水溶性侧链含多胺基的聚合物的合成及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
把生物多胺小分子引入到聚合物(特别是结构规整的嵌段共聚物)中得到的多胺聚合物,与生物多胺小分子一样具有一系列的生物学性能,在生物体的生理过程中如细胞新陈代谢,DNA复制等起着非常重要的作用,而且聚合物的链结构有利于胺基的稳定和功能基团的发挥。本文系统介绍了胺基的性质,常见多胺聚合物的结构、合成方法以及在工业生产中的应用;并且研究了多胺聚合物的特征和在水溶液中的自组装结构和在生物材料方面的初步应用。研究了多胺聚合物均聚物或嵌段共聚物的合成方法,在水溶液中形成的聚集体形态,通过调控水溶液的pH值,水溶液的温度或者水溶液的盐浓度,来调节水溶液中聚合物自组装形成的聚集体的聚集形态。
     (1)制备了含胺结构的单体5-甲基丙烯酰胺基戊胺盐酸盐(MAAPA),以大分子引发剂单甲基聚乙二醇偶氮二异氰基戊酸(mPEG-ACVA)为引发剂在水溶液中通过自由基聚合的方法合成了pH敏感的多胺嵌段共聚聚合物。通过1H-NMR, GPC-MALLS和元素分析表征了聚合物的结构和分子量。此外,通过动态光散射(DLS),透射电镜(TEM),共振光散射研究了在水溶液中pH值,盐浓度与聚合物的自组装的聚集体尺寸大小。从DLS和TEM的实验结果可以得出,随着水溶液pH值的升高,聚合物中的亲水基团质子化的铵基逐渐去质子化,聚集体的疏水基团增加,而且去质子化后的氨基形成的氢键相互作用力增大,使得聚集体聚集,引起聚集体的尺寸变大,当聚集体中的质子化的NH3+越来越少时,聚集体就会沉淀出来;而当水溶液中盐的浓度增加时,溶液中的离子浓度变大,聚集体表面电荷作用力增加,使得聚集体尺寸变小。而共振光散射的强度和聚集体的大小有很大的关系,所以随着pH值的降低,盐浓度的增加,共振光散射强度减小
     (2)制备了多胺单体N’-(4-乙烯苄基)-1,5-戊二胺盐酸盐(VBPDA),以偶氮二异氰基戊酸(ACVA)为引发剂在水溶液中通过自由基聚合的方法合成了pH敏感的多胺聚合物。通过FTIR,1H-NMR和GPC-MALLS表征了聚合物的一级结构和分子量。此外,通过动态光散射(DLS),透射电镜(TEM),紫外光谱,共振光散射和荧光光谱计研究了在水溶液中pH值,盐浓度与聚合物的自组装的聚集体尺寸大小,光学性质的关系。从DLS和TEM的实验结果可以得出,水溶液的pH变化对水溶液中聚集体的尺寸影响比水溶液的盐浓度的影响要大:随着水溶液pH值的升高,聚合物中的亲水基团质子化的铵基逐渐去质子化,聚集体的疏水基团增加,而且去质子化后的氨基形成的氢键相互作用力增大,使得聚集体聚集,引起聚集体的尺寸变大,当聚集体中的质子化的铵基越来越少时,聚集体就会沉淀出来;而当水溶液中盐的浓度增加时,溶液中的离子浓度变大,电荷间作用力增强,使得聚集体尺寸变小。而共振光散射的强度和聚集体的大小有很大的关系,所以随着pH值的降低,盐浓度的增加,共振光散射强度减小。对于光学性质的影响,主要是由于发射基团芳香环周围的电荷变化,使得紫外吸收和发射荧光强度发生了改变,随着pH值的降低或者盐浓度的增加,荧光强度变大。
     (3)合成含有侧链正戊二胺的PVBPDA直链和亲水的mPEG直链组成的两嵌段多胺共聚物mPEG-b-PVBPDA。通过’H-NMR和GPC-MALLS表征了聚合物的结构和分子量。双亲水嵌段聚合物mPEG-b-PVBPDA在水溶液中能够自组装,改变水溶液的pH或者水溶液的温度来调节嵌段共聚合物的自组装行为。使用态光散射(DLS),紫外光谱,共振光散射和荧光光谱研究了聚合物在水溶液中自组装的聚集体尺寸大小,光学性质的关系与水溶液的pH值,温度的关系。随着水溶液的pH值的升高,嵌段共聚物中的质子化的氨基去质子化后,疏水链增多,水溶液中的小聚集体由于氨基的氢键的相互作用发生了聚集,而且随着pH值的升高,形成了以PVBPDA为核,mPEG为壳的核壳结构,所以随着pH值的升高,水溶液中聚集体的尺寸变大,DLS测得的流体力学半径随着pH值的升高而变大,共振光散射的强度也会升高。而随着pH值的升高,紫外吸收强度,荧光的强度由于发射官能团芳香环周围电子密度降低,所以强度都会减弱。而水溶液的温度变化,使得分子的动能增加,聚集体的尺寸变小,但是氨基形成的氢键作用力比较大,所以聚集体的大小随温度变化较小。
