淋巴细胞趋化因子基因修饰的小鼠肝癌树突状细胞融合瘤苗抗肿瘤的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原发性肝癌(HCC hepatocellular carcinoma)是我国最常见的恶性肿瘤之一,不但发病率及病死率极高,而且治疗困难,预后极差。目前肝癌的治疗主要采用以手术治疗为主的综合治疗方案。虽然医学影像技术的快速发展、外科手术技术及围手术期管理水平的不断提高、肝移植临床逐步推广应用以及不能切除肝癌的缩小后切除使肝癌的早期诊断率及手术切除率有了明显的提高,但术后较高的复发及转移率是影响手术治疗中、远期效果的主要原因。迄今为止肝癌的复发及转移仍无有效的预防和治疗方法,如何进一步深化肝癌生物学特性研究,积极寻找有效的预防和治疗肝癌复发和转移的措施是肝癌研究的一个重要目标。在现代分子生物学和基因工程技术飞速发展的推动下,以免疫治疗为基础发展而来的生物治疗日益受到重视,显示良好的应用前景,可望成为除手术、放疗和化疗这三大治疗模式之外的肝癌治疗第四模式。
     研究表明,树突状细胞(DC dendritic cell)是目前已知最强有力的专职抗原提呈细胞,不但表达丰富的MHC(MHC major histocompatibility complex)Ⅰ、Ⅱ类分子、共刺激分子及粘附分子,而且高水平分泌IL-1(interleulin-1),TNF-α(tumor necrosis factor-α),IL-12等细胞因子,启动T细胞介导的免疫应答特别是杀伤性T淋巴细胞(CTL cytotoxic Tlymphocyte)介导的免疫反应,在机体抗肿瘤免疫中发挥重要作用。以肿瘤抗原体外致敏DC,使之持续高水平表达肿瘤抗原表位,然后将负载有肿瘤抗原的致敏DC回输至荷瘤机体,通过MHC Ⅰ、Ⅱ类分子途径交叉递呈抗原,以有效地诱导机体产生特异及非特异性的抗肿瘤免疫应答,是目前肿瘤治疗的一条有效途径。随着体外大量培养DC方法的成熟,以DC为基础的抗肿瘤疫苗正成为研究的热点。目前对DC进行处理,使其表达肿瘤抗原的常用方法有:肿瘤特异性抗原基因修饰,肿瘤抗原肽或粗提物冲击,肿瘤DNA或mRNA冲击。虽然在动物及临床试验中取得了一定的治疗效果,但由于目前明确鉴定的肿瘤特异性抗原数量较少,抗原肽及核酸冲击的稳定性差、表达时间短以及致自身免疫性疾病可能等限制了上述方法的临床应用。因此,如何进一步研究加强机体抗肿瘤免疫
Lymphotactin enhances the antitumor efficacy of dendritoma formed bydendritic cells and mouse hepatocellular carcinoma cellsDepartment of Hepatobiliary Pancreatic Surgery. Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine,Zhejiang University, ChinaM.D Student: Zhang HaoSupervisor: Pro. Zheng Shu-senHepatocellular carcinoma (HCC) is one of the most common malignances in our country. The incidence and mortality rates are high, the treatment is challenging, and the prognosis is still poor. Now the treatment option is multimodality therapy in which surgical resection plays the most important role. But the high incidence of recurrence and metastases remains a critical issue other than the improvements in radiological diagnosis, surgical techniques, perioperative management and the availability of downstaging resection and liver transplantation which all have contributed to increase the resectability rates, we still lack of definitive method to prevent and treat recurrences and metastases of HCC. So it is the key role to find a novel method to overcome this obstacle. Following the quick development of modern molecular biology and gene engineering. Biotherapies based on the development of immunology showed promising results, and gained popular recognition. As we attain a deeper understanding of the characteristics of HCC, we may be more powerful to exploit the biofeature and immune response of HCC and use it as a platform on which to build a successful therapeutic strategy to fight cancer. The increasing knowledge of the mechanisms involved in immune reactions against cancer cells has lead to the development of experimental and clinical immunotherapeutic approaches for the treatment of cancer patients and the prevention of cancer recurrence. Biotherapies recently attracting much more attention and would probably be the forth therapy model except operation, radiation and chemotherapy.Dendritic cell (DC) is the most potent antigen-presenting cell at present, which play a key role in the initiation of immune response. These cells are considered promising tools and targets for immunotherapy. They possess an extraordinary capacity to capture and process
