利用人HLA Ⅰ类分子表型特异性细胞观察恶性疟原虫CTL表位的内源递呈及其与Ⅰ类分子的交连反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Endogenous and Crossreative Presentations of Plasmoudm Falciparum CTL Epitopes in Human HLA Subtypes Specific Cell Lines
  • 作者:唐玉阳
  • 论文级别:博士
  • 学科专业名称:免疫学
  • 学位年度:2000
  • 导师:朱立平 ; 王恒
  • 学科代码:100102
  • 学位授予单位:中国协和医科大学
  • 论文提交日期:2000-06-01
摘要
杀伤性T淋巴细胞(CTL)是红细胞前期恶性疟原虫免疫防护的关键环节。有效的CTL反应可以阻断疟原虫的生活周期,是目前极受关视的疟疾疫苗设计方案。HLA Ⅰ类分子的多态性限制了旨在刺激产生CTL的免疫治疗工作对人群的保护范围,使抗疟疫苗的研究明显复杂化。CTL多表位重组疫苗的构建是目前解决HLA Ⅰ类分子多态性一个较好的途径。当前恶性疟CTL疫苗研究所面临的另一个问题是缺乏合适的动物模型。开展有关的体外研究,对疫苗潜在的免疫原性进行体外预测,不仅是必然的,而且是可能的。
     近年来的研究发现一些HLA Ⅰ类分子结合肽的锚定位点的氨基酸残基具有重叠性,这些锚定残基被称为HLA分子结合肽基序(Motif),具有相同肽基序一类HLA Ⅰ类分子组成一个HLA Ⅰ类分子结合超亚型(Supertype),现有的几乎所有的HLA-A和-B分子都被包括在九个这样的超亚型中。每个结合超亚型对应的共同的肽基序则称为共用肽段(supermotif)。含有相应共用肽段的肽常可与同一结合超亚型的不同HLA Ⅰ发生交连反应。HLA结合亚型和共用肽段的发现,为克服MHC多态性的CTL疫苗设计提供了一个崭新的设想,即通过寻找能与多个HLA Ⅰ类分子结合的表位,代替上述常见多表位疫苗的研究。从而避免了后者繁琐复杂的工作,提高了工作效率,是CTL疫苗研究的新方向。
     本实验所选用两个恶性疟抗原CTL表位TR和SH,均来自非洲株系,其中TR来自thrombspondin相关的尚未命名蛋白(TRAP),为HLA-2.1限制;SH来源于子孢子肝细胞结合抗原1(SHEBA),己证实与HLA-B51有高亲和力。上述两个恶性疟CTL表位分别含有HLA-A2和HLA-B7超亚型的共用肽段。
     将对应于以上表位的DNA序列设计成微型基因tr和sh。并将其分别克隆到真核细胞表达载体pcDNA3.1/Hygro(+),构建两个重组质粒pcDNA3.1/tr和
CD8+ cytotoxic T lymphocytes (CTL) play a critical role in eradicating Plasmodium falciparum at the pre-erythrocyte stage of the parasite infection. Many interests have been transferred to CTL vaccine design aimed at blocking the pathogen life cycle. The efforts to develop a Plasmodium falciparum CTL vaccine has been complicated by the polymorphism of MHC class I molecules. It had been suggested that to construct a multiple CTL epitope vaccine would be helpful to solve the problem. Owing to the lack of suitable and affordable animal model for Plasmodium falciparm researches at present, a preliminary in vitro assay to predicate recombinant vaccine immunogenicity would be helpful and feasible.
    Recent researches indicated that some HLA class I molecules peptides showed overlapping peptide ligand anchor residues, the anchor residues is known as the peptide-binding motif. The HLA molecules that are characterized by same or similar peptide-binding motifs were defined as a supertype. It appears that all known HLA class I A and B alleles might be classified in one of nine supertypes. The peptide-binding motif shared by one supertypes HLA class I alleles was defined as supermotif. It had been demonstrated that the existence of broadly crossreactive peptides in a supertype HLA alleles. The definition of supermotif and supertype, has important implication for Plasomodium vaccine design. That is, instead of developing, a single peptide entity for each of HLA alleles, to attempt the identification of epitopes capable of binding multiple HLA type and avoid the complexities linked to development of a vaccine comprising a large number of epitopes.
引文
1. Nardin EH, Nussenzwelig RS. T cell responses to pre-erythrocyic stages of malaria: role in protection and vaccine development against pre-erythrocytic stages. Annual Review of Immunology 1992,11: 687-727
    
