MUC1基因疫苗的构建及GM-CSF增强其抗肿瘤免疫的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尽管化疗、放疗等有效的抗肿瘤治疗使癌症患者生存率不断提高,然而,大多数癌症转移病人因不能被治愈而死亡。因此,探索有效的治疗肿瘤的新途径十分必要。与其它治疗肿瘤的方法不同,肿瘤疫苗它通过激活机体自身的免疫系统来达到治疗的目的,从而具有高度特异性,其中DNA疫苗以其简单而独特的免疫方式和良好的动物免疫效果而倍受关注。与传统疫苗不同,DNA疫苗它能诱导出其表达的外源蛋白的特异性CTL,这正是预防和治疗肿瘤的关键。
     人MUC1基因的编码产物Mucin是一种Ⅰ型跨膜蛋白,它通常位于腺上皮细胞的顶表面。研究发现,MUC1在乳腺癌等多种肿瘤中异常表达且由于糖基化不全,导致新的抗原肽表位暴露。因此,MUC1是肿瘤主动特异性免疫治疗理想的靶分子。pcDNA3.1(+)真核载体带有CMV启动子和SV40多聚腺苷信号序列,能促进外源基因高效转染和表达。为研究MUC1核酸疫苗的特异性抗肿瘤作用,我们构建了含人MUC1全长cDNA序列的真核表达载体pcDNA3.1(+)-MUC1,并全面评价了该基因疫苗的免疫学特性及GM-CSF免疫佐剂作用。另外,为探讨MUC1在肿瘤诊断和免疫治疗中的意义,我们采用
    
     第四军医大学博卜学位论文
     免疫组化方法检测了 MUC在不同肿瘤组织中的表达。
     为此,首先提取质粒酶切回收MUC目的基因,克隆入pGEM习 刁后双
     酶切鉴定质粒。DNA测序分析与己知的人 MUC。DNA序列相符。序列分析
     鉴定后,将 MUC目的基因再亚克隆入 pCDNA3.l(+卜 构建含人 MUC全长
     CDNA序列的真核表达载体 pCDNA3.l(+)MUC,并进行双酶切鉴定。
     接着,将 pcDNA3.l什)-MU山电穿孔法转染 COS刁细胞,瞬时转染后 56h,
     活细胞兔疫荧光染色,荧光显微镜观察发现,经重组质粒转染的COS刁细胞
     膜表面可见明亮荧光,而 pCDNA3二什)空载体转染的细胞内未见荧光,表明
     pcDNA3.l什)-MUC在 COSj细胞中以细胞膜分子形式表达。流式细胞仪检
     测进一步证实了表达结果。
     随后采用股四头肌注射法将质粒 pCDNA3.IMUCI肌注免疫雌性 BALB儿
     小鼠,3周 1次,共 3次,每次基因免疫后 1,3,sd,皮下注射 GM.CSF 00ul
     (lug/100u人最后一次基因免疫后第3周,接种表达MUCI的EMT6小鼠
     乳腺癌细胞及H22肝癌细胞,进行保护实验。两周后观察、记录肿瘤的生长
     情况及荷瘤小鼠的存活期。采用标准 4h’七r释放法检测 CTLs杀伤功能;免
     疫组织化学法检测 MUC特异性的体液免疫应答;采用直接免疫荧光法,流
     式细胞仪检测T淋巴细胞表型。取小鼠瘤体组织,制备组织切片,HE染色镜
     检,观察肿瘤的组织细胞结构。
     肿瘤细胞接种后 45天,加 GM-CSF佐剂预防组、MUO预防组、质粒
     pcDNA3.l+GM-CSF对照组、pcDNA3*对照组,EMT6月瘤大小分别为
     (145土门.8)mm3、(250t24.3)mm3、(538t43*)mm3、(596t4.2)mm3:
     H22月瘤大小分别为(293t26.3)mm’、(547t58*)**3、(1207ti48)
     mm‘、门 59)mm3。肿瘤1长曲线结果表明,与pcDNA3.l对i组相
     比,MUC预防组 EMT6、H22肿瘤生长受到明显抑制(p<0.05人 GM-CSF
     佐剂有增强**CI抗肿瘤生长作用…叼刀5人瘤重和病理学检查两个指标,
     结果同样显示,MUC DNA疫苗及加 GM-CSF佐剂组与对照组的比较,抗
     *MT6、H22月瘤组织生长均有显著性差异(p<0*5)。
     杀伤实验结果表明,在不同的效靶比下,MUC ICTL对 EMT6靶细胞杀
     伤率不同,100:l时最高,达 68.5%。预防组、加佐剂组与对照组对 EMT6、
     4
    
     第凹车医大学博1:学位论义
     *22靶细胞的杀伤率相比均具有显著性差异(P<0刀5)。
     将 MUC基因疫苗免疫后小鼠血清作一抗,免疫组织化学法检测结果显
     示,人乳腺癌组织 MUC均呈阳性染色,证实其可在小鼠体内产生特异性的
     体液兔疫应答。结果表明外源目的基因在体内有效表达。
     淋巴细胞表型检测结果显示,与 pCDNA3入对照组相比,MUC基因疫苗
     预防组*m升高具有显著性差异(k0刀5),*04差别不显著:加*M.CSF
     佐剂预防组与单独 MUC 疫苗预防组相比,CD4 升高具有显著性差异
     (P叱刀5),**8差别不显著。
     不同肿瘤组织及其癌前病变组织中的 MUC的表达结果表明,乳腺癌、
     甲状腺癌、胃癌、肝癌组织与其良性病变组织及正常组织之间存在显著性差异
     o<0刀1X癌组织中**CI阳性表达者为深棕色及棕黄色颗粒。不同肿瘤组织
     分布定位不问。可位于细胞膜上、胞浆内及胞核。
     综卜
The survival rate of patients with cancer has improved, with the advent of effective anticancer treatments such as chemotherapy and radiotherapy. However, the majority of patients with metastatic disease will not be cured by these measures and will eventually die of their disease. New and more effective treating methods are required urgently. Differing from other measures, theraputic tumor vaccine could induce specific antitumour response by stimulating immune system. DNA vaccine is an attractive tool for vaccination studies because of its simple and unique given methods and substantial immune efficacy. It can induce not only specific
    
    
    antibodies production, but also specific cytotoxic T lymphocytes in animal experiments. This is the key point for prevention and treatment of cancer.