     同时初步研究了多胺嵌段共聚物分别与DNA, BSA形成的生物大分子在水溶液中的自组装行为与构象的变化。在对DNA转染后,形成了生物大分子,通过凝胶电泳研究了合成的三种嵌段共聚物与DNA的相互作用形成的聚电解质生物大分子的电泳,可以得出嵌段共聚物中氨基的含量越高,对DNA的转染效率越高;通过共振光散射研究了含有不同聚合物的聚电解质在水溶液中聚集体的尺寸变化,随着多胺聚合物的加入,聚集体尺寸变大,当达到1:1后,聚集体的尺寸变化比较小。也用圆二色光谱仪(CD光谱仪)来测量了DNA与不同量的多胺聚合物相互作用后生成的聚电解质的构象变化,发现直线型的多胺聚合物使得DNA的构象发生了改变,手性变低。而多胺聚合物与BSA形成的聚电解质在水溶液中的聚集体通过DLS,功能荧光来研究,随着多胺聚合物的加入,BSA和多胺聚合物中的氨基相互作用,生成大的生物大分子,形成的聚集体逐渐变大;用CD光谱仪测定了形成的生物大分子的圆二色谱光谱,通过CD Pro软件计算,其中生物大分子中的α-螺旋结构随着多胺聚合物的加入逐渐变少,而生物大分子中的p-螺旋结构随着多胺聚合物的加入逐渐增加,表明了多胺加入后,诱发蛋白质BSA的多肽键断裂,断裂后的多肽键重新组合后,形成了新的手性构象的多肽键。
     (4)水溶性的嵌段准聚轮烷大分子通过含有侧链戊二胺基团的嵌段聚合物mPEG-b-PVBPDA和葫芦脲CB[6]在水溶液中相互作用来制备。嵌段准聚轮烷可以通过调节聚合物与CB[6]不同的摩尔比来调配准聚轮烷中CB[6]的含量。含有不同量CB[6]的准聚轮烷的性质通过元素分析,核磁来表征并且推算出CB[6]的准确含量。这些准聚轮烷在水溶液中的自组装现象通过动态光散射(DLS),透射电镜(TEM),紫外光谱,共振光散射和荧光光谱来研究。同时,研究了的含有不同含量的CB[6]的嵌段准聚轮烷水溶液的聚集形态与水溶液温度的关系。DLS, TEM和共振光散射的实验数据表明随着随着CB[6]含量的增加,水溶液中准聚轮烷形成的聚集体的尺寸变大,可能是随着CB[6]的加入,与嵌段共聚物中的亲水的正戊二胺基团形成轮烷结构后,亲水性链端变为疏水链端,聚集体发生了膨胀;另外一个可能的原因是分子本身的体积随着CB[6]的加入也逐渐变大,这两种原因使得聚集体尺寸变大;由双亲水嵌段共聚物变为两亲性嵌段准聚轮烷,在水溶液中聚集成“核壳”结构,由于中间的核太大所以在TEM中外面的PEG链就没法显示出来。所以随着CB[6]含量的增加,聚集体尺寸逐渐变大,而且越来越紧密。
     也研究了水溶液的温度对于不同含量CB[6]的嵌段准聚轮烷的聚集体的聚集形态的影响。从DLS的数据可以看出,随着温度的升高,聚集体的尺寸逐渐变小,但是从35到45℃温度变化时,聚集体的尺寸变化不大。而且当温度为0℃时,由CB[6]与嵌段共聚物mPEG-b-PVBPDA按1:1摩尔比形成的嵌段准聚轮烷,在水溶液中形成的聚集体在水溶液中沉淀出来,嵌段准聚轮烷疏水链太多,形成的聚集体太大,由于低温下,分子运动动能小,所以产生了沉淀现象。共振光散射强度随温度变化的趋势与DLS测得的水溶液中聚集体随温度变化的趋势一致。
In the field of polymer science it has been of great interest to combine properties of useful functional groups and polymers, especially well-defined block copolymers. The application of this approach provides a prospect of modifying polymer constitution to discovery new type of polymer which can be used as a pharmacological tool. Aminated polyelectrolytes have caused a great deal of attention because of their applications in drug delivery, immobilization matrices for enzymes and cells, and tissue engineering. As a matter of fact, the incorporation of primary amino groups onto the polymer backbone can tune both stabilization of polymer fragment and the useful biological activity of amino groups, which are among the most important classes of polyelectrolytes.