    2. Gilbert SC, Hill AVS. Protein particle vaccines for malaria. Parasitlogy Today 1997, 13: 302-306
    
    3. Nussenzweig V, Nussenzweig RS. Rationale for the development of an engineered sporozoite malaria vaccine. Adv Immunol 1989,45:283
    
    4. Shofield L, Villaquiran J, Ferreira A, et al. Gamma interferon, CD8+ T cells and antibodies are required for immunity to malaria sporozoites. Nature 1987,330:664.
    
    5. Weiss WR, Sedegah M, Beaudoin RJ, et al. CD8+ T cells (cytotoxic/supressor) are required for protection in mice immunized with irradiated sporozoites. Proc. Natl. Acad. Sci. USA 1988,85:537.
    
    6. Doolan DL, Khamboonruang G, Beck HP, et al. Cytotoxic T lymphocyte (CTL) low responsiveness to the Plasmodium falciparum circumsporozoite protein in naturally exposed endemic populations: analysis of human CTL response to most known variants International Immunology 1993, 5:37
    
    7. Hill AVS, Allsopp CEM, Kwiatkowski D, et al. Common West African HLA antigens are associated with protection from severe malaria. Nature 1991, 352:595.
    
    8. Hill AVS, Elbin J, Willis A, et al. Molecular analysis of the association of HLA-B53 and resistance to sebere malaria. Nature, 1992,360:434.
    
    9. Doolan DL, Houghten RA, Good MF. Location of human cytotoxic T cell epitopes within a polymorphic domain of the Plasmodium falciparum circumsporozoite protein. Int.Immunol 1991,3:511.
    
    10. De la Cruz VF, Lai A A, McCuchan TF. Sequence variation in putative functional domains of the circumsporozoite protein of Plasmodium falciparum. Implications for vaccine development. J. Biol. Chem 1987,262:11935
    
    11. Robson KJH, Hall JRS, Davies LC, et al. Polymorphism in the TRAP gene of Plasmodium falciaprum. Proc. R. Soc Lond. B, 1990,242:205.
    
    12. Lockyer MJ, Marsh K, Newbold CI, et al. Wild isolates of Plasmodium falciparum show extensive polymorphism in T cell epitopes of the circumsporozoite protein. Molecular and Biochemical Parasitology 1989, 37:275
    13. Doolan DL, Saul AJ, Good MF. Geographically restricted heterogeneity of the Plasmodium falciparum circumsporozoite protein: relevance for vaccine development. Infection and Immunity 1992,60:675
    
    14. Aidoo M, Lalvani A, Allsopp CEM, et al. Identification of conserved anitgenic components for a cytotoxic T lymphocyte-inducing vaccine against malaria. Lancet 345: 1003
    
    15. Doolan DL, Sedegah M, hedstrom RC, et al. Cirumventing genetic restriction of protection against malaria with multi-gene DNA immunization: CD8~+ T cell.interferon-γ, and nitric oxide-dependent immunity. J Exp Med 1996,183:1739
    
    16. Doolan DL, Hoffman SL. IL-2 and NK cells are required for antigen-specific adaptive immunity against malaria initiated by CD8~+ T cells in the Plasmodium yoelii model. J Immunol 1999,163:884
    
    17. Perkus ME, Tartaglia J, Paoletti E, et al. Poxvirus-based vaccine candidates for cancer, AIDS and other infectious diseases. J Leukocyte Biol 1995, 58:1
    
    18. Shen H, Slifka MK, Matloubian M, et al. Recombinat Listeria monocytogenes as a live vaccine vehicle for the induction of protective anti-viral cell-mediated immunity. Proc. Natl. Acad. Sci. USA 92:3987
    
    19. Waine GJ, McManus DP, et al. Nucleic acids: vaccines of the future. Parasitol Today 1995, 11:113
    
    20. Perlmann P & Milller L. FogartyAVHO international conference on cellular mechanisms in malaria immunity. Immun. Letter, 1990,25: 1-148
    