    Polymorphic epithelial mucin, encoded by the MUC1 gene, is a type I transmembrane protein, which presents at the apical surface of glandular epithelial cells. It is over-expressed and aberrantly glycosylated in many carcinomas resulting in an antigenically distinct molecule and a potential target for active specific immunotherapy. pcDNA3.1(+)vector, which has both CMV promoter and SV40 polyadenylation signal, can efficiently enhance transfection of foreign gene and then expression of recombinant protein. To study the specific anticancer role of MUC1 DNA as a vaccine, we constructed a eukaryotic expression vector pcDNA3.1(+)-MUCl containing the coding region of human full length MUC1 gene , and discussed immunological properties of MUC1 mucin and the efficacy tumour rejection induced by MUC1 DNA vaccine with and without GM-CSF adjuvant. Another, to study the changes expressions of MUC 1 in different tumor tissues and its clinical implications, a detailed immunohistochemical analysis of MUC1 protein expression was performed with MUC1 monoclonal antibody.
    First, The MUC 1 gene was obtained by cutting out the MUC 1 cDNA using Hindlll and Xhol and it was ligated into a clone vector pGEM-3zf. After identification and sequenthing , the gene was subcloned into eukaryotic expression vector pcDNA3.1(+). Restriction analysis and DNA sequencing showed that the recombinant plasmid contained the coding region of human full length MUC1 gene.The eukaryotic expression vector containing the MUC1 gene was succesfully constructed.
    Then, the recombinant pcDNA3.1(+)-MUCl was transfected into COS-7 cell by electroporation. After 56h transfection, Immunoflourescence and FCM were used to detect MUC1 gene expression in COS-7 cells. Fluorescence could been seen obviously in the transfected COS-7 cells membrane, whereas not in untransfected cells . Transfection experiment verified that MUC1 gene could be expressed in COS-7 cells and MUC 1 is a transmembrane protein molecule.
    
    Female BALB/c mice were immunized intramuscularly with 100 microgram MUC1 cDNA 3 times at 3-weekly intervals,. On 1, 3 and 5 days after Intra-muscular immunization, GM-CSF lOOul (lug/100ul) was given s.c. 3 times. Three weeks after the last immunization tumor challenge experiments were performed by using MUC1 expressing tumor cell line EMT6 ,H22. Tumor growth inhibition and body protection was observed two weeks later. Both humoral and cell-mediated MUC1-specific immune responses were detected with Immunohistochemical staining and 51Cr assays of CTLs, respectively. T-lymphocyte phenotype was detected by FCM. Histological analysis of tumor tissue was carried out with HE staining.
    After 45d of challenge experiments, the volume of EMT6 tumor in MUClcDNA, MUClcDNA+GM-CSF, pcDNA3.1(+), and PcDNA3.1(+)+GM-CSF group was (145?3.8)mm3, (250?4.3)mm\ (538?3.6)mm\ (596?8.2)mm3, respectively; the volume of H22 tumor in MUClcDNA, MUClcDNA +GM-CSF, pcDNA3.1 (+), pcDNA3.1 (+)+GM-CSF group was(293?6.3)mm3^ (547?8.6)mm3> (1207?48)mm\ (1220?59)mm3 , respectively. Compared with pcDNA3.1(+) control group, EMT6 tumor as well as H22 tumor growth in mice of MUClcDNA group were suppressed obviously(p<0.01). Co-delivery of GM-CSF adjuvant enhanced the antitumour immunotherapeutic effects.
