS Theory and Practice. New York: Springer Eien,1994,231pp.
    [22]Cross P., Quality Measure for Differential GPS Positioning, The Hydrographical Journal, Vol.4,1994(72),58-64.
    [23]刘大杰、施一民、过静君,全球定位系统(GPS)的原理与数据处理,上海:同济大学出版社,1996,83pp。
    [24]刘基余、李征航、王跃虎等,全球定位系统原理及其应用,北京:测绘出版社,1993,133pp。
    [25]徐绍铨、张华海、杨志强等,GPS测量原理及应用,武汉:武汉测绘科技大学出版社,1998,99pp。
    [26]王广运、陈增强、陈武等,GPS精密测地系统原理,北京:测绘出版社,1989,234pp。
    [27]高成发,GPS测量,北京:人民交通出版社,2000,53pp。
    [28]梁开龙、暴景阳、刘雁春,GPS动态测量研究,导航,Vol.3,1994(1),23-28。
    [29]黄劲松、李征航,GPS快速静态定位技术,武汉测绘科技大学学报,Vol.2,1996(2),78-84。
    [30]王广运、郭秉义、李洪涛,差分GPS定位技术与应用,北京:电子工业出版社,1996,68pp。
    [31]许其风,GPS卫星导航与精密定位,北京:解放军出版社,1989,169pp。
    [32]张勤、李家权,全球定位系统(GPS)测量原理及其数据处理基础,西安:西安地图出版社,2000,273pp。
    [33]杜道生、陈军、李征航,RS、GIS、GPS的集成与应用,北京:测绘出版社,1995,133pp。
    [34]魏子卿、王刚,用地球位模型和GPS/水准数据确定我国大陆似大地水准面, 测绘学报,Vol.3,2003(1),47-51。
    [35]谢世富,差分GPS及其扩展,导航,Vol.4,1991(1),83-86。
    [36]D. Feng B., Herman M., Exner W., et al., Preliminary Results from the GPS/MET Atmospheric Remote Sensing Experiment, GPS Trends in Precise Terrestrial, Airborne and Spaceborne Applications, Vol.77,1996,19-40.
    [1]中航雷达与电子设备研究院编,机载雷达手册,北京:国防工业出版社,2004, 265pp。
    [2]JOJO R. MOREIRA, A New Method of Aircraft Motion Error Extraction From Radar Raw Data For Real Time Motion Compensation, IEEE TRANSACIONS on Geo-science and remote sensing, Vol.28,1990(4),620-626.
    [3]CHARLES L. and FRUSH, J., The ELDORA, ASTRAIA Airborne Doppler Weather Radar: Goals,Design,and First Field Tests, IEEE PROCEEDINGS, Vol.82,1994(12), 1873-1888.
    [4]陈俊勇,世界大地坐标系统1984的最新精化,测绘通报,Vol.1,2003(3),69-75。
    [5]郑祖良,大地坐标系的建立与同一,北京:解放军出版社,1993,159pp。
    [6]孔祥元、刘中泉,大地测量学基础,武汉:武汉大学出版社,2001,496pp。
    [7]魏子卿,我国大地坐标的转换问题,武汉大学学报,Vol.3,2003(2),64-68。
    [8]朱华统,常用大地坐标系及其变换,北京:解放军出版社,1990,63pp。
    [9]刘大杰、白征东、施一民等,大地坐标转换与GPS控制网平差计算及软件系统,上海:同济大学出版社,1997,271pp。
    [10]Emerson, R. C.:Some Pulsed Doppler MTI and AMTI Techniques, Rand Corporation Rept. Reprinted in Ref.6,2006,177-180.
    [11]李鹏,机载组合导航技术研究,国防科学技术大学,硕士学位论文,2006。
    [12]Dickey, F. R., Jr.:Theoretical Performance of Airborne Moving Target Indicators, IRE Trans., Vol.8,1953,12-23.
    [13]张树侠、孙静,捷联式惯性导航系统,北京:北京国防工业出版社,1992,59pp。
    [14]Savage, P., Introductin to Strapdown Inertial Navegation Systems,8th printing, Maple Plain, MN:Strapdown Associates, Inc.,1997,694pp.