     Amino functionalized polymers aggregate to spherical, cylindrical, tubular and vesicular phases in selective solvent spontaneously. Such aggregations can be used as templates for making nano-materials, immobilization matrices for enzymes and cells, and tissue engineering, and applicated in drug delivery such as vesicles possessing nano-sized hollow cubages.
     We summarize the amino group properties; structures, synthesis and industrial applications of cationic polyelectrolyte; characteristics and aggregation of polyelectrolyte solution. In this paper, we study on the synthesis methods, conformation and self-assembly behavior of amino functional cationic homo-or block polyelectrolytes. We try to find out the relationship between the aggregation structures and self-assembly condition, by which to analyses the self-assembly mechanism and control the aggregation.
     (1) A water-soluble monomer methacrylamido-pentylamine hydrochloride (MAAPA) was synthesized. The block copolymers were prepared by free radical polymerization using macroinitiator bis[methoxy poly(ethylene glycol) ethyl]4,4'-(diazene-1,2-diyl)bis(4-cyano-pentanoate)(mPEG-ACVA) as the initiator. The structure and molecular weight of polymers were characterized by1H-NMR and GPC-MALLS. Aggregation behavior of the polymer in aqueous solution was investigated by dynamic light scattering (DLS), TEM and Resonance Light Scattering (RLS) spectra. The experimental results show that the fluorescence intensity of the aggregates reduces and the size of the aggregates increases due to the amino groups with increasing solution pH. It was demonstrated that polyelectrolyte having a pH-responsive polyamine segment in water in prompt response to pH. Also the NaCl concentration could effect the size of the aggregates.
     (2) A water-soluble monomer N1-(4-vinylbenzyl)-pentane-1,5-diamine dihydrochloride (VBPDA)(with cadaverine salts) was synthesized. The polymers with cadaverine side groups were prepared by free radical polymerization using4',4'-azobis(4-cyanovaleric acid)(ACVA) as the initiator. The structure and molecular weight of polymers were characterized by FTIR,1H-NMR and GPC-MALLS. Aggregation behavior of the polymer in aqueous solution was investigated by dynamic light scattering (DLS), UV-spectrophotometer, RLS and fluorescence spectra. The experimental results show that the fluorescence intensity of the aggregates reduces and the size of the aggregates increases due to the cadaverine side groups with increasing solution pH. It was demonstrated that polyelectrolyte having a pH-responsive polyamine segment in water in prompt response to pH and the sizes of aggregates are in the range of23to406nm, increasing with the increase of pH.
     (3) A new pH-responsive diblock copolymer, methoxy poly (ethylene glycol)-b-poly[N1-(4-vinylbenzyl) pentane-1,5-diamine dihydrochloride](mPEG-b-PVBPDA). The monomer with cadaverine side group (N1-(4-vinylbenzyl) pentane-1,5-diamine dihydrochloride, VBPDA) and macro-initiator (mPEG-ACVA) were synthesized, respectively, and mPEG-b-PVBPDA was then obtained by free radical polymerization. The synthesis of mPEG-b-PVBPDA was confirmed by FTIR,1H NMR and GPC-MALLS measurements. At low pH, it is hydrophilic due to the protonation of the amine groups. With increasing pH, deprotonation occurs and the hydrophobicity of PVBPDA block increases. This molecular feature leads to interesting aggregation behavior of mPEG-b-PVBPDA in aqueous solutions at different pH as revealed by DLS measurements, TEM observations; RLS and fluorescence spectrometry. This polymer was further subjected to gene delivery evalutions and promising DNA transfection capacity has been found.