引文
1 Acres B, Apostolopoulos V, Balloul JM, Wreschner D, Xing PX, Ali-Hadji D, Bizouarne N, Kieny MP, McKenzie IF. MUC1-specific immune responses in human MUC1 transgenic mice immunized with various human MUC1 vaccines. Cancer Immunol Immunother. 2000 ;48(10) :588-94
    2 Mukherjee P, Ginardi AR, Tinder TL, Sterner CJ, Gendler SJ. MUC 1-specific cytotoxic T lymphocytes eradicate tumors when adoptively transferred in vivo. Clin Cancer Res. 2001 ;7(3 Suppl):848s-855s
    3 Soares MM, Mehta V, Finn OJ. Three different vaccines based on the 140-amino acid MUC1 peptide with seven tandemly repeated tumor-specific epitopes elicit distinct immune effector mechanisms in wild-type versus MUC 1-transgenic mice with different potential for tumor rejection. J Immunol. 2001; 166(11) :6555-63
    4 Cebon JS,Cieschke GJ. Granulocy-te-macrophage colony-stimulating factor for cancer treatment. Oncology, 1994,51(2) : 177-188.
    5 Ou-Yang P, Hwang LH, Tao MH, Chiang BL, Chen DS. Co-delivery of GM-CSF gene enhances the immune responses of hepatitis C viral core protein-expressing DNA vaccine: Role of dendritic cells. J Med Virol 2002 Mar;66(3) :320-8
    6 Barouch DH, Santra S, Tenner-Racz K, Racz P, Kuroda MJ, Schmitz JE, Jackson SS, Lifton MA, Freed DC, Perry HC, Davies ME, Shiver JW, Letvin NL. Potent CD4+ T cell responses elicited by a bicistronic HIV-1 DNA vaccine expressing gp120 and GM-CSF. J Immunol 2002 Jan 15;168(2) :562-8
    7 Garcia VE,Jullien D,Song M,et al. IL-15 enchances the response of human gamma delta T cells to nonpeptide microbial antigens. J Immunol, 1998, (Correction of nonpetide) 160(9) : 4322-4329.
    8 Osaki T,Peron JM,Cai Q,et al.IFN-gamma-inducing factor/IL-18 administra-tion mediates IFN-gamma and IL-12-independent antitumor effects. J Immunol, 1998,160(4) : 1742-1749.
    9 Dranoff G. Cancer gene therapy: conne-cting basic reasearch with clinical inquiry. J Clin Oncol.1998,16: 2548-2556.
    10 Fossum B,01sen AG,Thorsby E,et al. CD8+ T cells from a patient with colon carcinoma,specific for a mutant p21-Ras-derived peptide (Gly13-7Asp) are cytotoxic towards a carcinoma cell line harbouing the same mutation. Cancer Immunol Immunother, 1995,40(3) : 165-172.
    11 Wagner U,Schlebush H,Kohler S,et al. Immunological response to the
    
    tumor-associated antigen CA125 in patients with advanced ovarian cancer induced by the murine monoclonal anti-idiotype vaccine AC A125. Hybridoma, 1997, 16(1) : 33-40.