    [15]Kayton, M. and W. Fried, Avonics Navigation Systems,2nd edition, New York, John Wiley&Sons,1997,795pp.
    [16]王富嘉、陈哲,INS/GPS/TAN系统中的联邦Kalman滤波信息融合方法,航空学报,1998(7),87-91。
    [17]肖乾,多传感器组合导航系统信息融合技术研究,哈尔滨工程大学,博士学位论文,2005.
    [18]刘建业、袁信、孙永荣,惯性组合导航系统的融合技术研究,南京航空航天大 学学报,1997(4),372-377。
    [19]黄晓瑞、崔平远,基于信息融合的组合导航系统研究,数据采集与处理,2001(2),210-214。
    [20]Titterton D.and J Weston., Strapdown Inertial navigation Technology, London:Peter Peregrinus Ltd.on behalf of the Institution of Electrical Engineers,1997,873pp.
    [21]Farrel J M. and Barth M., The Global Positioning System and Inertial Navigation, New York:McGraw-Hill,1999,564pp.
    [22]张景伟,INS/GPS/SAR组合导航系统关键问题研究,西北工业大学,博士学位论文,2003。
    [23]冯培德、李四海,机载惯性/卫星组合导航系统,光电与控,1995(1),8-11。
    [24]Bierman G J., Sequential square root filtering and smoothing of discrete linearsystems, Automation,1974 (10),147-158.
    [25]Savage,P., Strapdown Inertial Navigation Integration Algorithm Design Part2: Velocity and Position Algorithms, AIAA Journal of Guidance, Control and Dynamics, Vol.21,1998(2),209-219.
    [26]Andrews, G.A., Airborne Radar Motion Compensation Techniques:Optimum Array Correction Patterns, Naval Res.Lab.Rept.1976,7977pp.
    [27]周江华、苗育红、肖刚,捷联惯导系统初始四元数提取的新算法.飞行力学,2003(3),63-66。
    [28]史忠科,最优估计的计算方法,北京:科学出版社,2001,278pp。
    [29]王新华、王爱平,龙格-库塔法结构程序设计方法,淮北煤师院学报,1995(3),48-52。
    [30]张春慧、吴简彤、何昆鹏等,四阶龙格—库塔法在捷联惯导系统姿态解算中的应用,应用科技,2005(6),31-39。
    [1]程明虎,暴雨系统的多普勒雷达反演理论和方法,北京:气象出版社,2004,628pp。
    [2]张培昌等,雷达气象学,北京:气象出版社,2001,511pp.
    [3]俞小鼎、姚秀萍等,多普勒天气雷达原理与业务应用,北京:气象出版社,2007,314pp.
    [4]WSR-88D Operations Course,美国天气局雷达支持中心,1996,600 pp.
    [5]3830雷达技术说明书,安徽四创电子股份有限公司,2001,50pp。
    [6]Doviak R. J. and Zrnic D. S., Doppler Radar and Weather Observations, Academic Press, Inc.,1993,562pp.
    [7]Crum T. D. et al., The WSR-88D and the WSR-88D Operational Support Facility, Bull Amer. Meteor. Soc., Vol.74,1993,1669-1688.
    [8]Fulton R. A. and Co-authors, The WSR-88D rainfall algorithm, Wea. Forecasting, 1998(13),377-395.
    [9]Donaldson R. J., Vortex signature recognition by a Doppler radar, J. Appl. Meteor., 1970(9),661-670.
    [10]JOJO R. MOREIRA, A New Method of Aircraft Motion Error Extraction From Radar Raw Data For Real Time Motion Compensation, IEEE TRANSACIONS on Geo-science and remote sensing, Vol.28,1990(4),620-626.
    [11]CHARLES L. and FRUSH, J., The ELDORA, ASTRAIA Airborne Doppler Weather Radar:Goals,Design,and First Field Tests, IEEE PROCEEDINGS, Vol.82,1994(12), 1873-1888.
    [12]周峰、王琦、邢孟道、保铮,一种机载大斜视SAR运动补偿方法,电子学报,Vol.35,2007(5),463-468。
    [13]Weiguang Guo and Yan Wang, SAR Motion Compensation Based on Signal Processing Method, IEEE Proceedings,2003,1240-1244.