    antigen and contain all that is needed to stimulate T cell immunity, including high level of major histocompatibility complex, costimulatory molecules, and adhesion molecules as well as a variety of immunologically important cytokines such as IL-1. TNF-a, and IL-12. These properties, coupled with the fact that it is now possible to generate, ex vivo, large numbers of functional DCs from a patient's peripheral blood monocytes or CD34 haemopoietic stem cells, have led to considerable interest in the use of dendritic cell vaccines as a means to induce antitumour immunity. There were different strategies that had been applied in animal experiments or clinical trials to deliver antigen to DC. such as pulsing synthetic or eluted peptides, transfection with cDNA or RNA encoding known TAA, loading tumor lysate or tumor RNA. However, these approaches are currently limited for clinical application, as few human tumor rejection antigens have been identified. The high polymorphism of the human HLA system has also made it difficult to identify tumor-associated peptides as a vaccine for cancer therapy. In addition, using tumor lysate or DNA/RNA loading method creates the risk of inducing immune responses against numerous self-antigens shared with normal cells.Gong et al first used bone marrow derived DCs as fusion partners for tumor cells in 1997, which broadened the vision of the vaccine research. Kugler et al generated hybrids of autologous tumor cells and allogeneic DCs using electrofusion techniques in 2000, which showed that the hybrid cell vaccination was a safe and effective immune therapy for human metastatic renal cell carcinoma. These promoted the possibility of treatment common human tumours with dendritoma. To date there has seldom reported research on DC fusion immunotherapy for HCC, and has no related resea
引文
1. Bosch FX, Ribes J. Borras J. Epidemiology of primary liver cancer. Semin Liver Dis 1999; 19:271-85.
    2. El-Serag HB, Mason AC. Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med 1999; 340:745-50.
    3. Kew MC. Epidemiology of hepatocellular carcinoma. Toxicology 2002; 181-182:35-8.
    4. Rilling WS, Drooz A. Multidisciplinary management of hepatocellular carcinoma. J Vasc Interv Radiol 2002:13:S259-63.
    5. Marin-Hargreaves G. Azoulay D. Bismuth H. Hepatocellular carcinoma: surgical indications and results. Crit Rev Oncol Hematol 2003;47:13-27.
    6. Colombo M. Treatment of hepatocellular carcinoma. Antiviral Res 2001 ;52:209-l 5.
    7. Kiyosawa K, Umemura T. Ichijo T, et al. Hepatocellular carcinoma: recent trends in Japan. Gastroenterology 2004:127:S 17-26.
    8. Yeh CN, Chen MR Lee WC, Jeng LB. Prognostic factors of hepatic resection for hepatocellular carcinoma with cirrhosis: univariate and multivariate analysis. J Surg Oncol 2002;81:195-202.
    9. Tung-Ping Poon R, Fan ST. Wong J. Risk factors, prevention, and management of postoperative recurrence after resection of hepatocellular carcinoma. Ann Surg 2000;232:10-24.
    10. Imamura H, Matsuyama Y, Tanaka E, et al. Risk factors contributing to early and late phase intrahepatic recurrence of hepatocellular carcinoma after hepatectomy. J Hepatol 2003;38:200-7.
    11. Hanazaki K, Kajikawa S, Shimozawa N, et al. Survival and recurrence after hepatic resection of 386 consecutive patients with hepatocellular carcinoma. J Am Coll Surg 2000;191:381-8.