    12 Benvenisty N, Reshef L. Direct introduction of genes into rats and expression of the genes. Proc Natl Acad Sci U S A. 1986;83(24) :9551-5
    13 Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247:1465-1749
    14 Tang DC, Devit M, Johnston SA. Genetic immunization is a simple method for elicting an immune response. Nature. 1992;356:152-154
    15 ULmer JB, Donnelly JJ, Paker SE, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science. 1993; 259:1745-1749
    16 ULmer JB, Deck RR, Dewitt CM, et al. Protective immunity by intramuscular injection of low-doses of influenzavirus DNA vaccines. Vaccine. 1994; 12: 1514-1544
    17 Wang B, Ugen K.E, Srikantan V, et al. Gene inoculation generates immune responses against human immunodeficiency virus type 1. Proc Natl Acad Sci USA. 1993; 90:4156-4160
    18 Major ME, Vitvitski L, Mink MA, et al. DNA-based immunization with chimeric vectors for the induction of immune responses against the hepatitis C virus nucleocapsid. J Virol. 1995; 69:5798-5805
    19 Ghiasi H, Cai S, Slanin S, et al. Vaccination of mice with herps simplex virus type 1 glycoprotein D DNA produces low levels of protection against lethal HSV-1 challenge. Antiviral Res. 1995;28:147-157
    20 Xiang ZQ, Spitalnik S, Tran M, et al. Vaccination with a plasmid vector carrying the rabies virus glycoprotein gene induces protective immunity against rabies virus. Virology. 1994; 199:132-140
    21 Yokoyama M, Zhang J, Witton JL. DNA immunization confers protection against lethal lymphocytic chorimeningitis virus infection. J Virol. 1995; 69:2684-2688
    22 MacGregor RR, Boyer JD, Ugen KE, et al. First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. J Infect Dis. 1998; 178(1) : 92-100
    23 Hoffman SL, Doolan DL, Sedegah M, et al. Toward clinical trials of DNA vaccines against malaria. Immunol Cell Biol. 1997 ; 75(4) : 376-81
    24 Wang R, Doolan DL, Le TP, et al. Induction of antigen-specfic cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science. 1998;282:476-480
    
    
    25 Barry MA, Barry ME, Johnston SA, et al. Production of monoclonial antibodies by genetic immunization. Bio Techniques. 1994;16:616-620
    26 Barry MA, Lai WC, Johnston SA, et al. Production against mycoplasma infection using expression library immunization. Nature. 1995;377:632-635
    27 nderson RG, Kamen BA, Rothberg KG, et al. Potocytosis: sequestration and transport of small molecules by caveolae. Science. 1992;255(5043) :410-411
    28 ULmer JB, Deck RR, Dewitt CM, et al. Generation of MHC class I-restricted cytotoxic T lymphocytes by expression of a viral protein in muscle cells: antigen presentation by non-muscle cells. Immunology. 1996;89(1) :59-67
    29 Vahlsing HL, Yankauckas MA, Sawdey M, et al. Immunization with plasmid DNA using a pneumatic gun. J Immunol Methods. 1994; 175(1) : 11-22
    30 Corr M, Lee DJ, Carson DA, et al. Gene vaccination with naked plasmid DNA: mechanism of CTL priming. J Exp Med. 1996; 184(4) : 1555-1560
    31 Michel ML, Davis HL, Schleef M, et al. DNA-mediated immunization to the hepatitis B surface antigen in mice: aspects of the humoral response mimic hepatitis B viral infection in human. Proc Natl Acad Sci USA. 1995;92:5307-5311
    32 Yewdell JW, Bennink JR. Cell biology of antigen processing and presentation to major histocompatibility complex class I molecule-restricted T lymphocytes. Adv Immunol. 1992; 52:1-123
    33 Rouse RJ, Nair SK, Lydy SL, et al.Rouse BT Induction in vitro of primary cytotoxic T-lymphocyte responses with DNA encodi ng herpes simplex virus proteins. J Virol 1994; 68(9) :5685-5689
    34 Ertl HC, Xiang ZQ. Genetic immunization. Viral Immunol. 1996; 9(1) : 1-9.
    35 McCluskie MJ, Davis HL. Novel strategies using DNA for the induction of mucosal immunity. Crit Rev Immunol, 1999, 19(4) :303-329
    36 Roman M, Elena MO, Goodman JS, et al. Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants. Nature Med,1997, 3(8) :849-854.
    37 Krieg AM, Yi AK, Matson S, et al. CpG, motifs in bacterial DNA trigger direct B-cell activation. Nature, 1995,374(6522) :546-549.
    38 Bright RK, Beames B, Shearer MH, et al. Protection against a lethal challenge with SV40-transformed cells by the direct injection of DNA-encoding SV40 large tumor antigen.Cancer Res , 1996;56(5) : 1126-1130
    39 Tan J, Yang NS, Turner JG, et al. Interleukin-12 cDNA skin transfection potentiates human papillomavirus E6 DNA vaccine-induced antitumor immune response. Cancer Gene Ther ,1999;6(4) :331-339
    40 Kim JJ,Trivedi NN,Wilson DM,et al.Molecular and immunological analysis of genetic prostate specific antigen(PSA) Vaccine .Oncogene, 1998,17(24) :
    
    3125-3135.
    41 Kamath AT, Feng CG, Macdonald M, et al. Differential protective efficacy of DNA vaccines expressing secreted proteins of Mycobacterium tuberculosis. Infect Immun, 1999,67:1702-1707.
    42 Eisenbraun MD, Fuller DH, Haynes JR, et al. Examination of parameters affecting the eliciting of humoral immune responses by particle bombardment-mediated genetic immunization. DNA Cell Biol. 1993;12(9) :791-797
    43 Davis HL, Weeratna R, Waldschmidt TJ, et al. CpG DNA is a potent enhancement of specific immunity in mice immunized with recombinant hepatitis B surface antigen . J Immunol 1998;160(2) :870-876
    44 Tanghe A, D'Souza S, Rosseels V,et al. Improved immunogenicity and protective efficacy of a tuberculosis DNA vaccine encoding Ag85 by protein boosting. Infect Immun, 2001,69(5) :3041-3047.