     In comparison, comb-like copolymers, consisting of the same hydrophobic PVBPDA backbone at high-pH, albeit with non-interaction hydrophilic mPEG polymer side chain, could self-assemble only into hollow nanoparticles of single-wall in aqueous media. Moreover, the copolymer aggregates exhibit a reversible change in fluorescence intensity in aqueous media within a pH range of2.6to10.8. Finally, the transfection activity of mPEG-b-PVBPDA as novel carrier for synthetic DNA in gene therapy was evaluated.
     (4) A novel water-soluble block polypseudorotaxanes is synthesized in water from cucurbituril (CB[6]) and a diblock copolymer, methoxy poly (ethylene-glycol)-b-poly[N1-(4-vinylbenzyl) pentane-1,5-diaminedihydrochloride](mPEG-b-PVBPDA), by simple stirring at room temperature. Driven by hydrophobic/hydrophobic and charge/dipole interactions, CB[6] beads are localized on pentamethylene units in side chains of3as found by NMR studies. The degree of threading, i.e., the average number of CB[6] beads per repeat recognition unit of mPEG-b-PVBPDA (denoted as q/n hereafter), can be controlled from0.2to1.0by varying the amount of CB[6] added. This molecular feature leads to interesting aggregation behavior of the polypseudorotaxanes in aqueous solutions at different q/n as revealed by DLS measurements, TEM observations, UV-vis and fluorescence spectrometry. The average hydrodynamic radius (Rh), the intensity of UV-vis absorption band,RLS and the fluorescence intensity (If) of the block polypseudorotaxanes in solution increase with the increasing of CB[6] threaded.
     The degree of CB[6] threaded can be controlled from0.25to1.0. The polypseudorotaxanes in aqueous solution have more rigid chain conformation because of the threaded CB[6]. The Rh, the intensity of UV-vis absorption band and If of the polypseudorotaxanes increases with the increasing amount of CB[6] threaded.
引文
[1]. Madeo M., O'Riordan N., Fuchs T. M. Thiamine plays a critical role in the acid tolerance of Listeria monocytogenes. FEMS Microbiol Lett 2012.
    [2]. Jin Z. ChemInform Abstract:Muscarine, Imidazole, Oxazole, and Thiazole Alkaloids. ChemInform 2011; 42 (38):23-53.
    [3]. Changeux J. P. Nicotine addiction and nicotinic receptors:lessons from genetically modified mice. Nat Rev Neurosci 2010; 11 (6):389-401.
    [4]. Cho S. K., Kwon Y. J. Polyamine/DNA polyplexes with acid-degradable polymeric shell as structurally and functionally virus-mimicking nonviral vectors. J Controlled Release 2011; 150 (3):287-297.
    [5]. Palmer A. J., Wallace H. M. The polyamine transport system as a target for anticancer drug development. Amino Acids 2010; 38 (2):415-422.
    [6].吴远根,邱树毅,张难,佟会,宋治福.高分子季铵盐型抗菌塑料的制备 和抗菌性能.材料研究学报2007;21(4):421-426.
    [7]. Wang F. P., Chen Q. H., Liu X. Y. Diterpenoid alkaloids. Nat Prod Rep 2010; 27 (4):529.
    [8]. Yeboah E. M.O.,Yeboah S.O., Singh G. S. ChemInform Abstract:Recent Applications of Cinchona Alkaloids and Their Derivatives as Catalysts in Metal-Free Asymmetric Synthesis. ChemInform 2011; 42 (27):215-220.
    [9].谭昌恒,朱大元.石松生物碱研究进展.中国天然药物2003;1(1):1-7.
    [10].周文华,杨辉荣,岳庆磊.生物碱提取和分离方法的研究新进展.当代化工2003;32(2):111-114.
    [11].刘成梅,游海,化学家.天然产物有效成分的分离与应用.化学工业出版社2003.
    [12].吴新安,花日茂,岳永德,朱有才.植物源抗菌,杀菌活性物质研究进展(综述).安徽农业大学学报2002;29(3):245-249.