    [14]LIU Jing、LI Xing-guo and LI Yue-hua, Application of entropy minimization to motion compensation of MMW COSTAS frequency-hopping radar, International Conference on Microwave and Millimeter Wave Technology Proceedings,2004, 639-642.
    [15]韦立登、向茂生、吴一戎等,POS数据在机载干涉SAR运动补偿中的应用,遥感技术与应用,Vol.22,2007(2),188-194。
    [16]苗慧、王岩飞、张冰尘等,一种距离向偏移的SAR运动补偿方法,武汉理工大学学报,Vol.29,2007(1),93-99。
    [17]李燕平、邢孟道、保铮,结合非线性CS算法的UWB-SAR运动补偿,系统工程与电子技术,Vol.29,2006(4),515-519。
    [18]龚伟、向茂生,利用惯导与GPS数据对雷达成像做运动补偿,电子测量技术,Vol.29,2007(2),11-13。
    [19]郑卫平、张秋玲、冯宏川等基于SCFT处理算法的机载SAR运动补偿,电子与信息学报,Vol.27,2003(9),1375-1378。
    [20]Karlus A., Camara de Macedo and Rolf Scheiber, Precise Topography-and Aperture-Dependent Motion Compensation for Airborne SAR, IEEE on Geo-science and remote sensing, Vol.2,2005(2),172-176.
    [21]John C. and Kirk, J. R., Motion Compensation For Synthetic Aperture Radar, IEEE TRANSACTIONS on aerospace and electronic systems, Vol.11,1975(3),154-167.
    [22]Meta, J. F., Lorga, J., Hoogeboom, P., Motion Compensation for a High Resolution Ka-Band Airborne FM-CW SAR, IEEE on Geo-science and remote sensing, Vol.4, 2004(5),157-162.
    [23]James Ward, SPACE-TIME Adaptive processing for airborne radar, IEEE on Geo-science and remote sensing, Vol.6,1995(3),2809-2812.
    [24]王连仲、窦贤康,机载测雨雷达两种反演方法的优化和综合利用的模拟研究,大气科学,Vol.31,2007(2),265-272。
    [25]曹志刚、柴春红、王正武、柴辉,机载雷达的空中定位研究,航空计算技术,Vol.35,2005(2),102-104。
    [26]陈家军、王东进、陈卫军,IFMCW雷达目标运动补偿新方法,现代雷达,Vol.28,2006(7),37-40。
    [27]熊峰,机载雷达伺服系统研究与仿真,电讯技术,2003(2),38-50。
    [28]陈国虎、徐俊、俞竹青,天线稳定平台控制系统的研究,江苏工业学院学报,Vol.18,2006(1),53-54。
    [29]王周宇、张林让、田慧,基于Matlab/Simulink的雷达系统仿真,计算机仿真,Vol.21,2004(11),235-238。
    [30]胡海莽、杨万海,基于Simulink的脉冲多普勒雷达系统建模仿真,计算机仿真,Vol.43,2005(2),1-4。
    [31]王小光、唐宏、高山等,基于Simulink的机载PD雷达系统的建模与仿真,航空计算机技术,Vol.37,2007(5),78-82。
    [32]Svante Bjorklund and JouniRantakokko, An Interactive software demonstrator of radar array processing, New York: John Wiley &Sons,1992,567pp.
    [33]周宇、张林让、田慧,基于Matlab/Simulink的雷达系统仿真,计算机仿真,Vo1.l,2004(11),235-238。
    [34]胡海莽、杨万海,基于Simulink的脉冲多普勒雷达系统建模仿真,系统工程与电子技术,Vol.43,2005(2),1-4.
    [35]王小光、唐宏、高山、王波基,基于Simulink的机载PD雷达系统的建模与仿真,航空计算机技术,Vol.37,2007(5),78-82.
    [36]郭云芳,计算机仿真技术,北京,北京航空航天大学出版社,1991,383pp。
    [37]Mahafza and Bassem, Radar systems & analysis using Matlab。Newyork: Chapman & Hall/ CRC,2001,402pp。
    [38]曹勇、王更辰,脉冲多普勒雷达地面反射信号处理的模型建立与仿真,现代电子技术,2005(5),34-42。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700