    45 Chow Y, Huang W, Cli W et al. Improvement of hepatitis B virus DNA vaccines by plasmids coexpressing hepatitis B surface antigen and interleakin-2. J virol. 1997;71(1) :169-178.
    46 Adriana W, Thomas C, Cockayne M et al. Cloning and expression of Treponema pallidum antigens in Escherichia Coli. Immunol .1988;140(2) :294-299.
    47 Kim J, Ayyavoo V, Bagarazzi M et al. In vivo engineering of a cellular immune response by coadministration of IL-12 expression vector with a DNA immunogen. J Immunol. 1997; 158(2) :816-826.
    48 Cebon JS.Cieschke GJ. Granulocy-te-macrophage colony-stimulating factor for cancer treatment. Oncology, 1994,51(2) : 177-188
    49 Geissler M, Gesien A, Tokushige K et al. Enhancement of celluar and humoral immune responses to hepatitis C virus core protein using DNA-based vaccines augmented with cytokine-expressing plasmids. J Immunol. 1997; 158(3) : 1231-1237.
    50 Xiang Z, Ertl H. Manipulation of the immune response to a plasmid-encoded viral antigen by coinoculation with plasmids expressing cytokines . Immunity. 1995 ;2(2) : 129-135.
    51 Gendler, S.J., Lancaster, C.A., Taylor-Papadimitriou, J., Duhig, T., Peat, N., Burchell, J., Pemberton, L., Lalani, E.N., and Wilson, D. Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J. Biol. Chem. 1990 , 265, 15286-15293
    52 Lan, M.S., Batra, S.K., Qi, W.N., Metzgar, R.S., and Hollingsworth, M.A. Cloning and sequencing of a human pancreatic tumor mucin cDNA. J. Biol. Chem. 1990,265, 15294-15299
    53 Ligtenberg, M.J., Vos, H.L., Gennissen, A.M., and Hilkens, J. Episialin, a
    
    carcinoma-associated mucin, is generated by a polymorphic gene encoding splice variants with alternative amino termini. J. Biol. Chem. 1990,265, 5573-5578
    54 Wreschner, D.H., Hareuveni, M., Tsarfaty, I., Smorodinsky, N., Horev, J., Zaretsky, J., Kotkes, P., Weiss, M., Lathe, R., Dion, A., and Keydar, I. Human epithelial tumor antigen cDNA sequences. Differential splicing may generate multiple protein forms. Eur. J. Biochem. 1990,189, 463-473
    55 Gum, J.R., Byrd, J.C., Hicks, J.W., Toribara, N.W., Lamport, D.T., and Kim, Y. S. Molecular cloning of human intestinal mucin cDNAs. Sequence analysis and evidence for genetic polymorphism. J. Biol. Chem. 1989,264, 6480-6487
    56 Gum, J.R., Hicks, J.W., Swallow, D.M., Lagace, R.L., Byrd, J.C., Lamport, D.T., Siddiki, B., and Kim, Y.S. Molecular cloning of cDNAs derived from a novel human intestinal mucin gene. Biochem. Biophys. Res. Commun. 1990, 171,407-415
    57 Porchet, N., Nguyen, V.C., Dufosse, J., Audie, J.P., Guyonnet-Duperat, V., Gross, M.S., Denis, C., Degand, P., Bernheim, A., and Aubert, J.P. Molecular cloning and chromosomal localization of a novel human tracheo-bronchial mucin cDNA containing tandemly repeated sequences of 48 base pairs. Biochem. Biophys. Res. Commun. 1991, 175,414-422
    58 Meezaman, D., Charles, P., Daskal, E., Polymeropoulos, M.H., Martin, B.M., and Rose, M.C. Cloning and analysis of cDNA encoding a major airway glycoprotein, human tracheobronchial mucin (MUC5) . J. Biol. Chem. 1994, 269,12932-12939
    59 Dufosse, J., Porchet, N., Audie, J.P., Guyonnet Duperat, V., Laine, A., Van-Seuningen, I., Marrakchi, S., Degand, P., and Aubert, J.P. Degenerate 87-base-pair tandem repeats create hydrophilic/hydrophobic alternating domains in human mucin peptides mapped to 11 p15. Biochem. J. 1993, 293, 329-337
    60 Toribara. N.W., Roberton, A.M., Ho, S.B., Kuo, W.L., Gum, E., Hicks, J.W., Gum, J.R., Jr., Byrd, J.C., Siddiki, B., and Kim, Y.S. Human gastric mucin. Identification of a unique species by expression cloning. J. Biol. Chem. 1993, 268, 5879-5885
    61 Bobek, L.A., Tsai, H., Biesbrock, A.R., and Levine, M.J. Molecular cloning, sequence, and specificity of expression of the gene encoding the low molecular weight human salivary mucin (MUC7) . J. Biol. Chem. 1993, 268, 20563-20569
    62 Shankar, V., Pichan, P., Eddy, R.L., Jr., Tonk, V., Nowak, N., Sait, S.N., Shows, T.B., Schultz, R.E., Gotway, G., Elkins, R.C., Gilmore, M.S., and Sachdev, G.P.