    [13]. Lee J. H., Jung H. W., Kang I. K., Lee H. B. Cell behavior on polymer surfaces with different functional-groups. Biomaterials 1994; 15 (9):705-711.
    [14]. Rasmussen J. R., Stedronsky E. R., Whitesides G. M. Introduction, modification, and characterization of functional-groups on surface of low-density polyethylene film. J Am Chem Soc 1977; 99 (14):4736-4745.
    [15]. Kim K. Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem Soc Rev 2002; 31 (2):96-107.
    [16]. Prokop A., Kozlov E., Carlesso G, Davidson J. M. Hydrogel-based colloidal polymeric system for protein and drug delivery:Physical and chemical characterization, permeability control and applications. Filled Elastomers Drug Delivery Systems 2002; 160:119-173.
    [17]. Chibale K., Musonda C. C. The synthesis of parasitic cysteine protease and trypanothione reductase inhibitors. Current Medicinal Chemistry 2003; 10 (18):1863-1889.
    [18]. Musonda C. C., Chibale K. Application of combinatorial and parallel synthesis chemistry methodologies to antiparasitic drug discovery. Current Medicinal Chemistry 2004; 11 (19):2519-2533.
    [19]. Mahapatra S. S., Karak N. Hyperbranched polyamine:A promising curing agent for a vegetable oil-based poly(ester-amide) resin. Prog Org Coat 2007; 60 (4):328-334.
    [20]. Vicennati P., Giuliano A., Ortaggi G, Masotti A. Polyethylenimine In Medicinal Chemistry. Current Medicinal Chemistry 2008; 15 (27):2826-2839.
    [21]. Yermak I. M., Davydova V. N. Interaction of Bacterial Lipopolysaccharides with Soluble Proteins of Macroorganism and with Polycations. Biol Membrany 2008; 25 (5):323-342.
    [22]. Hochberg G. C. SYNTHESIS AND PROPERTIES OF AROMATIC IONENES. Polymer International 1993; 32 (3):309-317.
    [23]. Schulz R. C. Some ionenes with spirane units (spiroazonia polymers). Vysokomolekulyarnye Soedineniya Seriya a & Seriya B 1993; 35 (11):1861-1866.
    [24]. Schulz R. C. Syntheses of polymers via repetitive N-alkylation. Angewandte Makromolekulare Chemie 1994; 223:177-191.
    [25].高宝玉,孙逊,岳钦艳.不同交联剂制备的环氧氯丙烷-二甲胺聚合物的结构及脱色性能.环境科学学报2006;26(12):1977-1982.
    [26].高宝玉,张华,岳钦艳,邹新华,王曙光.有机絮凝剂聚环氧氯丙烷-二甲胺的结构及絮凝性能研究.工业水处理2006;26(1):21-23.
    [27].李倩,岳钦艳,高宝玉.阳离子聚合物聚环氧氯丙烷二甲胺/膨润土纳米复合材料的制备与性能.过程工程学报2007;7(3):598-603.
    [28].马喜平,胡星琪,赵东滨,王文欣,袁浩.环氧氯丙烷一二甲胺阳离子聚合物的合成.高分子材料科学与工程1996;12(4):50-54.
    [29].孙逊,高宝玉,张栋华.环氧氯丙烷-二甲胺聚合物和聚合氯化铝用于印染废水的处理.环境化学2007;26(1):51-54.
    [30]. Schulz R. C. Some new polyelectrolytes. Makromolekulare Chemie-Macromolecular Symposia 1989; 26:221-231.
    [31]. Gray T. F., Butler G. B. Fundamental basis for cyclopolymerization.10. Systematic study of cyclopolymerization of methacrylic anhydride. Journal of Macromolecular Science-Chemistry 1975; A 9(1):45-82.
    [32]. Hao Z. Synthesis of polyimides bearing quaternary ammonium salt groups and their application for humidity sensor. Journal of Photopolymer Science and Technology 2007:153-156.
    [33]. Hochberg G. C. Synthesis and properties of aromatic ionenes. Polymer International 1993; 32 (3):309-317.
    [34]. Mabire F. Synthesis and solution properties of water-soluble copolymers based on acrylamide and quaternary ammonium acrylic comonomer. