荣昌猪BMMNCs诱导分化及其BPI表达与抗病性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疾病给猪生产带来很大的养殖风险并增加防疫治疗成本,而且预防和治疗的大量用药,导致猪肉食品安全受到潜在威胁。从遗传上降低猪的疾病易感性和提高抗病能力,可以很好解决此问题。BPI基因在其他物种已经研究比较多,有希望成为抗病育种的候选基因。荣昌猪作为地方猪品种,具有抗病抗逆性能好的特点。本研究从体外培养诱导分化荣昌猪骨髓单核细胞(Bone Marrow Mononuclear Cells, BMMNCs)来研究荣昌猪中性粒细胞表达杀菌/通透性增强蛋白基因(Bactericidal/Permeability-Increasing Protein, BPI)的规律,为猪抗病育种提供参考。
     1猪骨髓单核细胞培养
     优化改进并建立了市售排骨分离猪BMMNCs的新方法,将市售排骨分离获得的猪BMMNCs细胞与无菌手术条件取得的肋骨分离的猪BMMNCs细胞,经过台盼蓝染色测定活细胞率,差异不显著。使用市售排骨进行猪BMMNCs培养,为造血干/祖细胞、间充质干细胞、骨髓多能干细胞移植等研究提供了便利。
     研究筛选适宜猪BMMNCs的培养条件为:液体培养,使用RPMI-1640培养液,添加15%FBS,培养环境为5%C02,37℃,饱和湿度。虽然采用离体肋骨分离猪BMMNCs,污染机会并没有显著增加,100U/mL双抗即能达到效果。
     2猪骨髓单核细胞增殖
     采用细胞计数、MTS/PMS法结合的方法探讨猪骨髓单核细胞的增殖,研究了胰岛素、地塞米松、SCF、G-CSF、GM-CSF等因子对骨髓单核细胞增殖的影响,筛选出促进增殖的最佳浓度SCF为30ng/ml, G-CSF为40ng/ml, GM-CSF为80ng/ml, IL-3为100ng/ml, IL-6为150ng/ml。胰岛素与地塞米松对猪BMMNCs增殖促进作用不显著。
     3猪骨髓单核细胞分化
     采用瑞氏染色、苏丹黑B染色、墨汁吞噬试验、热盐水溶核试验等方法研究不同培养条件下猪中性粒细胞的分化。瑞氏染色、苏丹黑B染色能较好反映分化状态,而墨汁吞噬试验、热盐水融核试验对荣昌猪中性粒细胞的分化展示作用不好结果表明LPS、地塞米松具有显著促进中性粒细胞分化作用,胰岛素、IL-3、IL-4促进中性粒细胞分化作用不显著。体外培养的荣昌猪BMMNCs可以进行中性粒细胞分化,但分化到杆状核和分叶核中性粒细胞阶段的很少见。
     改进染色与杂交用载玻片。常规细胞涂片或细胞爬片,不能在同一张载玻片上同时对多个组进行染色或杂交操作,不同载玻片进行操作必然加大操作误差。本研究将载玻片用疏水的蜡划分成12格,在不同格里涂不同组细胞悬液,可以同时对12组细胞染色或杂交操作,保证条件完全一致,效果优于常规方法。该载玻片专利申请号201120301873.8。
     4荣昌猪骨髓单核细胞中BPI表达
     设计2个mRNA原位杂交探针,5'-CGTGGACACCTTGGGTATGA G-3和5'-TGCTGCTGTTCATCTCAATC-3',在猪早幼中性粒细胞可以检测到杂交信号,说明在早幼中性粒细胞阶段,BPI就开始表达。经过LPS不同时间刺激后,培养BMMNCs中不同阶段的中性粒细胞BPI mRNA原位杂交阳性率上升,说明LPS可以促进BMMNCs中BPI mRNA合成。
     5不同SNP基因型的荣昌猪骨髓单核细胞中BPI表达与攻毒试验
     利用PCR-SSCP技术对荣昌猪外显子3进行基因型判定,选择不同外显子猪取BMMNCs进行培养并进行BPI mRNA原位杂交,结果表明不同外显子对骨髓单核细胞中BPI表达影响不显著,但在LPS刺激下,GG基因型的BMMNCs细胞中不同分化阶段的粒细胞中阳性率上升程度高于AA基因型,并且在攻毒试验中,GG和AA基因型均未表现出对致病性大肠杆菌的具有抵抗作用,但GG基因型个体症状较轻,恢复时间短于AA基因型个体。
Diseases lead to great economic risk and increase the cost of treatment and epidemic prevention in pig production, and the medicine widely used for epidemic prevention and treatment of disease may cause potential menace to pork food safety. Reducing disease susceptibility and improving the disease resistance of pig in genetic background would be a suitable solution. BPI gene in many species has been researched intensively for it can serve as candidate gene for disease resistance breeding. As a local pig variety, Rongchang pig has been characterized with high disease resistance. This study dwell on BPI expression in Rongchang pig bone marrow mononuclear cells (BMMNCs)in vitro culture to discuss the possibility of application in pig disease resistance breeding procedure.
     1 Culture of Pig Bone Marrow Mononuclear Cells
     This research established a new method to separate pig BMMNCs from the resale ribs. The living cell rates of BMMNCs obtained from resale ribs and ribs got from surgical method under sterile condition were compared by means of Trypan blue stain, the result shows that they have no significant difference.The new method brings convenience for the research of the hematopoietic stem/progenitor cells, mesenchymal stem cells and bone marrow stem cells transplantation. The cultivation conditions for pig BMMNCs were optimized:liquid culture with RPMI-1640 medium,15% FBS,37℃and 5% CO2, saturated humidity, 100U/mL penicillin and 100U/mL streptomycin.
     2 Proliferation of Pig Bone Marrow Mononuclear Cells
     By means of cell counting and MTS/PMS method, the proliferation of pig BMMNCs was discussed and insulin, dexamethasone, SCF, G-CSF, GM-CSF were taken into account to clarify their influence on the proliferation of pig BMMNCs. The optimum concentration combination was determined as SCF 30 ng/ml, G-CSF 40 ng/ml, GM-CSF 80 ng/ml, IL-3100 ng/ml, IL-6150 ng/ml。Insulin and dexamethasone have no promotion effect on pig BMMNCs proliferation.
     3 Differentiation of Pig Bone Marrow Mononuclear Cells
     Wright's stain, Sudan black B stain, ink particles experiment and hot brine nucleus experiment were employed to research the differentiation of pig BMMNCs under different culture condition. Wright's stain and Sudan black B stain can reflect the differentiation of pig BMMNCs well while the other two methods didn't work well. Further results showed that LPS and dexamethasone promoted the differentiation towards neutrophils significantly while insulin,IL-3, IL-4 did not. The Rongchang pig BMMNCs can differentiate towards neutrophils but seldom reached the stage of rod or segmented neutrophil.
     This research designed a new microslide for cell dyeing and hybridizing. In conventional procedure, the cells of each group of a multi-group experiment was smeared or cultured on one microslide and was handled on one's own in the dyeing and hybridizing procedure. Operate respectively could lead to more random errors and conceal the effect of the main factor of the experiment. The new microslide was divided into 12 grids with waxed line. With different group of cells smeared to different grid,12 groups of cells can be handled for dyeing or hybridizing simultaneously. Dyeing or hybridizing with these microslides will result in better consistency than common ones. The patent application number of the microslide is 201120301873.8.
     4 BPI Expression in Rongchang Pig BMMNCs
     Two in situ hybridization probes were designed to detect BPI mRNA:5'CGTGG ACACCTTGGGTATGAG-3'and 5'-TGCTGCTGTTCATCTCAATC-3'. It was confirmed that BPI mRNA first appeared in promyelocyte neutrophils of the pig BMMNCs. After induction of LPS, the positive rate of in situ hybridization of BPI mRNA in BMMNCs in vitro showed linear increase with the LPS concentration. It means LPS can promote BPI mRNA expression. The positive rate increased in Promyelocyte, Myelocyte and Metamyelocyte, while rod or segmented neutrophils were too rare to reach a statistic result.
     5 Impact of Exon 3 Genotypes on BPI expression and Disease Resistance
     With PCR-SSCP, we detected the genotype of BPI exon 3 of Rongchang pig and obtained BMMNCs with different genotype to be tested. Result showed that GG type and AA type BMMNCs had no difference in positive rate of BPI mRNA ISH. But after 24 hours induction of 150 ng/ml LPS, GG type BMMNCs had higher ISH positive rate than AA type and control group. In Enteropathogenic E coli challenge test, individuals with GG type and AA type suffered the disease in the same way. But GG type individuals recovered earlier than AA type individuals.
引文
1. Vosough, M., et al., Cell-based therapeutics for liver disorders. Br. Med. Bull.,2011:p. ldr031.
    2. Bertho, J.M., et al., Reinjection of ex vivo-expanded primate bone marrow mononuclear cells strongly reduces radiation-induced aplasia. J Hematother Stem Cell Res,2002.11(3):p.549-64.
    3. Bradley, T.R. and D. Metcalf, The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci,1966.44(3):p.287-99.
    4. Ogawa, M., Differentiation and proliferation of hematopoietic stem cells. Blood,1993.81(11):p.2844-2853.
    5. Dexter, T.M., T.D. Allen, and L.G. Lajtha, Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol,1977. 91(3):p.335-44.
    6. Friedenstein, A.J., et al., Bone marrow stromal colony formation requires stimulation by haemopoietic cells. Bone Miner,1992.18(3):p.199-213.
    7. Archundia, A., et al., Direct cardiac injection of G-CSF mobilized bone-marrow stem-cells improves ventricular function in old myocardial infarction. Life Sci,2005.78(3):p.279-83.
    8. Civin, C.I., et al., Highly purified CD34-positive cells reconstitute hematopoiesis. J Clin Oncol,1996.14(8):p.2224-33.
    9. Till, J.E., E.A. McCulloch, and L. Siminovitch, A Stochastic Model of Stem Cell Proliferation, Based on the Growth of Spleen Colony-Forming Cells. Proc Natl Acad Sci U S A,1964.51:p.29-36.
    10. Friedenstein, A.J., R.K. Chailakhjan, and K.S. Lalykina, The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet,1970.3(4):p.393-403.
    11. Castro-Malaspina, H., et al., Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood,1980. 56(2):p.289-301.
    12. Simmons, P.J., et al., c-kit is expressed by primitive human hematopoietic cells that give rise to colony-forming cells in stroma-dependent or cytokine-supplemented culture. Exp Hematol,1994.22(2):p.157-65.
    13. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science,1999.284(5411):p.143-7.
    14. Jones, E.A., et al., Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum,2002. 46(12):p.3349-60.
    15. Jones, E. and D. McGonagle, Human bone marrow mesenchymal stem cells in vivo. Rheumatology,2008.47(2):p.126-131.
    16. Sun, Q.Y., et al., [Establishment and application of a method for assessing hemopoietic chimerism in rhesus after allogeneic stem cell transplantation]. Zhongguo Shi Yan Xue Ye Xue Za Zhi,2005.13(4):p. 683-6.
    17. Heimfeld, S., et al., The in vitro response of phenotypically defined mouse stem cells and myeloerythroid progenitors to single or multiple growth factors. Proc Natl Acad Sci U S A,1991.88(21):p.9902-6.
    18. Suda, T., J. Suda, and M. Ogawa, Disparate differentiation in mouse hemopoietic colonies derived from paired progenitors. Proc Natl Acad Sci U S A,1984.81(8):p.2520-4.
    19. Leary, A.G., et al., Single cell origin of multilineage colonies in culture. Evidence that differentiation of multipotent progenitors and restriction of proliferative potential of monopotent progenitors are stochastic processes. J Clin Invest,1984.74(6):p.2193-7.
    20. Metcalf, D., Lineage commitment of hemopoietic progenitor cells in developing blast cell colonies:influence of colony-stimulating factors. Proc Natl Acad Sci U S A,1991.88(24):p.11310-4.
    21. 陈峥嵘.人骨髓间充质干细胞的分离培养、多向分化与鉴定.复旦学报:医学版,2008.
    22. Letchford, J., et al., Isolation of C15:a novel antibody generated by phage display against mesenchymal stem cell-enriched fractions of adult human marrow. J Immunol Methods,2006.308(1-2):p.124-37.
    23. Ravindran, S., et al., Changes of chondrocyte expression profiles in human MSC aggregates in the presence of PEG microspheres and TGF-beta3. Biomaterials,2011.
    24. Hoshiba, T., et al., Effects of extracellular matrices derived from different cell sources on chondrocyte functions. Biotechnol Prog,2011.27(3):p. 788-95.
    25. Min, T.J., et al., Morphine attenuates endothelial cell adhesion molecules induced by the supernatant of LPS-stimulated colon cancer cells. J Korean Med Sci,2011.26(6):p.747-52.
    26. Damico, R.L., et al., Macrophage migration inhibitory factor governs endothelial cell sensitivity to LPS-induced apoptosis. Am J Respir Cell Mol Biol,2008.39(1):p.77-85.
    27. Numasaki, M., et al., Regulatory roles of IL-17 and IL-17F in G-CSF production by lung microvascular endothelial cells stimulated with IL-1beta and/or TNF-alpha. Immunol Lett,2004.95(1):p.97-104.
    28. Igarashi, H., et al., High serum levels of M-CSF and G-CSF in Kawasaki disease. Br J Haematol,1999.105(3):p.613-5.
    29. Scirocco, A., et al., Exposure of Toll-like receptors 4 to bacterial lipopolysaccharide (LPS) impairs human colonic smooth muscle cell function. J Cell Physiol,2010.223(2):p.442-50.
    30. Haider, H.K. and M. Ashraf, Bone marrow stem cell transplantation for cardiac repair. Am J Physiol Heart Circ Physiol,2005.288(6):p. H2557-2567.
    31. Waksman, R., et al., Transepicardial autologous bone marrow-derived mononuclear cell therapy in a porcine model of chronically infarcted myocardium. Cardiovasc Radiat Med,2004.5(3):p.125-31.
    32. Godwin, E.E., et al., Implantation of bone marrow-derived mesenchymal stem cells demonstrates improved outcome in horses with overstrain injury of the superficial digital flexor tendon. Equine Vet J,2011.
    33. Nirmalanandhan, V.S., et al., Effect of scaffold material, construct length and mechanical stimulation on the in vitro stiffness of the engineered tendon construct. J Biomech,2008.41(4):p.822-8.
    34. Nirmalanandhan, V.S., et al., Mechanical stimulation of tissue engineered tendon constructs:effect of scaffold materials. J Biomech Eng,2007. 129(6):p.919-23.
    35. Nixon, A.J., et al., Gene therapy in musculoskeletal repair. Ann N Y Acad Sci,2007.1117:p.310-27.
    36. Torricelli, P., et al., Regenerative medicine for the treatment of musculoskeletal overuse injuries in competition horses. Int Orthop,2011.
    37. Mwale, F., et al., The constitutive expression of type x collagen in mesenchymal stem cells from osteoarthritis patients is reproduced in a rabbit model of osteoarthritis. J Tissue Eng,2011.2011:p.587547.
    38. Pittenger, M., et al., Adult mesenchymal stem cells:potential for muscle and tendon regeneration and use in gene therapy. J Musculoskelet Neuronal Interact,2002.2(4):p.309-20.
    39. Filioli Uranio, M., et al., Isolation, proliferation, cytogenetic, and molecular characterization and in vitro differentiation potency of canine stem cells from foetal adnexa:a comparative study of amniotic fluid, amnion, and umbilical cord matrix. Mol Reprod Dev,2011.78(5):p. 361-73.
    40. Tesio, M., et al., Enhanced c-Met activity promotes G-CSF-induced mobilization of hematopoietic progenitor cells via ROS signaling. Blood, 2011.117(2):p.419-28.
    41. Sudo, K., et al., TNF-alpha and IL-6 signals from the bone marrow derived cells are necessary for normal murine liver regeneration. Biochim Biophys Acta,2008.1782(11):p.671-9.
    42. Brasier, A.R., et al., A family of constitutive C/EBP-like DNA binding proteins attenuate the IL-1 alpha induced, NF kappa B mediated trans-activation of the angiotensinogen gene acute-phase response element. EMBO J,1990.9(12):p.3933-44.
    43. Spadaccio, C., et al., A G-CSF functionalized scaffold for stem cells seeding:a differentiating device for cardiac purposes. J Cell Mol Med, 2011.15(5):p.1096-108.
    44. 刘晓伟,侯美仙,陈亮.垂体肿瘤转化基因表达与急性白血病临床特点的关系.白血病.淋巴瘤,2008.
    45. 顾兆伟.急性髓系白血病初诊患者β-连环蛋白和周期蛋白D1mRNA的表达及其意义.中国实验血液学杂志,2009.
    46. 李丽珍.Cyr61基因与慢性粒细胞白血病的相关性研究.山东大学学报:医学版,2009.
    47. 丁万宝,李维佳,FRAME基因在血液恶性肿瘤中的表达及相关研究.临床医药实践:下半月刊,2008.
    48. 刘艳荣.CD7阳性急性髓系白血病骨髓干/祖细胞5个基因表达的研究.中国实验血液学杂志,2009.
    49. 彭宏凌.热休克蛋白70及pim-1基因在白血病骨髓单个核细胞的表达特点及临床意义.中国实验血液学杂志,2008.
    50. 邵宗鸿.白细胞介素-3受体α在急性髓性白血病原代骨髓细胞中的表达及其临床意义研究.中国实用内科杂志,2009.
    51. 杨弘.BMI-1基因在白血病患者中的表达及其意义.白血病.淋巴瘤,2008.
    52. Wu, Y., et al., [CD96 Expression on Bone Marrow Mononuclear Cells in 91 Patients with Acute Leukemia.]. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2011.19(3):p.585-588.
    53. 刘寨东.当归补血汤促进小鼠骨髓移植后造血组织重建的研究.中国实验方剂学杂志,2008.
    54. Hu, S., et al., Isolated coronary artery bypass graft combined with bone marrow mononuclear cells delivered through a graft vessel for patients with previous myocardial infarction and chronic heart failure a single-center, randomized, double-blind, placebo-controlled clinical trial. J Am Coll Cardiol,2011.57(24):p.2409-15.
    55. Zhang, L.H., et al., [The significance of hematopoietic cell genetic instability in aplastic anemia.]. Zhonghua Xue Ye Xue Za Zhi,2010.31(4): p.219-22.
    56. Fujita, Y., et al., Early protective effect of bone marrow mononuclear cells against ischemic white matter damage through augmentation of cerebral blood flow. Stroke,2010.41(12):p.2938-43.
    57. Yamasaki, T., et al., Bone-marrow-derived mononuclear cells with a porous hydroxyapatite scaffold for the treatment of osteonecrosis of the femoral head:a preliminary study. J Bone Joint Surg Br,2010.92(3):p. 337-41.
    58. Lovell, M.J., et al., Bone marrow mononuclear cells reduce myocardial reperfusion injury by activating the PI3K/Akt survival pathway. Atherosclerosis,2010.213(1):p.67-76.
    59. 黄信生.骨髓间充质干细胞和骨髓单个核干细胞移植治疗大鼠心肌梗死的对比研究.中国医药,2009.
    60. Meng, J., et al., Treatment of ischemic limbs by transplantation of G-CSF stimulated bone marrow cells in diabetic rabbits. Clin Invest Med,2010. 33(3):p. E174-80.
    61. Onodera, R., et al., Bone marrow mononuclear cells versus G-CSF-mobilized peripheral blood mononuclear cells for treatment of lower limb ASO:pooled analysis for long-term prognosis. Bone Marrow Transplant,2011.46(2):p.278-84.
    62. Beckerdite, S., et al., Early and discrete changes in permeability of Escherichia coli and certain other gram-negative bacteria during killing by granulocytes. J Exp Med,1974.140(2):p.396-409.
    63. Weiss, J., et al., Partial characterization and purification of a rabbit granulocyte factor that increases permeability of Escherichia coli. J Clin Invest,1975.55(1):p.33-42.
    64. Weiss, J., et al., Purification and characterization of a potent bactericidal and membrane active protein from the granules of human polymorphonuclear leukocytes. J Biol Chem,1978.253(8):p.2664-72.
    65. Chiang, S.C., et al., Identification and characterisation of the BPI/LBP/PLUNC-like gene repertoire in chickens reveals the absence of a LBP gene. Dev Comp Immunol,2011.35(3):p.285-95.
    66. Larsen, K., L.B. Madsen, and C. Bendixen, Porcine SPLUNC1:molecular cloning, characterization and expression analysis. Biochim Biophys Acta, 2005.1727(3):p.220-6.
    67. Leclair, E.E., Four BPI (bactericidal/permeability-increasing protein)-like genes expressed in the mouse nasal, oral, airway and digestive epithelia. Biochem Soc Trans,2003.31(Pt 4):p.801-5.
    68. Weiss, J. and I. Olsson, Cellular and subcellular localization of the bactericidal/permeability-increasing protein of neutrophils. Blood,1987. 69(2):p.652-9.
    69. Calafat, J., et al., The bactericidal/permeability-increasing protein (BPI) is present in specific granules of human eosinophils. Blood,1998.91(12):p. 4770-5.
    70. Aichele, D., et al., Expression and antimicrobial function of bactericidal permeability-increasing protein in cystic fibrosis patients. Infect Immun, 2006.74(8):p.4708-14.
    71. Schultz, H., et al., A novel role for the bactericidal/permeability increasing protein in interactions of gram-negative bacterial outer membrane blebs with dendritic cells. J Immunol,2007.179(4):p.2477-84.
    72. Canny, G., et al., Lipid mediator-induced expression of bactericidal/ permeability-increasing protein (BPI) in human mucosal epithelia. Proc Natl Acad Sci U S A,2002.99(6):p.3902-7.
    73. Caipang, C.M., et al., Differential expression of immune and stress genes in the skin of Atlantic cod (Gadus morhua). Comp Biochem Physiol Part D Genomics Proteomics,2011.6(2):p.158-62.
    74. Yamagata, M., et al., Bactericidal/permeability-increasing protein's signaling pathways and its retinal trophic and anti-angiogenic effects. FASEB J,2006.20(12):p.2058-67.
    75. Yano, R., et al., Bactericidal/Permeability-increasing protein is associated with the acrosome region of rodent epididymal spermatozoa. J Androl, 2010.31(2):p.201-14.
    76. Ying, X., et al., Endoplasmic reticulum protein 29 (ERp29), a protein related to sperm maturation is involved in sperm-oocyte fusion in mouse. Reprod Biol Endocrinol,2010.8:p.10.
    77. Canny, G. and O. Levy, Bactericidal/permeability-increasing protein (BPI) and BPI homologs at mucosal sites. Trends Immunol,2008.29(11):p. 541-7.
    78. Schwaab, M., et al., Human antimicrobial proteins in ear wax. Eur J Clin Microbiol Infect Dis,2011.
    79. Schultz, H., et al., The endotoxin-binding bactericidal/permeability-increasing protein (BPI):a target antigen of autoantibodies. J Leukoc Biol,2001.69(4):p.505-12.
    80. 朱璟.仔猪BPI基因表达水平与大肠杆菌F18菌株感染关系的研究.2010.中国江苏南京.
    81. Gakhar, L., et al., PLUNC is a novel airway surfactant protein with anti-biofilm activity. PLoS One,2010.5(2):p. e9098.
    82. Zhou, H.D., et al., Tissue distribution of the secretory protein, SPLUNC1, in the human fetus. Histochem Cell Biol,2006.125(3):p.315-24.
    83. Nam, B.H., et al., Molecular cloning and characterization of LPS-binding protein/bactericidal permeability-increasing protein (LBP/BPI) from olive flounder, Paralichthys olivaceus. Vet Immunol Immunopathol,2010. 133(2-4):p.256-63.
    84. Beamer, L.J., S.F. Carroll, and D. Eisenberg, Crystal structure of human BPI and two bound phospholipids at 2.4 angstrom resolution. Science, 1997.276(5320):p.1861-4.
    85. Beamer, L.J., S.F. Carroll, and D. Eisenberg, The three-dimensional structure of human bactericidal/permeability-increasing protein: implications for understanding protein-lipopolysaccharide interactions. Biochem Pharmacol,1999.57(3):p.225-9.
    86. Ooi, C.E., et al., A 25-kDa NH2'-terminal fragment carries all the antibacterial activities of the human neutrophil 60-kDa bactericidal/permeability-increasing protein. J Biol Chem,1987.262(31): p.14891-4.
    87. 周红,肖光夏,猪源杀菌性/通透性增加蛋白(BPI)的提取、纯化及其体内外生物活性的研究.第三军医大学学报,1996(04).
    88. 周红,郑江,肖光夏,猪源杀菌性/通透性增加蛋白(BPI)体内外生物活性的研究.四川生理科学杂志,1997(03):p.8.
    89. 周红,郑江,肖光夏.猪源杀菌性/通透性增加蛋白(BPI)对大白鼠内毒素血症模型的治疗作用.1997.中国重庆.
    90. 周红.抗人BPI抗体对猪源BPI体外生物活性的增强作用.第三军医大学学报,2002(01):p.76-78.
    91. Gray, P.W., et al., Cloning of the cDNA of a human neutrophil bactericidal protein. Structural and functional correlations. J Biol Chem,1989. 264(16):p.9505-9.
    92. Gray, P.W., et al., The genes for the lipopolysaccharide binding protein (LBP) and the bactericidal permeability increasing protein (BPI) are encoded in the same region of human chromosome 20. Genomics,1993. 15(1):p.188-90.
    93. Wheeler, T.T., et al., Expansion of the Bactericidal/Permeability Increasing-like (BPI-like) protein locus in cattle. BMC Genomics,2007.8: p.75.
    94. 徐俊杰,徐静,王海涛,人、猴、兔BPI活性部位基因的克隆和序列分析.微生物学免疫学进展,2001(04):p.15-17.
    95. 程玉磊,鸡、猪、牛BPI活性部位基因的克隆和序列分析.2006,安徽农业大学.
    96. 郭向华.AAV2-BPI_(700)-Fcγ1_(700)重组病毒导入小鼠对致死量大肠埃希菌感染的保护作用机制.中华微生物学和免疫学杂志,2006(02):p. 150-154.
    97. Takahashi, M., Y. Horiuchi, and T. Tezuka, Presence of bactericidal/permeability-increasing protein in human and rat skin. Exp Dermatol,2004.13(1):p.55-60.
    98. Gazzano-Santoro, H., et al., High-affinity binding of the bactericidal/permeability-increasing protein and a recombinant amino-terminal fragment to the lipid A region of lipopolysaccharide. Infect Immun,1992.60(11):p.4754-61.
    99. Mannion, B.A., et al., Preferential binding of the neutrophil cytoplasmic granule-derived bactericidal/permeability increasing protein to target bacteria. Implications and use as a means of purification. J Immunol, 1989.142(8):p.2807-12.
    100. Wiese, A., et al., Mechanisms of action of bactericidal/permeability-increasing protein BPI on reconstituted outer membranes of gram-negative bacteria. Biochemistry,1997.36(33):p. 10311-9.
    101. Mannion, B.A., J. Weiss, and P. Elsbach, Separation of sublethal and lethal effects of the bactericidal/permeability increasing protein on Escherichia coli.J Clin Invest,1990.85(3):p.853-60.
    102. Elsbach, P., Recent advances in therapy of sepsis:focus on recombinant bactericidal/permeability-increasing protein (BPI). BioDrugs,1998.9(6): p.435-42.
    103. Levy, O., et al., Individual and synergistic effects of rabbit granulocyte proteins on Escherichia coli. J Clin Invest,1994.94(2):p.672-82.
    104. Elsbach, P., et al., The bactericidal/permeability increasing protein of neutrophils is a potent antibacterial and anti-endotoxin agent in vitro and in vivo. Prog Clin Biol Res,1994.388:p.41-51.
    105. Mannion, B.A., J. Weiss, and P. Elsbach, Separation of sublethal and lethal effects of polymorphonuclear leukocytes on Escherichia coli. J Clin Invest,1990.86(2):p.631-41.
    106. Levy, O., et al., Enhancement of neonatal innate defense:effects of adding an N-terminal recombinant fragment of bactericidal/permeability-increasing protein on growth and tumor necrosis factor-inducing activity of gram-negative bacteria tested in neonatal cord blood ex vivo. Infect Immun,2000.68(9):p.5120-5.
    107. Weiss, J., et al., Human bactericidal/permeability-increasing protein and a recombinant NH2-terminal fragment cause killing of serum-resistant gram-negative bacteria in whole blood and inhibit tumor necrosis factor release induced by the bacteria. J Clin Invest,1992.90(3):p.1122-30.