    
    Chromosomal localization of a human mucin gene (MUC8) and cloning of the cDNA corresponding to the carboxy terminus. Am. J. Respir. Cell. Mol. Biol 1997,16,232-241
    63 Lapensee, L., Paquette, Y., and Bleau, G. Allelic polymorphism and chromosomal localization of the human oviductin gene (MUC9) . Fertil. Steril. 1997,68,702-708
    64 Moniaux N, Escande F, Porchet N, Aubert JP, Batra SK. Structural organization and classification of the human mucin genes. Front Biosci 2001 Oct 1;6:D1192-206
    65 Baruch, A., Hartmann, M., Zrihan-Licht, S., Greenstein, S., Burstein, M., Keydar, I., Weiss, M., Smorodinsky, N., and Wreschner, D.H. Preferential expression of novel MUC1 tumor antigen isoforms in human epithelial rumors and their tumor-potentiating function. Int. J. Cancer .1997, 71, 741-749
    66 Spicer AP, Duhig T, Chilton BS, Gendler SJ. Analysis of mammalian MUC1 genes reveals potential functionally important domains. Mamm Genome 1995 Dec;6(12) :885-8
    67 Heukamp LC, van Hall T, Ossendorp F, Burchell JM, Melief CJ, Taylor-Papadimitriou J, Offringa R. Effective immunomerapy of cancer in MUC1-transgenic mice using clonal cytotoxic T lymphocytes directed against an immunodominant MUC1 epitope. J Immunother 2002 Jan-Feb;25(1) :46-56
    68 Acres B, Apostolopoulos V, Balloul JM, Wreschner D, Xing PX, Ali-Hadji D, Bizouame N, Kieny MP, McKenzie IF. MUC 1-specific immune responses in human MUC1 transgenic mice immunized with various human MUC1 vaccines. Cancer Immunol Immunother 2000 Jan;48(10) :588-94
    69 Ligtenberg, M.J., Buijs, F., Vos, H.L., and Hilkens, J. Suppression of cellular aggregation by high levels of episialin. Cancer Res. 1992, 52, 2318-2324
    70 Barnd, D.L., Lan, M.S., Metzgar, R.S., and Finn, O.J. Specific, major histocompatibility complex-unrestricted recognition of tumor-associated mucins by human cytotoxic T cells. Proc. Natl. Acad. Sci. USA .1989, 86, 7159-7163
    71 Agrawal, B., Reddish, M.A., and Longenecker, B.M. In vitro induction of MUC-1 peptide-specific type 1 T lymphocyte and cytotoxic T lymphocyte responses from healthy multiparous donors. J. Immunol. 1996, 157, 2089-2095
    72 Jerome, K.R., Domenech, N., and Finn, O.J. Tumor-specific cytotoxic T cell clones from patients with breast and pancreatic adenocarcinoma recognize EBV-immortalized B cells transfected with polymorphic epithelial mucin complementary DNA. J. Immunol. 1993, 151, 1654-1662
    73 Kim SK, Ragupathi G, Musselli C, Choi SJ, Park YS, Livingston PO.
    
    Comparison of the effect of different immunological adjuvants on the antibody and T-cell response to immunization with MUC1-KLH and GD3-KLH conjugate cancer vaccines. Vaccine. 1999 Nov 12;18(7-8) :597-603
    74 Apostolopoulos V, Pietersz GA, Xing PX, Lees CJ, Michael M, Bishop J, McKenzie IF. The immunogenicity of MUC1 peptides and fusion protein. Cancer Lett 1995 Mar 23;90(1) :21-6
    75 Kam JL, Regimbald LH, Hilgers JH, Hoffman P, Krantz MJ, Longenecker BM, Hugh JC. MUC1 synthetic peptide inhibition of intercellular adhesion molecule-1 and MUC1 binding requires six tandem repeats. Cancer Res 1998 Dec 1;58(23) :5577-81
    76 Graham RA, Burchell JM, Beverley P, Taylor-Papadimitriou J. Intramuscular immunisation with MUC1 cDNA can protect C57 mice challenged with MUC1-expressing syngeneic mouse tumour cells. Int J Cancer 1996 Mar 1;65(5) :664-70
    77 Moller H, Serttas N, Paulsen H, Burchell JM, Taylor-Papadimitriou J; Bernd M. NMR-based determination of the binding epitope and conformational analysis of MUC-1 glycopeptides and peptides bound to the breast cancer-selective monoclonal antibody SM3. Eur J Biochem , 2002 ; 269(5) : 1444-55
    78 Miles DW, Taylor-Papadimitriou J. Therapeutic aspects of polymorphic epithelial mucin in adenocarcinoma. Pharmacol Ther, 1999;82(1) :97-106
    79 Gendler SJ, Lancaster CA, Taylor-Papadimitriou J, Duhig T, Peat N, Burchell J, Pemberton L, Lalani EI-N, Wilson D. Molecular Cloning and Expression of Human Tumor-associated Polymorphic Epithelial Mucin . J.Biol Chem, 1990; 265(25) : 15286-15293
    80 Mukherjee P, Ginardi AR, Tinder TL, Sterner CJ, Gendler SJ. MUC1-specific cytotoxic T lymphocytes eradicate tumors when adoptively transferred in vivo. Clin Cancer Res ,2001 ;7(3 Suppl):848s-855s.
    81 Davis L, Kuehl M, Battey J. Basic methods in molecular biology (2nd edition). Norwalk,Connecticut: Appleton & Lange, 1993:237-245,612-624.
    82 Snijdewint FG, von Mensdorff-Pouilly S, Karuntu-Wanamarta AH, Verstraeten AA, Livingston PO, Hilgers J, Kenemans P. Antibody-dependent cell-mediated cytotoxicity can be induced by MUC1 peptide vaccination of breast cancer patients. Int J Cancer ,2001;93(1) :97-106
    83 Graham RA, Burchell JM, Beverley P, Taylor-Papadimitriou J. Intramuscular immunisation with MUC1 cDNA can protect C57 mice challenged with MUC1-expressing syngeneic mouse tumour cells. Int J Cancer, 1996 ; 65(5) : 664-70
    84 Johnen H, Kulbe H, Pecher G. Long-term tumor growth suppression in mice
    
    immunized with naked DNA of the human tumor antigen mucin (MUC1) . Cancer Immunol Immunother, 2001;50(7) :356-60
    85 Soares MM, Mehta V, Finn OJ. Three different vaccines based on the 140-amino acid MUC1 peptide with seven tandemly repeated tumor-specific epitopes elicit distinct immune effector mechanisms in wild-type versus MUC1-transgenic mice with different potential for tumor rejection. J Immunol ,2001;166(11) :6555-63
    86 Musselli C, Ragupathi G, Gilewski T, Panageas KS, Spinat Y, Livingston PO. Reevaluation of the cellular immune response in breast cancer patients vaccinated with MUC1. Int J Cancer, 2002 ;97(5) :660-7
    87 Fong ZH, Huangpu YM. Medical molecular biology . WuHan: Press of WuHan, 1998:265-267
    88 Scholl SM, Balloul JM, Le Goc G, Bizouarne N, Schatz C, Kieny MP, von Mensdorff-Pouilly S, Vincent-Salomon A, Deneux L, Tartour E, Fridman W, Pouillart P, Acres B. Recombinant vaccinia virus encoding human MUC1 and IL2 as immunotherapy in patients with breast cancer. J Immunother 2000 Sep-Oct;23(5) :570-80
    89 Musselli C, Ragupathi G, Gilewski T, Panageas KS, Spinat Y, Livingston PO. Reevaluation of the cellular immune response in breast cancer patients vaccinated with MUC1. Int J Cancer 2002 Feb 10;97(5) :660-7
    90 Van den Eynde B, Van der Bruggen P. T cell-defined tumor antigens. Curr Opin Immunol 1997;9:684-693
    91 Hung K, Hayashi R, Lafond-Walker A et al. The central role of CD4+ T cells in the antitumor immune response. J Exp Med 1998;188:2357-2368
    92 Pardoll DM, Topalian S. The role of CD4+ T cell responses in antitumor immunity. Curr Opin Immunol 1998; 10:588-594
    93 von Mehren M, Arlen P, Gulley J, Rogatko A, Cooper HS, Meropol NJ, Alpaugh RK, Davey M, McLaughlin S, Beard MT, Tsang KY, Schlom J, Weiner LM. The influence of granulocyte macrophage colony-stimulating factor and prior chemotherapy on the immunological response to a vaccine (ALVAC-CEA B7. 1) in patients with metastatic carcinoma. Clin Cancer Res 2001 May;7(5) : 1181-91
    94 Ou-Yang P, Hwang LH, Tao MH, Chiang BL, Chen DS. Co-delivery of GM-CSF gene enhances the immune responses of hepatitis C viral core protein-expressing DNA vaccine: Role of dendritic cells. J Med Virol 2002 Mar;66(3) :320-8
    95 Barouch DH, Santra S, Tenner-Racz K, Racz P, Kuroda MJ, Schmitz JE, Jackson SS, Lifton MA, Freed DC, Perry HC, Davies ME, Shiver JW, Letvin
    
    NL. Potent CD4+ T cell responses elicited by a bicistronic HIV-1 DNA vaccine expressing gp120 and GM-CSF. J Immunol 2002 Jan 15;168(2) :562-8
    96 Moore AC, Kong WP, Chakrabarti BK, Nabel GJ. Effects of antigen and genetic adjuvants on immune responses to human immunodeficiency virus DNA vaccines in mice. J Virol 2002 Jan;76(1) :243-50
    97 Rahn JJ, Dabbagh L, Pasdar M, Hugh JC . The importance of MUC1 cellular localization in patients with breast carcinoma: an immunohistologic study of 71 patients and review of the literature. Cancer 2001 ;91(11) : 1973-82
    98 von Mensdorff-Pouilly S, Snijdewint FG, Verstraeten AA, Verheijen RH, Kenemans P. Human MUC1 mucin: a multifaceted glycoprotein. Int J Biol Markers.2000; 15(4) :343-56
    99 Lalani EI-N, Berdichevsky F, Boshell M, Shearer M, Wilson D, Stauss H, Gendler SJ , Taylor-Papadimitriou J. Expression of the gene coding for a human mucin in mouse mammary tumor cell can affect their tumorigenicity. J. Biol Chem, 1991;266(23) : 15420-15426
    100 Graham RA, Burchell JM, Taylor-Papadimitriou J. The polymorphic epithelial mucin: potential as an immunogen for a cancer vaccine. Cancer Immunol Immunother 1996 Feb;42(2) :71-80
    101 Barratt-Boyes SM. Making the most of mucin: a novel target for tumor immunotherapy. Cancer Immunol Immunother 1996 Nov;43(3) : 142-51
    102 von Mensdorff-Pouilly S, Snijdewint FG, Verstraeten AA, Verheijen RH, Kenemans P. Human MUC1 mucin: a multifaceted glycoprotein. Int J Biol Markers 2000 Oct-Dec;15(4) :343-56
    103 Weiss M, Baruch A, Keydar I, Wreschner DH. Preoperative diagnosis of thyroid papillary carcinoma by reverse transcriptase polymerase chain reaction of the MUC1 gene. Int J Cancer 1996 Mar 28;66(1) :55-59
    104 Bieche I, Ruffet E, Zweibaum A, Vilde F, Lidereau R, Franc B. MUC1 mucin gene, transcripts, and protein in adenomas and papillary carcinomas of the thyroid. Thyroid 1997 Oct;7(5) :725-31
    105 Lee HS, Lee HK, Kim HS, Yang HK, Kim YI, Kim WH. MUC1, MUC2, MUC5AC, and MUC6 expressions in gastric carcinomas: their roles as prognostic indicators. Cancer 2001 Sep 15;92(6) :1427-34
    106 Utsunomiya T, Yonezawa S, Sakamoto H, Kitamura H, Hokita S, Aiko T, Tanaka S, Irimura T, Kim YS, Sato E. Expression of MUC1 and MUC2 mucins in gastric carcinomas: its relationship with the prognosis of the patients. Clin Cancer Res 1998 Nov;4(11) :2605-14
    107 Sasaki M, Nakanuma Y. Expression of mucin core protein of mammary type in primary liver cancer. Hepatology 1994 Nov;20(5) :1192-7
    
    
    108 Takao S, Uchikura K, Yonezawa S, Shinchi H, Aikou T. Mucin core protein expression in extrahepatic bile duct carcinoma is associated with metastases to the liver and poor prognosis. Cancer 1999 Nov 15;86(10) :1966-75
    109 Cao Y, Karsten U, Otto G, Bannasch P. Expression of MUC1, Thomsen-Friedenreich antigen, Tn, sialosyl-Tn, and alpha2,6-linked sialic acid in hepatocellular carcinomas and preneoplastic hepatocellular lesions. Virchows Arch 1999 Jun;434(6) :503-9
    110 Johnen H, Kulbe H, Pecher G. Long-term tumor growth suppression in mice immunized with naked DNA of the human tumor antigen mucin (MUC1) . Cancer Immunol Immunother 2001 Sep;50(7) :356-60
    111 Kondo K, Kohno N, Yokoyama A et al. Decreased MUC1 expression induces E-cadherin-mediated cell adhesion of breast cancer cell lines. Cancer Res,1998; 58(9) : 2014-2019
    112 Yu CJ, Shew JY, Shun CT et al. Quantitative analysis of mRNA encoding MUC1, MUC2, and MUC5AC genes: a correlation between specific mucin gene expression and sialomucin expression in non-small cell lung cancer. Am J Respir Cell Mol Biol, 1998; 18(5) : 643-652
    113 Reddish M, MacLean GD, Koganty RR et al. Anti-MUC1 class I restricted CTLs in metastatic breast cancer patients immunized with a synthetic MUC1 peptide. Int J Cancer, 1998 ; 76(6) : 817-823

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700