    21. Scalzo A, Elliott SL, Cox J, et al. Induction of protective cytotoxic T cells to murine cytomegalovirus using a nonapeptide and a human compatible adjuvant. J Virol. 1995,69: 1306
    
    22. Vitiello A, ishioka G, Grey HM, et al. Development of a lipopeptide based therapeutic vaccine to treat chronic HBV infection: induction of a primary cytotoxic T lymphocyte response in humans. J Clin Invest 1995,95: 341
    
    23. Rabinovich NR, McInnes P, Klein DL, et al. Vaccine technologies: view to the future. Science 1994,65: 1401
    
    24. Lalvani A, Aiddo M, Allsopp CE, et al. An HLA-based approach to the design of a CTL-inducing vaccine against Plasmodium falciparum. Res Immunol 1994, 145: 461
    
    25. Sidney J, Gray HM, Kubo RT, et al. Practical, biochemical and evolutionary implications of the discovery of HLA class I supermotifs. Immunol Today 1996, 17:261
    
    26. Kubo RT, Sette A, Grey HM, et al. Definition of specific peptide motifs for four major HLA- A alleles. J Immunol, 1994,152:3913
    
    27. Klenerman P, Rowland-Jones S, McAdam S, et al. Cytotoxic T-cell activity antagonized by naturally occurring HIV-1 Gag variants. Nature 1994,369:43
    28. Del-Val M, Schlicht HJ, Ruppert T, et al. Efficient processing of an antigenic sequence for presentation by MHC class I molecules depends on its neighboring residues in the protein. Cell 1991,66: 1145
    
    29. Niedermann G, Butz S, Ihlenfeldt HG, et al. Contribution of proteasome-mediated proteolysis to the hierarchy of epitopes presented by major histocompatibility complex class I mlecules.Immunity 1995,2:289
    
    30. Sidney J, Grey H.Southwood S, et al. Definition of an HLA-A3-like supermotif demonstrates the overlapping peptide-binding repertoires of common HLA molecules. Human Immunology 1996,45:79
    
    31. Sidney J, Guercio MF, Southwood S,et al. Several HLA alleles share overlapping peptides specificities. J Immunol 1995,154:247
    
    32. Sidney j, Southwood S, Gurercio MF.et al. Specificity and degeneracy in peptide binding to HLA-B7-like class I molecules. J Immunol 1996,157:3480
    
    33. Guercio MF, Sidney J, Hermanson G, et al. Binding of a peptide antigen to multiple HLA alleles allows definition of an A2-like supertype. J Immunol 1995,154:685
    
    34. Rammensnsee H-G,Friede T, stevanovic S. MHC ligands and peptide motifs first listing 1995,41:178
    
    35. Sidney J, Grey H, Kubo RT.et al. Practical, biochemical and evolutionary implications of the discovery of HLA class 1 supermotifs. Immunology today 1996,17:261
    
    36. Bcrtoletti A, Southwood S, Chesnut R, et al. Molecular features of the hepatitis B virus nucleocapsid T-cell epitope 18-27: interaction with HLA an T-cell receptor. Hepatology 1997,26:1027
    
    37. Bertoni R, Sidney J, Fowler P, et al. Human histocompatibility leukocyte antigen-binding supermotifs predict broadly corss-reactive cytotoxic T lymphocyte responses in patients with acute hepatitis. J clin invest 1997,93:3466
    
    38. Doolan DL, Hoffman Sl, Southwood S, et al. Degenerate cytotoxic T cell epitopes from P. falciparum restricted by multiple HLA-A and HLA-B supertype alleles. Immunity 1997,7:97
    
    39. Fleischhauer K, Tanzarella S, Wallny H, et al. Multiple HLA-A alleles can present an immunodominant peptide of the human melanoma antigen Melan-A/MART-1 to a peptide- specific HLA-A*0201 + cytotoxic T cell line. J Immunol 1996,157:787
    
    40. Threlkeld SC, Entworth PA, Kalams SA, et al. Degenerate and promiscuous recognition by CTL of peptides presented by the MHC class I A3-like superfamily: implications for vaccine development. J Immunol 1997,159:1648
    
    41. Bennink JR, Yewdell JW. Murine cytotoxic T lymphocyte recognition of individual influenza virus proteins: high frequency of non-responder MHC class I alleles. J Exp Med 1988, 168: 1935
    42. Bennink TJ, sweetser LA, morrison LA, et al. Class I major histocompatibility complex- restricted cytolytic T lymphocytes recognize a limited number of sites on the influenza hemagglutmin. Pro Natl Acad Sci USA 1989, 86:277
    
    43. Deng Y, Yewdell WJ, Eisenlohr LC, et al. MHC affinity peptide liberation, t cell repertoire, and immunodominance all contribute to the paucity of MHC class I-restricted peptides recognized by antiviral CTL. J Immunol 1997, 158: 1507
    
    44. Niederman G, Butz S, Ihienfeldt GH, et al. Contribution of proteasome mediated proteolysis to the hierarchy of epitopes presented by major histocompatibility class I molecules. Immunity 1995,2: 289
    
    45. OssendorpF, Eggers M, neisig A, et al. A single residue exchange within a viral CTL epitope alters proteasome mediated single resudue exchange within a viral CTL epitope alters proteasome mediated degradation resulting in lack of antigen presentation.Immunity 1996, 5: 115
    
    46. Heemels MT, Scumacher TNM, Wonigeit K, et al. Pepdide tranlocation by variants of the transporter associated with antigen processing Scinece 1993,262: 2059
    
    47. Shepherd JC, Schumacher TNM, Ashton-Rickardt PG, et al. TAP1-dependent peptide translocation in vitro is ATP dependent and peptide selective. Cell 1993, 74:577
    
    48. Sette A, Vitiello A, Reherman B, et al. The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitope. J Immunol 1994, 153: 5586
    
    49. Chen W, Khilko S, Fecondo J, et al.Determinant selection of major histocompatibility complex class I-restricted antigenic peptides is explained by class I-peptide affinity and is strongly influentced by nondominant aanchor residues. Jexp Med 1994,180: 1471
    
    50. Van der Burg SH, Visseren MJW, Brandt RMP, et al. Immunogenicity of peptides bound to MHC class I molecules depends on the MHC-peptide complex stability. J Immunol 1996,156: 3308
    
    51. Levitsky V, Zhang QJ, Levitskaya J, et al. The life span of major histocompatibility complex- peptide complexes influences the efficiency of presentation and immunogenicity of two class I-restricted cytotoxic T lymphocyte epitopes in Epstein-Barr virus nuclear antigen 4. J Exp Med 1996, 183:915
    
    52. Daly K, Nguyen P, Woodland DL, et al. Immunodominace of major histocompatibility complex class-I restricted influenza virus epitopes can be influenced by the T-cell repertoire. J Virol 1995, 69:7416
    