    108. Weiss, J., et al., The role of lipopolysaccharides in the action of the bactericidal/permeability-increasing neutrophil protein on the bacterial envelope. J Immunol,1984.132(6):p.3109-15.
    109. Capodici, C., et al., Effect of lipopolysaccharide (LPS) chain length on interactions of bactericidal/permeability-increasing protein and its bioactive 23-kilodalton NH2-terminal fragment with isolated LPS and intact Proteus mirabilis and Escherichia coli. Infect Immun,1994.62(1): p.259-65.
    110. Gunn, J., et al., PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Mol Microbiol,1998.27(6):p.1171-82.
    111. Groisman, E. and A. Aspedon, The genetic basis of microbial resistance to antimicrobial peptides. Methods Mol Biol,1997.78:p.205-15.
    112. Hancock, R., Antibacterial peptides and the outer membranes of gram-negative bacillixs. J. Med. Microbiol.,1997.46(1):p.1-3.
    113. Tobias, P.S., et al., Lipopolysaccharide (LPS)-binding proteins BPI and LBP form different types of complexes with LPS. J Biol Chem,1997. 272(30):p.18682-5.
    114. Wilde, C.G., et al., Bactericidal/permeability-increasing protein and lipopolysaccharide (LPS)-binding protein. LPS binding properties and effects on LPS-mediated cell activation. J Biol Chem,1994.269(26):p. 17411-6.
    115. Levy, O., et al., Antibacterial proteins of granulocytes differ in interaction with endotoxin. Comparison of bactericidal/permeability-increasing protein, p15s, and defensins. J Immunol,1995.154(10):p.5403-10.
    116. Arditi, M., et al., Bactericidal/permeability-increasing protein protects vascular endothelial cells from lipopolysaccharide-induced activation and injury. Infect Immun,1994.62(9):p.3930-6.
    117. Dentener, M.A., et al., Antagonistic effects of lipopolysaccharide binding protein and bactericidal/permeability-increasing protein on lipopolysaccharide-induced cytokine release by mononuclear phagocytes. Competition for binding to lipopolysaccharide. J Immunol,1993.151(8): p.4258-65.
    118. Iovine, N.M., P. Elsbach, and J. Weiss, An opsonic function of the neutrophil bactericidal/permeability-increasing protein depends on both its N-and C-terminal domains. Proc Natl Acad Sci U S A,1997.94(20):p. 10973-8.
    119. Levy, O., A neutrophil-derived anti-infective molecule: bactericidal/permeability-increasing protein. Antimicrob Agents Chemother,2000.44(11):p.2925-31.
    120. van der Schaft, D.W., et al., The antiangiogenic properties of bactericidal/permeability-increasing protein (BPI). Ann Med,2002.34(1): p.19-27.
    121. van der Schaft, D.W., et al., Bactericidal/permeability-increasing protein (BPI) inhibits angiogenesis via induction of apoptosis in vascular endothelial cells. Blood,2000.96(1):p.176-81.
    122. Wu, F.P., et al., Effects of major liver resection, with or without recombinant bactericidal/permeability-increasing protein (rBPI21), on the angiogenic profile of patients with metastatic colorectal carcinoma. J Surg Oncol,2003.84(3):p.137-42.
    123. Newman, S.L., et al., Identification of constituents of human neutrophil azurophil granules that mediate fungistasis against Histoplasma capsulatum. Infect Immun,2000.68(10):p.5668-72.
    124. Gavit, P. and M. Better, Production of antifungal recombinant peptides in Escherichia coli.J Biotechnol,2000.79(2):p.127-36.
    125. Khan, A.A., et al., Recombinant bactericidal/permeability-increasing protein (rBPI21) in combination with sulfadiazine is active against Toxoplasma gondii. Antimicrob Agents Chemother,1999.43(4):p.758-62.
    126. Esteve, E., et al., Circulating bactericidal/permeability-increasing protein (BPI) is associated with serum lipids and endothelial function. Thromb Haemost,2010.103(4):p.780-7.
    127. Wada, Y., et al., Anti-neutrophil cytoplasmic autoantibodies against bactericidal/permeability-increasing protein in patients with rheumatoid arthritis and their correlation with bronchial involvement. Mod Rheumatol, 2010.20(3):p.252-6.
    128. Li, C., et al., Protection of mice from lethal endotoxemia by chimeric human BPI-Fcgammal gene delivery. Cell Mol Immunol,2006.3(3):p. 221-5.
    129. 安云庆,BPI23-Fcgl重组蛋白的研究.
    130. 马艳,BPI_(23)-haFGF融合蛋白的鉴定及其生物活性研究.基础医学与临床,2008(12):p.1266-1270.
    131. Horwitz, A.H., et al., rBPI(10-193) is secreted by CHO cells and retains the activity of rBPI21. J Endotoxin Res,2004.10(2):p.97-106.
    132. 王红云.不同剂量BPI-1095对大鼠局灶性脑缺血损伤后Bcl-2蛋白表达的影响.中国卒中杂志,2008(09):p.654-657.
    133. 张海燕,刘金梅,毛景欣,杀菌性/通透性增加蛋白(BPI)及其在荣昌猪抗病育种上的研究进展.畜禽业,2009(09):p.36-39.
    134. 袁树楷,荣昌猪BPI基因全长cDNA克隆及SNP分析.2007,西南大学.
    135. 曹晓华,四个猪种间BPI蛋白基因外显子3和4的SNP分析.2008,西南大学.
    136. Lunney, J.K., et al., Molecular genetics of the swine major histocompatibility complex, the SLA complex. Dev Comp Immunol,2009. 33(3):p.362-74.
    137. Rothschild, M.F., et al., Genetic variability at the pig SLA complex in U.S. breeds of pigs. Anim Blood Groups Biochem Genet,1983.14(4):p.251-5.
    138. Fang, M.Y., et al., [Polymorphism analysis of the exon 2 of SLA-DQB gene in Xiao Meishan, Zhong Meishan and Yorkshire pigs with PCR-RFLP]. Yi Chuan Xue Bao,2002.29(8):p.685-7.
    139. Tanaka, M., et al., Development of dense microsatellite markers in the entire SLA region and evaluation of their polymorphisms in porcine breeds. Immunogenetics,2005.57(9):p.690-6.
    140. Gao, F.S., et al., Reconstruction of a swine SLA-I protein complex and determination of binding nonameric peptides derived from the foot-and-mouth disease virus. Vet Immunol Immunopathol,2006.113(3-4): p.328-38.
    141. Ho, C.S., et al., Characterization of swine leukocyte antigen polymorphism by sequence-based and PCR-SSP methods in Meishan pigs. Immunogenetics,2006.58(11):p.873-82.
    142. Nino-Soto, M.I., et al., Analysis of gene expression patterns by microarray hybridization in blood mononuclear cells of SLA-DRB1 defined Canadian Yorkshire pigs. BMC Res Notes,2008.1:p.31.
    143. Lee, Y.J., et al., Sequence-based characterization of the eight SLA loci in Korean native pigs. Int J Immunogenet,2008.35(4-5):p.333-4.
    144. Ho, C.S., et al., Molecular characterization of swine leucocyte antigen class Ⅱ genes in outbred pig populations. Anim Genet,2010.41(4):p. 428-32.
    145. Ho, C.S., et al., Molecular characterization of swine leucocyte antigen class I genes in outbred pig populations. Anim Genet,2009.40(4):p. 468-78.
    146. Park, K., et al., Simple and comprehensive SLA-DQBI genotyping using genomic PCR and direct sequencing. Tissue Antigens,2010.76(4):p. 301-10.
    147. Gao, Y., et al., Transcriptome analysis of porcine PBMCs after in vitro stimulation by LPS or PMA/ionomycin using an expression array targeting the pig immune response. BMC Genomics,2010.11:p.292.
    148. Fairbrother, J.M., E. Nadeau, and C.L. Gyles, Escherichia coli in postweaning diarrhea in pigs:an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev,2005.6(1):p.17-39.
    149. Coddens, A., et al., The possibility of positive selection for both F18(+)Escherichia coli and stress resistant pigs opens new perspectives for pig breeding. Vet Microbiol,2008.126(1-3):p.210-5.
    150. Zhang, B., et al., Investigation of the porcine MUC13 gene:isolation, expression, polymorphisms and strong association with susceptibility to enterotoxigenic Escherichia coli F4ab/ac. Anim Genet,2008.39(3):p. 258-66.
    151. Yan, X., et al., Distribution of Escherichia coli F4 adhesion phenotypes in pigs of 15 Chinese and Western breeds and a White DurocxErhualian intercross. J Med Microbiol,2009.58(Pt 8):p.1112-7.
    152. Jacobsen, M., et al., Refined candidate region specified by haplotype sharing for Escherichia coli F4ab/F4ac susceptibility alleles in pigs. Anim Genet,2010.41(1):p.21-5.
    153. Bao, W.B., et al., Evaluation of M307 of FUT1 gene as a genetic marker for disease resistance breeding of sutai pigs. Mol Biol Rep,2011.
    154. Wu, S.L., et al., [Analysis of genetic variations at M857 locus of the al-Fucosy-trans-ferase (FUT1) ORF in pigs]. Yi Chuan,2007.29(9):p. 1071-6.
    155. Uenishi, H. and H. Shinkai, Porcine Toll-like receptors:the front line of pathogen monitoring and possible implications for disease resistance. Dev Comp Immunol,2009.33(3):p.353-61.
    156. Kojima-Shibata, C., et al., Differences in distribution of single nucleotide polymorphisms among intracellular pattern recognition receptors in pigs. Immunogenetics,2009.61(2):p.153-60.
    157. Jozaki, K., et al., Influence of polymorphisms in porcine NOD2 on ligand recognition. Mol Immunol,2009.47(2-3):p.247-52.
    158. Uenishi, H., et al., Polymorphisms in pattern recognition receptors and their relationship to infectious disease susceptibility in pigs. BMC Proc, 2011.5 Suppl4:p. S27.
    159. Lam-Yuk-Tseung, S., V. Picard, and P. Gros, Identification of a tyrosine-based motif (YGSI) in the amino terminus of Nrampl (Slcllal) that is important for lysosomal targeting. J Biol Chem,2006.281(42):p. 31677-88.
    160. Tuggle, C.K., C.B. Schmitz, and D. Gingerich-Feil, Rapid communication: cloning of a pig full-length natural resistance associated macrophage protein (NRAMP1) cDNA. J Anim Sci,1997.75(1):p.277.
    161. Sun, H.S., et al., Mapping of the natural resistance-associated macrophage protein 1 (NRAMP1) gene to pig chromosome 15. Anim Genet, 1998.29(2):p.138-40.
    162. Horin, P. and J. Matiasovic, Two polymorphic markers for the horse SLC11A1 (NRAMP1) gene. Anim Genet,2000.31(2):p.152.
    163. Zhang, G., et al., Cloning of porcine NRAMP1 and its induction by lipopolysaccharide, tumor necrosis factor alpha, and interleukin-1 beta: role of CD14 and mitogen-activated protein kinases. Infect Immun,2000. 68(3):p.1086-93.
    164. Wu, H., D. Cheng, and L. Wang, Association of polymorphisms of Nrampl gene with immune function and production performance of Large White pig. J Genet Genomics,2008.35(2):p.91-5.
    165. Nakajima, E., et al., A naturally occurring variant of porcine Mxl associated with increased susceptibility to influenza virus in vitro. Biochem Genet,2007.45(1-2):p.11-24.
    166. Lunney, J.K. and H. Chen, Genetic control of host resistance to porcine reproductive and respiratory syndrome virus (PRRSV) infection. Virus Res, 2010.154(1-2):p.161-9.
    167. Wang, S.J., et al., Effects of the polymorphisms of Mxl, BAT2 and CXCL12 genes on immunological traits in pigs. Mol Biol Rep,2011.
    168. 杨海玲,曾勇庆,王慧,猪抗病和免疫相关候选基因能研究进展.猪业科学,2010.1:p.92-94.
    169. Liu, X.-D., et al., Molecular Characterization of Caveolin-1 in Pigs Infected with Haemophilus parasuis. J. Immunol.,2011.186(5):p. 3031-3046.
    170. Diack, A.B., et al., Associations between polymorphisms in the porcine haptoglobin gene and baseline levels of serum haptoglobin. Dev Biol (Basel),2008.132:p.255-9.
    171. Gong, Y.F., et al., Detection of quantitative trait loci affecting haematological traits in swine via genome scanning. BMC Genet,2010. 11:p.56.
    172. Wimmers, K., et al., QTL for traits related to humoral immune response estimated from data of a porcine F2 resource population. Int J Immunogenet,2009.36(3):p.141-51.
    173. Reiner, G, et al., Genetic resistance to Sarcocystis miescheriana in pigs following experimental infection. Vet Parasitol,2007.145(1-2):p.2-10.
    174. Reiner, G., et al., Mapping of quantitative trait loci affecting resistance/susceptibility to Sarcocystis miescheriana in swine. Genomics, 2007.89(5):p.638-46.
    175. St Clair, D.A., Quantitative disease resistance and quantitative resistance Loci in breeding. Annu Rev Phytopathol,2010.48:p.247-68.
    176. 陈红跃.荣昌猪种质资源调查报告.养猪,2009.5:p.33-36.
    177. 张毅,向钊,朱丹,荣昌猪与外品种猪哺乳仔猪死亡原因研究.中国畜牧兽医,2004.31(5):p.46-48.
    178. 赵敏.荣昌猪的品种特性与发展现状.中国牧业通讯,2009.22:p.32-34.
    179. 朱砺,李学伟,帅素蓉,兰尼定受体基因在新荣昌猪中的分布及其对胴体和肉质性状的效应分析.中国畜牧杂志,2005.41(4):p.14-16.
    180. Pang, W.J., et al., [Relationship Between Molecular Marker of Western Main Pig H-FABP Gene and IMF Content.]. Yi Chuan,2005.27(3):p. 351-6.
    181. Pang, W.J., L. Bai, and G.S. Yang, Relationship among H-FABP gene polymorphism, intramuscular fat content, and adipocyte lipid droplet content in main pig breeds with different genotypes in western China. Yi Chuan Xue Bao,2006.33(6):p.515-24.
    182. 张保军.猪LPL基因PCR-RFLP遗传变异的研究.西北农林科技大学学报:自然科学版,2005.33(3):p.5-10.
    183. Song, C.Y., et al., Polymorphisms in intron 1 of the porcine POU1F1 gene. J Appl Genet,2007.48(4):p.371-4.
    184. Fang, Q., et al., Characterization of methionine adenosyltransferase 2beta gene expression in skeletal muscle and subcutaneous adipose tissue from obese and lean pigs. Mol Biol Rep,2010.37(5):p.2517-24.
    185. Liu, L., et al., Construction of a bacterial artificial chromosome library for the Rongchang pig breed and its use for the identification of genes involved in intramuscular fat deposition. Biochem Biophys Res Commun, 2010.391(2):p.1280-4.
    186. Wang, Q., et al., The mRNA of lipinl and its isoforms are differently expressed in the longissimus dorsi muscle of obese and lean pigs. Mol Biol Rep,2011.38(1):p.319-25.
    187. 张芳,郭万柱,吴华,荣昌猪白细胞介素-2基因的原核表达.中国预防兽医学报,2007.29(5):p.355-358.
    188. 张芳,郭万柱,,吴华,荣昌猪白细胞介素-2和白细胞介素-4基因的克隆与序列分析.黑龙江畜牧兽医,2007.1:p.10-12.
    189. 吴华.荣昌猪白细胞介素-6基因的克隆与序列分析.黑龙江畜牧兽医,2007.5:p.18-20.
    190. 骆爱芳.荣昌猪白细胞介素15成熟肽基因的克隆、表达及其表达产物活性检测.畜牧兽医学报,2007.38(12):p.1351-1356.
    191. 李晓琪,.荣昌猪白细胞介素-10(11-1 0)基因的克隆及原核表达.安徽农业科学,2007.35(15):p.4446-4447.
    192. 王秀.荣昌猪Y-干扰素基因的克隆及测序,in中国畜牧兽医学会家畜 传染病学分会第七届全国会员代表大会暨第十三次学术研讨会论文集(下册).2009.
    193. 张海爿,.荣昌猪和3种瘦肉型猪胞内氯离子通道5基因多态性的分布.中国畜牧杂志,2010.11:p.22-24.
    194. Li, F.N., et al., Chloride intracellular channel 5 modulates adipocyte accumulation in skeletal muscle by inhibiting preadipocyte differentiation. J Cell Biochem,2010.110(4):p.1013-21.
    195. Shi, K.R., et al., [Effect study of white locus (I) on coat color inheritance in Chinese native pig breeds]. Yi Chuan Xue Bao,2005.32(3):p.275-81.
    196. 王金勇.荣昌猪typ基因克隆及其序列分析.西南农业大学学报,2004.26(3):p.245-248.
    197. 白小青,.荣昌猪tyr基因的克隆测序及多态性检测.西北农林科技大学学报:自然科学版,2004.32(8):p.81-84.
    198. 白小青,王金勇,猪tyr基因外显子1的克隆测序及序列分析.上海畜牧兽医通讯,2004.6:p.8-10.
    199. Jiang, C.D., S. Li, and C.Y. Deng, Assessment of genomic imprinting of PPP1R9A, NAP1L5 and PEG3 in pigs. Genetika,2011.47(4):p.537-42.
    200. 白小青,.荣昌猪仔猪性别间DNA甲基化水平的差异研究.中国畜牧杂志,2010.13:p.12-13.
    201. 无,中国工程院院士陈焕春认为:当前规模猪场病毒病趋向缓和细菌病呈上升态势.养猪,2008.6:p.55-55.
    202. Nakayama, Y., et al., Prostaglandin E2 production by human bone marrow cells:a comparison with peripheral blood mononuclear cells. Tohoku J Exp Med,1984.144(4):p.417-23.
    203. 司徒镇强,吴军正,.细胞培养.2 ed.2007,世界图书出版公司:北京.356.
    204. 刘新平..临床血液学检验.1 ed.军事医学科学出版社2009,:北京.396.
    205. Sasajima, J., et al., Transplanting normal vascular proangiogenic cells to tumor-bearing mice triggers vascular remodeling and reduces hypoxia in tumors. Cancer Res,2010.70(15):p.6283-92.
    206. 刘宏伟.骨髓单核细胞移植治疗兔心肌梗死的实验研究.医学研究生学报,2005.18(5):p.412-414.
    207. van Bekkum, D.W., The pluripotent hemopoietic stem cell:its identification and applications. Verh Dtsch Ges Pathol,1990.74:p.19-24.
    208. Fu, R., et al., [Preliminary study of "erythroblast island" in the bone marrow of hematocytopenic patients with positive BMMNC-Coombs test.]. Zhonghua Xue Ye Xue Za Zhi,2010.31(11):p.763-766.
    209. 黄劲松.经心外膜向心肌移植自体骨髓单核细胞治疗急性心肌梗死的实验研究.南方医科大学学报,2008.28(5):p.849-851.
    210. Ishida, M., et al., Bone marrow mononuclear cell transplantation had beneficial effects on doxorubicin-induced cardiomyopathy. J Heart Lung Transplant,2004.23(4):p.436-45.
    211. Marijt, W.A., et al., Minor histocompatibility antigen-specific cytotoxic T cell lines, capable of lysing human hematopoietic progenitor cells, can be generated in vitro by stimulation with HLA-identical bone marrow cells. J Exp Med,1991.173(1):p.101-9.
    212. Buhring, H.J., et al., The monoclonal antibody 11G7 recognizes a novel differentiation antigen expressed on hemopoietic precursor cells. Hybridoma,1991.10(1):p.77-88.
    213. Nichogiannopoulou, A., et al., Defects in hemopoietic stem cell activity in Ikaros mutant mice. J Exp Med,1999.190(9):p.1201-14.
    214. Machalinski, B., et al., An optimization of isolation of early hematopoietic cells from heparinized cadaveric organ donors. Transplant Proc,2003. 35(8):p.3096-100.
    215. Jia, G.Q., et al., [Effects of the different culture and isolation methods on the growth, proliferation and biology characteristics of rat bone marrow mesenchymal stem cells]. Sichuan Da Xue Xue Bao Yi Xue Ban,2009. 40(4):p.719-23.
    216. 刘云霞,不同细胞因子组合对体外培养人脐带血造血干细胞的扩增效果.中国组织工程研究与临床康复,2007(03):p.401-404.
    217. 付胜良,TGF-β1-和bFGF对骨髓基质干细胞增殖、分化的影响.中国骨肿瘤骨病,2006.
    218. Asada-Mikami, R., et al., Increased expansion of V alpha 24+ T cells derived from G-CSF-mobilized peripheral blood stem cells as compared to peripheral blood mononuclear cells following alpha-galactosylceramide stimulation. Cancer Sci,2003.94(4):p.383-8.
    219. de Kreuk, A.M., et al., Storage of unprocessed G-CSF-mobilized whole blood in a modified Leibovitz's L15 medium preserves clonogenic capacity for at least 7 days. Bone Marrow Transplant,2001.28(2):p.145-55.
    220. Cohly, H., et al., Cell culture conditions affect LPS inducibility of the inflammatory mediators in J774A.1 murine macrophages. Immunol Invest, 2001.30(1):p.1-15.
    221. Nardi, N.B., et al., Effect of IL-3 and E. coli LPS on the proliferation of mouse bone marrow cells in vitro. Braz J Med Biol Res,1991.24(11):p. 1133-5.
    222. 孙宏伟.体外培养基中加入细胞生长因子诱导大鼠骨髓单个核细胞向内皮细胞的分化.中国组织工程研究与临床康复,2008.
    223. Jianguo, W., et al., Optimization of culture conditions for endothelial progenitor cells from porcine bone marrow in vitro. Cell Prolif,2010. 43(4):p.418-26.
    224. Kadota, J., et al., [Studies on defense effects of recombinant human granulocyte colony-stimulating factor (G-CSF) to infections. Ⅱ. Priming effect for superoxide production by human neutrophil]. Kansenshogaku Zasshi,1990.64(4):p.430-5.
    225. Khan, M., et al., IGF-1 and G-CSF complement each other in BMSC migration towards infarcted myocardium in a novel in vitro model. Cell Biol Int,2009.33(6):p.650-7.
    226. Emerson, S., Ex vivo expansion of hematopoietic precursors, progenitors, and stem cells:the next generation of cellular therapeutics. Blood,1996. 87(8):p.3082-3088.
    227. 郝牧.不同培养体系对脐带血造血干细胞扩增的影响.生物医学工程与临床,2008(04):p.295-298.
    228. 孔佩艳..细胞因子组合对小鼠骨髓单核细胞的体外扩增作用.第三军医大学学报,2001(10):p.1167-1169.
    229. 林竞韧,郭坤元,严定安,人骨髓基质干细胞克隆对脐血造血干细胞体外扩增作用的研究.中国现代医学杂志,2003(06):p.8-11.
    230. Su, X.L., et al., Insulin-mediated upregulation of K(Ca)3.1 channels promotes cell migration and proliferation in rat vascular smooth muscle. J Mol Cell Cardiol,2011.51(1):p.51-7.
    231. Barkalaia, A.I. and T.G. Krylova, [Stimulating effect of insulin on the process of bone-marrow hematopoiesis in acute radiation sickness]. Radiobiologiia,1972.12(1):p.103-7.
    232. Barkalaia, A.I., [Influence of insulin on the mitotic activity of the bone marrow cells following irradiation]. Med Radiol (Mosk),1976.21(2):p. 78-9.
    233. Miyagawa, S., et al., Insulin and insulin-like growth factor I support the proliferation of erythroid progenitor cells in bone marrow through the sharing of receptors. Br J Haematol,2000.109(3):p.555-62.
    234. Malgor, L.A., et al., Effects of dexamethasone on bone marrow erythropoiesis. Horm Res,1974.5(5):p.269-77.
    235. Urabe, A., J. Hamilton, and S. Sassa, Dexamethasone and erythroid colony formation:contrasting effects in mouse and human bone marrow cells in culture. Br J Haematol,1979.43(3):p.479-80.
    236. Pharoah, M.J. and J.N. Heersche, Dexamethasone inhibits formation of osteoclast-like cells in bone-marrow cultures. J Dent Res,1986.65(7):p. 1006-9.
    237. 尹萌,戚向敏,潘燕,华山,白细胞介素-1β(IL-1β)和地塞米松对成纤维细胞增殖的影响.临床口腔医学杂志,2011.
    238. Calafat, J., et al., The bactericidal/permeability-increasing protein (BPI) is membrane-associated in azurophil granules of human neutrophils, and relocation occurs upon cellular activation. APMIS,2000.108(3):p. 201-8.
    239. Hamano, T. and K. Nagai, Effects of allogeneic stimulations on the proliferation and differentiation of the hemopoietic stem cell. Transplantation,1978.25(1):p.23-6.
    240. van Bekkum, D.W., et al., Structural identity of the pluripotential hemopoietic stem cell. Blood Cells,1979.5(2):p.143-59.
    241. Broxmeyer, H.E., et al., Effects of in vivo treatment with PIXY321 (GM-CSF/IL-3 fusion protein) on proliferation kinetics of bone marrow and blood myeloid progenitor cells in patients with sarcoma. Exp Hematol, 1995.23(4):p.335-40.
    242. 张焱焱,褚立明,胰岛素对危重创伤患者中性粒细胞凋亡的调节.河北医科大学学报,2009.
    243. 许婷婷.人脐带间充质干细胞对小鼠衰老进程中骨髓细胞集落生成的影响.暨南大学学报(自然科学与医学版),2009(06):p.614-618.
    244. Aoki, I., et al., Stimulatory effect of human insulin on erythroid progenitors (CFU-E and BFU-E) in human CD34+ separated bone marrow cells and the relationship between insulin and erythropoietin. Stem Cells,1994.12(3):p.329-38.
    245. 冯刚,曹凡凡,俞思伟等,胰岛素强化治疗对严重创伤患者外周血多形核中性粒细胞凋亡影响.岭南急诊医学杂志,2010.
    246. Kasugai, S., et al., Expression of bone matrix proteins associated with mineralized tissue formation by adult rat bone marrow cells in vitro: inductive effects of dexamethasone on the osteoblastic phenotype. J Cell Physiol,1991.147(1):p.111-20.
    247. 刘为义,李作吉,杨光,地塞米松致白细胞增多不良反应38例分析.药学实践杂志,2006.
    248. Ding, J., K. Nagai, and J.T. Woo, Insulin-dependent adipogenesis in stromal ST2 cells derived from murine bone marrow. Biosci Biotechnol Biochem,2003.67(2):p.314-21.
    249. von Haefen, C., et al., Ethanol changes gene expression of transcription factors and cytokine production of CD4+ T-cell subsets in PBMCs stimulated with LPS. Alcohol Clin Exp Res,2011.35(4):p.621-31.
    250. Wu, C.X., et al., LPS Induces HMGB1 Relocation and Release by Activating the NF-kappaB-CBP Signal Transduction Pathway in the Murine Macrophage-Like Cell Line RAW264.7. J Surg Res,2011.
    251. Kono, T. and M. Sakai, Molecular cloning of a novel bactericidal permeability-increasing protein/lipopolysaccharide-binding protein (BPI/LBP) from common carp Cyprinus carpio L. and its expression. Mol Immunol,2003.40(5):p.269-78.
    252. Eckert, M., et al., Endotoxin-induced expression of murine bactericidal permeability/increasing protein is mediated exclusively by toll/IL-1 receptor domain-containing adaptor inducing IFN-beta-dependent pathways. J Immunol,2006.176(1):p.522-8.
    253. Schulman, K.A., et al., Prospective economic evaluation accompanying a trial of GM-CSF/IL-3 in patients undergoing autologous bone marrow transplantation for Hodgkin's and non-Hodgkin's lymphoma. IL-3 BMT Study Team. Bone Marrow Transplant,1998.21(6):p.607-14.
    254. Nowak, R., et al., Relations between IL-3-induced proliferation and in vitro cytokine secretion of bone marrow cells from AML patients. Cytokine, 1999.11(6):p.435-42.
    255. Zhang, Z., et al., [The influence of IL-3 on the differentiation and development of dendritic cells from mouse bone marrow]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi,2004.21(2):p.233-7.
    256. Reichel, P.H., et al., Bactericidal/permeability-increasing protein is expressed by human dermal fibroblasts and upregulated by interleukin 4. Clin Diagn Lab Immunol,2003.10(3):p.473-5.
    257. Xiao, Y., et al., Dexamethasone treatment during the expansion phase maintains stemness of bone marrow mesenchymal stem cells. J Tissue Eng Regen Med,2010.4(5):p.374-86.
    258. 林嘉鹏.,新疆褐牛Toll样受体基因(TLR4)外显Ⅲ2021位点突变与奶牛体细胞评分的相关性研究.农业生物技术学报,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700