    12. Bubenik J. Tumour MHC class I downregulation and immunotherapy (Review). Oncol Rep 2003; 10:2005-8.
    13. Gabrilovich D, Pisarev V. Tumor escape from immune response: mechanisms and targets of activity. Curr Drug Targets 2003;4:525-36.
    14. Hsieh CL, Chen DS, Hwang LH. Tumor-induced immunosuppression: a barrier to immunotherapy of large tumors by cytokine-secreting tumor vaccine. Hum Gene Ther 2000;11:681-92.
    15. Pawelec G. Tumour escape from the immune response: the last hurdle for successful immunotherapy of cancer? Cancer Immunol Immunother 1999;48:343-5.
    16. Pawelec G. Tumour escape from the immune response. Cancer Immunol Immunother 2004;53:843.
    17. Banchereau J. Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392:245-52.
    18. Steinman RM. Pope M Exploiting dendritic cells to improve vaccine efficacy. J Clin Invest 2002:109:1519-26.
    19. Zitvogel L. Angevin E, Tursz T. Dendritic cell-based immunotherapy of cancer. Ann Oncol 2000; 11 Suppl 3:199-205.
    20. Homma S. Toda G Gong J. Kufe D, Ohno T. Preventive antitumor activity against hepatocellular carcinoma (HCC) induced by immunization with fusions of dendritic cells and HCC cells in mice. J Gastroenterol 2001 ;36:764-71.
    21. Xia DJ. Zhang WP, Zheng S, et al. Lymphotactin cotransfection enhances the therapeutic efficacy of dendritic cells genetically modified with melanoma antigen gpl00. Gene Ther2002;9:592-601.
    22. Ju DW, Tao Q, Cheng DS, et al. Adenovirus-mediated lymphotactin gene transfer improves therapeutic efficacy of cytosine deaminase suicide gene therapy in established murine colon carcinoma. Gene Ther 2000;7:329-38.
    23. Zhang H, Zheng SS, Jiang GP, Zhou L, Xie HY. [Antitumor effect of immunizations with fusions of dendritic and hepatocellular carcinoma cells in mice.]. Zhonghua Gan Zang Bing Za Zhi 2004; 12:648-51.
    24. Wang J, Saffold S, Cao X, Krauss J, Chen W. Eliciting T cell immunity against poorly immunogenic tumors by immunization with dendritic cell-tumor fusion vaccines. J Immunol 1998; 161:5516-24.
    25. Cairns CM, Gordon JR, Li F, Baca-Estrada ME, Moyana T, Xiang J. Lymphotactin expression by engineered myeloma cells drives tumor regression: mediation by CD4+ and CD8+ T cells and neutrophils expressing XCR1 receptor. J Immunol 2001;167:57-65.
    26. Gong J. Koido S, Chen D, et al. Immunization against murine multiple myeloma with fusions of dendritic and plasmacytoma cells is potentiated by interleukin 12. Blood 2002:99:2512-7.
    27. Beckebaum S. Zhang X, Chen X. et al. Increased levels of interleukin-10 in serum from patients with hepatocellular carcinoma correlate with profound numerical deficiencies and immature phenotype of circulating dendritic cell subsets. Clin Cancer Res 2004:10:7260-9.
    28. Ninomiya T. Akbar SM. Masumoto T. Horiike N. Onji M. Dendritic cells with immature phenotype and defective function in the peripheral blood from patients with hepatocellular carcinoma. J Hepatol 1999;31:323-31.
    29. Zhou XD. Recurrence and metastasis of hepatocellular carcinoma: progress and prospects. Hepatobiliary Pancreat Dis Int 2002; 1:35-41.
    30. Sugano Y, Matsuzaki K, Tahashi Y, et al. Distortion of autocrine transforming growth factor beta signal accelerates malignant potential by enhancing cell growth as well as PAI-1 and VEGF production in human hepatocellular carcinoma cells. Oncogene 2003;22:2309-21.
    31. Deng XL, Chen W, Cai MY, Wei DP. Expression of class I MHC molecule, HSP70 and TAP in human hepatocellular carcinoma. World J Gastroenterol 2003;9:1853-5.
    32. Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 2004;4:941-52.
    33. Lanzavecchia A, Sallusto F. Regulation of T cell immunity by dendritic cells. Cell 2001;106:263-6.
    34. Mellman I. Steinman RM. Dendritic cells: specialized and regulated antigen processing machines. Cell 2001 ;106:255-8.
    35. Lanzavecchia A, Sallusto F. Lead and follow: the dance of the dendritic cell and T cell. Nat Immunol 2004;5:1201-2.
    36. Schuler G Schuler-Thurner B, Steinman RM. The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 2003;l 5:138-47.
    37. Akiyama Y, Watanabe M, Maruyama K, Ruscetti FW, Wiltrout RH, Yamaguchi K. Enhancement of antitumor immunity against B16 melanoma tumor using genetically modified dendritic cells to produce cytokines. Gene Ther 2000;7:2113-21.
    38. Kirk CJ. Mule JJ. Gene-modified dendritic cells for use in tumor vaccines. Hum Gene Ther 2000; 11:797-806.
    39. Lundqvist A, Pisa P. Gene-modified dendritic cells for immunotherapy against cancer. Med Oncol 2002:19:197-211.
    40. Morse MA. Clay T. Colling K. Lyerly HK. Preparation of peptide-loaded dendritic cells for cancer immunotherapy. Mol Biotechnol 2003:25:95-9.
    41. Yamanaka R. Abe T. Yajima N. et al. Vaccination of recurrent glioma patients withi tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br J Cancer 2003;89:l 172-9.
    42. Fukui M, Nakano-Hashimoto T. Okano K, et al. Therapeutic effect of dendritic cells loaded with a fusion mRNA encoding tyrosinase-related protein 2 and enhanced green fluorescence protein on B16 melanoma. Tumour Biol 2004;25:252-7.
    43. Lee JM, Mahtabifard A, Yamada R, Crystal RG, Korst RJ. Adenovirus vector-mediated overexpression of a truncated form of the p65 nuclear factor kappa B cDNA in dendritic cells enhances their function resulting in immune-mediated suppression of preexisting murine tumors. Clin Cancer Res 2002;8:3561-9.
    44. Kowalczyk DW, Wysocki PJ, Mackiewicz A. Cancer immunotherapy using cells modified with cytokine genes. Acta Biochim Pol 2003;50:613-24.
    45. Bedrosian I, Mick R, Xu S, et al. Intranodal administration of peptide-pulsed mature dendritic cell vaccines results in superior CD8+ T-cell function in melanoma patients. J Clin Oncol 2003;21:3826-35.
    46. Neves AR, Ensina LF, Anselmo LB, et al. Dendritic cells derived from metastatic cancer patients vaccinated with allogeneic dendritic cell-autologous tumor cell hybrids express more CD86 and induce higher levels of interferon-gamma in mixed lymphocyte reactions. Cancer Immunol Immunother 2005;54:61-6.
    47. Gong J, Chen D, Kashiwaba M, Kufe D. Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells. Nat Med 1997;3:558-61.
    48. Kugler A, Stuhler G, Walden P, et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat Med 2000;6:332-6.
    49. Lundqvist A, Palmborg A, Bidla G, Whelan M, Pandha H. Pisa P. Allogeneic tumor-dendritic cell fusion vaccines for generation of broad prostate cancer T-cell responses. Med Oncol 2004;21:155-65.
    50. Avigan D. Vasir B, Gong J. et al. Fusion cell vaccination of patients with metastatic breast and renal cancer induces immunological and clinical responses. Clin Cancer Res 2004:10:4699-708.
    51. Haenssle HA. Krause SW. Emmert S. et al. Hybrid cell vaccination in metastatic melanoma: clinical and immunologic results of a phase Ⅰ/Ⅱ study. J Immunother 2004;27:147-55.