    53. Cao W, Myers-Power BA, Braciale TJ. The weak CD8~+ CTL response to an influenza hemagglutinin epitope reflects limited T cell availability. J Immunol 1996,157: 50554. Ressing ME, SeRe A, Brandt RMP, et al. Human CTL epitopes encoded by human papiilomavirus type 16 E6 and E7 identified through in vivo and in vitro immunogenicity studies of HLA-A ~*0202 binding peptides. J Immunol 1995, 154: 5934
    55. Lipford GBS, Bauer H, Wagner H, et al. In vivo CTL induction with point-substituted ovalbumin peptides: immunogenicity correlates with peptide-inducted MHC class Ⅰ stability. Vaccine 1995, 13: 313
    56.林澄涛、姜艳芳、殷彬等,同尾酶技术在构建疟疾多价重组DNA疫苗中的应用.中国生物化学和分子生物学学报。1999,15:973-977
    57. Zemmour J, Little AM, Schendel D, et al. The HLA-A, B, C "negative" mutant cell line ClR expresses a novel HLA-B35 allele, which also has a point mutations in the translation initiation codon. J Immunol, 1992, 148: 1941-1948
    58. Aidoo M, Lalvani A, Allsopp C E M, et al. Identification of conserved antigenic components for a cytotoxic T lymphocyte-inducing vaccine against malaria. Lancet, 1995, 345: 1003-1007
    59. Hoffman SL, Isenbargen D, Long GW, et al. Sporozoite vaccine induces genetically restricted T cell elimination of malaria from hepatocytes. Science I989, 244: 1078
    60. Wang R, Charoenvit Y, Corradin G, et al. Induction of protective polyclonal antibodies by immunization with Plasmodium yoelii circumsporozoite protein multiple antigen peptide vaccine. J Immunol 1995, 154: 2784
    61. Doolan DL, Sedegah M, Hedstrom RC, et al. Circumventing genetic restriction of protection agaisnt Malaria with Multigene DNA lmunization: CD~(8+) T cell-, Interferon g-, and Nitric Oxide-dependent immunity. J Exp Med 1996, 183: 1739
    62. Rodrigues M, Nussenzweig RS, Zavala F. The relative contribution of antibodies, CD4~+ and CD8~+ T cells to sporozoite-induced protection against malaria. Immunology 1993, 80: 1
    63. Fell AH, Currier J & Good MF. Inhibition of Plasmodium falciparum growth in vitro by CD4~+ and CD8~+ T cells from non-exposed donors. Parasit Immunology 1994, 16: 579
    64. Ishioka GY, Fikes J, Hermanson G, et al. Utilization of MHC class I transgenic mice for development of minigene DNA vaccines encoding multiple HLA restricted CTL epitopes. J Immunol 1999, 162: 3915
    65. Crook T, Morgenstern JP, Crawford L, et al. Continued expression of HPV-16 E7 protein is required for maintenance of the transformed phenotype of cells co-transformed by HPV-16 plus ras. EMBOJ 1989, 8: 513
    66. Hawley-Nelson P, Vousden KH, Hubbert NL, et al. HPVI6 E6 and E7 proteins cooperate to immortalize human foreskin Keraunocytes. 1989, 8: 3903
    67. An LL, Whitton JL. A multivalent minigene vaccine, conseveral microbes, induces appropriate responses in vivo and confers protection against more that one pathogen. J Virol 1997,71:2292
    
    68. Qukka M, Manugerra JC, Livaditis N, et al. Protection agsinst lethal viral infection by vaccination with nonimmunodominant peptides. J Immunol 1996,157: 3039
    
    69. Van der Most RB, Sette A, Oseroff C, et al. Analysis of cytotoxic T cells responses to dominant and subdominant epitopes during acute and chronic lymphocytic choriomenigitis virus infection. J Immunol 1996,157: 5543
    
    70. Rosenberg SA, Yang JC, Schwartzentruber DJ, et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 1998,4:321.
    
    71. Engelhard VH. Strcture of peptides associated with MHC class I molecules. Curr Opin Immunol 1994,6: 13
    
    72. Sett A, Grey HM. Chemistry of peptide interactions with MHC proteins. Curr Opin Immunol 1992,4:79
    
    73. Schaeffer EB, Sette A, Johnson DL,et al. Relative contribution of "determinant selection" and "holes in the T-cell repertoire" to T-cell responses. Proc Natl Acad Sci USA 1981, 86:4649
    
    74. van Bleek G M, Nathenson S G. Isolation of an endogenously processed immunodominant viral peptide from the class I H-2K~b molecules. Nature 1990, 348:213-216
    
    75. Clerici M. Cell-mediated immunity in HIV infection. AIDS 1993, 7: S135
    
    76. Townsend A, Elliott T, Cerundolo V, et al. Assembly of MHC class I molecules analyzed in vitro. Cell. 1990, 62:285.
    
    77. Townsend A, Ohlen C, Bastin J, et al. Association of class I major histocompatibility heavy and light chains induced by viral peptides. Nature 1989,340:443.
    
    78. Otten GR, Bikoff E, Ribaudo RK, et al. Peptide and β_2-microglobulin regulation of cell surface MHC class I conformation and expression. J Immunol 1992,148:3723
    
    79. Brodsky FM, Parham P, Barnstable CJ, et al. Monoclonal antibodies for analysis of the HLA system. Immmunol Rev 1979, 47: 3
    
    80. Sette A, Sidney J, Guerco MFD, et al. Peptide binding to the most frequent HLA-A class I alleles measured by quantitative molecular binding assays. Molecular Immunology 1994, 31 : 813
    
    81. Takamiya, Schonbach C, Nokihara K, et al. HLA-B'3501-peptide interaction: role of anchor residues of peptides in their binding to HLA-B'3501 molecules. Int Immunol 1994,6:255
    
    82. Williams DB, Barber BH, Flavell RA, et al. Role of P 2-microglobulin in the intracellular transport and surface expression of murine class I histocompatibility molecules. J Immunol 1989,142: 279683. Allen H, Fraser J, Flyer D, et al. β_2-microglobulin is not required for cell surface expression of the murine class I histocompatibility antigen H-2D~b or of a truncated H-2D~b. Proc Natl Acad Sci USA 1986, 83: 7447.
    
    84. Koller BH, Marrack P, Kappler JW, et al. Normal development of mice deficient in β_2m, MHC classes I proteins, and CD8~+ T cells. Science 1990,248:1227
    
    85. Ojcius DM, Abastado JP, Csrouge A, et al. Dissociation of the peptide-MHC class I complex limits the binding rate of exogenous peptide. J Immunol 1993,151:6020
    
    86. Sugaware STA, Kumagai K. A simple method to eliminate the antigenicty of surface class I MHC molecules from the membrane of viable cells by acid treament at pH3. J Immunol Mehtods 1987,100: 83
    
    87. Elvin J, Cerundolo V, Elliott T, et al. A quantitiative assay of peptide-dependent class I assembly. Eur J Immunol 1991,21:2025
    
    88. Bergmann CC, Yao Q, Ho CK,et al. Flanking residues alter antigenicit and immunogencity of multi-unit CTL epitopes. J Immunol 1996,157: 3242
    
    89. Eisenlohr LC, Yewdell JW, Bennink JR. Flanking sequences influence the presentation of an endogenously synthesized peptide to cytotoxic T lymphocytes. J Exp Med 1992,175:4811 Nussenzweig RS et al. Nature, 1967; 216(111): 160-162
    2 Schofield LJ et al. Nature, 1987; 330(6149): 664-666
    3 Hill AVS et al. Nature, 1991; 352(6336): 595-600
    4 Hill AVS et al. Nature, 1992; 360(3): 434-439
    5 Cruz DVF et al. J Biol Chem, 1987; 262(25): 11935-11939
    6 Doolan DL et al. Int Immunol, 1993; 5(1): 37-46
    7 Falk K et al. Nature, 1991; 351(6324}: 290-296
    8 Jardetzky TS et al. Nature, 1991; 353(6342): 326-329
    9 Aidoo M et al. Lancet, 1995; 345(8956): 1003-1007
    10 Kast WM et al. J Immunol, 1994; 152(8): 3904-3912
    11 Cells E et al. Molecular Immunology, 1994; 31(18): 1423-1430
    12 Khusmith S et al. Science, 1991; 252(5006): 715-718
    13 Hoffman SL et al. Vaccine, 1997; 15(8): 842-845
    14 Whitto JL et al. J Virol, 1993; 67(1): 348-352
    15 Rodrigues M et al. J Immunol, 1994; 153(10): 4636-4638
    16 Klenerman P et al. Nature, 1994; 369(6479): 403-407
    17 Bertoletti A et al. Nature, 1994; 369(6479): 407-410
    18 Val MD et al. Cell, 1991; 66(6): 1145-1153
    19 Elisenlohr LC et al. J Exp. Med. 1992; 175(2): 481-487
    20 Kubo RT et al. J Immunol. 1994; 152(8): 3913-3924
    21 Sidney H et al. Immunol Today, 1996; 17(6): 261-266
    22 Sidney J et al. Human Imrnunol, 1996; 45(2): 79-931. Lawlor DA, Zemmour J, Ennis PD, et al. Evolution of class I MHC genes and proteins: from natural selection to theymic selection. Annu. Rev. Immunol 1990, 8: 23
    2. Zemmour J, Parham P. HLA class I nucleotide sequences. Hum. Immunol.1992, 37: 39.
    3. Parham P, Lomen CE, Lawlor DA, et al. Nature of plymorphism in HLAA,-B, and-C molecules. Proc. Natl. Acad. Sci. USA, 1988, 85: 4005
    4. Babbitt BP, Allen PM, Matsueda, et al. Binding of immunogenic peptides to Ia histocompatibility molecules. Nature 1985, 317: 359
    5. Buus S, Colon S, Smith C. Interaction between a processed ovalbumin peptide and Ia molecules. Proc. Natl. Acad. Sci. USA 1986, 83: 3968
    6. Townsend A, Rothbard J, Gotch R. The epitopes of influenza nucleopreotein recognized by cytotoxic T lymphcytes can be defined with short synthetic peptides. Cell 1996, 44: 959
    7. Bjorkman PJ, Saper MA, Samraoui B, et al. Structure of the human class I histocopatibility antigen, HLA-A2. Nature 1987, 329: 506
    8. Fremont DH, Matsumura M, Stura EA, et al. Crystal structures of two viral peptides in complex with murine class I H-2K~b. Science 1992, 257: 919
    9. Falk K, Rotzschke O, Stevanovic S, et al. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 1991, 351: 290
    10. Rammensee HG, Falk K, Rozschke 0, et al. Peptides naturrally presented by MHC class I molecules. Annu. Rev. Immunol. 1993, 11:213
    