    52. Trefzer U, Walden P. Hybrid-cell vaccines for cancer immune therapy. Mol Biotechnol 2003; 25:63-9.
    53. Balkwill F. Chemokine biology in cancer. Semin Immunol 2003; 15:49-55.
    54. Balkwill F. Cancer and the chemokine network. Nat Rev Cancer 2004;4:540-50.
    55. Gerard C, Rollins BJ. Chemokines and disease. Nat Immunol 2001; 2:108-15.
    56. Moser B, Willimann K. Chemokines: role in inflammation and immune surveillance. Ann Rheum Dis 2004;63 Suppl 2:ⅱ84-ⅱ89.
    57. Chada S, Ramesh R, Mhashilkar AM. Cytokine- and chemokine-based gene therapy for cancer. Curr Opin Mol Ther 2003;5:463-74.
    58. Schwarz MK, Wells TN. New therapeutics that modulate chemokine networks. Nat Rev Drug Discov 2002;1:347-58.
    59. Hedrick JA, Zlotnik A. Lymphotactin: a new class of chemokine. Methods Enzymol 1997;287:206-15.
    60. Kuloglu ES, McCaslin DR, Kitabwalla M. Pauza CD, Markley JL, Volkman BF. Monomeric solution structure of the prototypical 'C' chemokine lymphotactin. Biochemistry 2001; 40:12486-96.
    61. Emtage PC, Wan Y, Hitt M, et al. Adenoviral vectors expressing lymphotactin and interleukin 2 or lymphotactin and interleukin 12 synergize to facilitate tumor regression in murine breast cancer models. Hum Gene Ther 1999;10:697-709.
    62. Ferlazzo G, Tsang ML, Moretta L, Melioli G, Steinman RM, Munz C. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med 2002;195:343-51.
    63. Cao H, Koehler DR, Hu J. Adenoviral vectors for gene replacement therapy. Viral Immunol 2004;17:327-33.
    64. Bonnet MC. Tartaglia J, Verdier F, et al. Recombinant viruses as a tool for therapeutic vaccination against human cancers. Immunol Lett 2000:74:11-25.
    65. Inaba K. Steinman RM. Pack MW. et al. Identification of proliferating dendritic cell precursors in mouse blood. J Exp Med 1992:175:1157-67.
    66. Goxe B. Latour N, Chokri M. Abastado JP. Salcedo M. Simplified method to generate large quantities of dendritic cells suitable for clinical applications. Immunol Invest 2000:29:319-36.
    67. Sato K, Nagayama H. Tadokoro K. Juji T, Takahashi TA. Interleukin-13 is involved in functional maturation of human peripheral blood monocyte-derived dendritic cells. Exp Hematol 1999;27:326-36.
    68. Romani N, Reider D, Heuer M. et al. Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J Immunol Methods 1996:196:137-51.
    69. Gieseler R, Heise D, Soruri A, Schwartz P, Peters JH. In-vitro differentiation of mature dendritic cells from human blood monocytes. Dev Immunol 1998;6:25-39.
    70. Wong EC, Maher VE, Hines K, et al. Development of a clinical-scale method for generation of dendritic cells from PBMC for use in cancer immunotherapy. Cytotherapy 2001;3:19-29.
    71. Liu Y, Zhang W, Chan T, Saxena A, Xiang J. Engineered fusion hybrid vaccine of IL-4 gene-modified myeloma and relative mature dendritic cells enhances antitumor immunity. Leuk Res 2002;26:757-63.
    72. Trevor KT, Cover C, Ruiz YW, et al. Generation of dendritic cell-tumor cell hybrids by electrofusion for clinical vaccine application. Cancer Immunol Immunother 2004;53:705-14.
    73. Siders WM, Vergilis KL, Johnson C, Shields J, Kaplan JM. Induction of specific antitumor immunity in the mouse with the electrofusion product of tumor cells and dendritic cells. Mol Ther 2003;7:498-505.
    74. Li J, Holmes LM, Franek KJ, Burgin KE. Wagner TE, Wei Y. Purified hybrid cells from dendritic cell and tumor cell fusions are superior activators of antitumor immunity. Cancer Immunol Immunother 2001 ;50:456-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700