    11. Rotzschke O, Falk K. Naturally-occurring peptide antigens derived from the MHC class I-restricted processing pathway. Immunol. Today 1991,12:447
    
    12. Van Bleek GM, Nathenson SG. Islation of an endogenously processed immundominant viral peptide from the class I H~2K~b molecule. Nature 1990,348:213
    
    13. Parham P, Adams EJ, Amett KK, et al.The origins of HLA-A, B,C polymorphim. Immunol Rev 1995,143:141
    
    14. Kubo RT, Sette A, Grey HM, et al. Definition of specific peptide motifs for four major HLA-A alleles. J Immunol, 1994,152:3913
    
    15. Sidney J, Grey H, Kubo RT, et al. Practical, biochemical and evolutionary implications of the discovery of HLA class I supermotifs. Immunology today 1996,17:261
    
    16. Sidney J, Grey H, Southwood S, et al. Definition of an HLA-A3-like supermotif demonstrates the overlapping peptide-binding repertoires of common HLA molecules. Human Immunology 1996,45:79
    
    17. Sidney J, Guercio MF, Southwood S,et al. Several HLA alleles share overlapping peptides specificities. J Immunol 1995,154:247
    
    18. Sidney j, Southwood S, Gurercio MF, et al. Specificity and degeneracy in peptide binding to HLA-B7-like class I molecules. J Immunol 1996,157:3480
    
    19. Guercio MF, Sidney J, hermanson G, et al. Binding of a peptide antigen to multiple HLA alleles allows definition of an A2-like supertype. J Immunol 1995, 154:685
    
    20. Rammensnsee H-G, Friede T, stevanovic S. MHC ligands and peptide motifsL first listing 1995,41:178
    
    21 Kubo RT, Sette A Grey HM, et al Definition of specific pptide motifs for four major HLA-A alleles. J Immunol 1994,152:3913
    
    22. Barber LD, Gillece Castro B, Percibal L, et al. Overlap in the repertoires of peptides bound in vivo by a group of related class I HLA-B allotypes. Curr Biol 1995,5:179
    
    23. Barber LD, Percival L, Arnet KL, et al. Polymorphism in the α helix of the HLA- B heavy chain can have an overriding influence on peptide-binding specificity. J Immunol 1997, 158:166024. DiBrino M, Parker KC, Margulies DH, et al. Identification of the peptide binding motif for HLA-B44, one of the most common HLA-B alleles in the Caucasin population. Biochemistry 1995,34:10130
    
    25. Stevan NM, Annels NE, Kumar A. Immediate early and early lytic cycle proteins are frequent targets of the Epstein-Barr virus-induced cytotoxic T cell response. J Exp Med 1997,185: 1605-1618
    
    26. Sette A, Sidney J. Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism. Immunogenetics 1999, 50:201
    
    27. DiBrino M, Tsuchida T, Turner RV, et al. HLA-A1 and HLA-A3 T cell epitopes derived from influenza virus proteins predicted from peptide binding motifs. J Immunol 1993, 151:5930
    
    28. Dumrese T, Stevanocib S, Seeger FH, et al. HLA-A26 subtype A pockets accommodate acidic N-termini of ligands. Immunogenetics 1993,48:350
    
    29. Kondo A, Sidney J, southwood S, et al. Two distinct HLA~A*0101- specific submotifs illustrate alternative eptide binding modes. Immunogenetics 1997,45:249
    
    30. Harrer E, Harrer T, Barbosa P, et al. Recognition of the highly comserved YMDD region in the human immunodeficiency virus type 1 reverse transcriptase by HLA-A2-restrited cytotoxic T lymphocytes from an asymptomatic long-term nonprogressor. J Infect Dis 1996,173:476
    
    31. Rickinson AB, Moss DJ. Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Annu Rev Immunol 1997,15:402
    
    32. Majer R, Falk K, Rotzschke O, et al. Peptide motifs of HLA-A3,- A24, and -B7 molecules as determined by pool sequencing. Immunogenetics 1994, 40:306
    
    33. Khannna R, Burrows SR, Moss DJ, et al. Peptide transporter (TAP-1 and TAP-2) independent endogenous processing of Epstein-Barr virus (EBV) latent membrane protein 2A: implications for cytotoxic T- lymphocyte control of EBV-associated malignancies. J Virol 1996, 70:5357
    
    34. Barber LD, Percival L, Parham P. Characterization of the peptide- binding specificity of HLA-B*7301. Tissue Antigens 1996, 47:472
    
    35. Bosigerault F, Khalil L, Tieng V, et al. Definition of the HLA-A29 peptide ligand motif allows prediction of potential T-cell epitopes??form the retinal soluble antigen, a candidate autoantigen in birdshot retinopathy. Proc NatlAcad Sci USA 1996, 93:3466
    
    36. Dibrino M, Parker KC, Margulies DH, et al. The HLA-B14 peptide binding site can accommodate peptides with different combinations of anchor residues. J Biol Chem 1994, 269:32426
    
    37. Garcia F, Marina A, Lopez de Castro JA. Lack of carboxyl-terminal tyrosine distinguishes the B*2706-bound peptide repertoie from those of B*2704 and other HLA-B27 subtypes associated with ankylosing spondylitis. Tissue Antigens 1997, 49:215
    
    38. Falk K, Rotzschke 0, Takiguchi M, et al. Peptide motifs of HLA-B58, B60, B61,and B62 molecules. Immunogenetics 1995, 41:165
    
    39. Prilliman k, Lindsey M, Zuo Y, et al. Lagre-scale production of class I bound peptides: assigning a signature to HLA-B*1501. Immunogenetics 1997,45:379
    
    40. Bcrtoletti A, Southwood S, Chesnut R, et al. Molecular features of the hepatitis B virus nucleocapsid T-cell epitope 18-27: interaction with HLA an T-cell receptor. Hepatology 1997,26:1027
    
    41. Bertoni R, Sidney J, Fowler P, et al. Human histocompatibility leukocyte antigen-bindingsupermotifs predict broadly corss-reactive cytotoxic T lymphocyte responses in patients with acute hepatitis. J clin invest 1997, 93:3466
    
    42. Doolan DL, Hoffman Sl, Southwood S, et al. Degenerate cytotoxic T cell epitopes from P. falciparum restricted by multiple HLA-A and HLA-B supertype alleles. Immunity 1997,7:97
    
    43. Fleischhauer K, tanzarella S, Wallny H, et al. Multiple HLA-A alleles can present an immunodominant peptide of the human melanoma antigen Melan-A/MART-1 to a peptide-specific HLA-A*0201 + cytotoxic T cell line. J Immunol 1996,157:787
    
    44. Kawashimal L, Hudson SJ, Tsai V, et al. The multi-epitope approach for immunotherpy for cancer: identification of several CTL epitopes form various tumor associated antigens expressed on solid epithelial tumors. Human Immunol 1998,19:1
    
    
    45. Khanna R, Burrows SR, Nicholls J, et al. Identification of cytotoxic T cell epitopes within Epstien-Barr virus (EBV) oncogene latent membrane protein 1 (LAMP1): evidence for HLA-A2 supertype- restricted immune recognition of EBV-infected cells by LMP1- specific cytotoxic T lymphocytes. Eur J Immunol 1998, 28:451
    46. Threlkeld SC, eentworth PA, Kalams SA, et al. Degenerate and promiscuous recognition by CTL of peptides presented by the MHC class I A3-like superfamily: implications for vaccine development. J Immunol 1997, 159:1648
    
    47. Wang RF, Johnston SL, Southwood S, et al. Recognition of an antigenic peptide derived from tyrosinase-related protein-2 by CTL in the context of HLA A-31 and-A33. J Immunol 1998, 160:890

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700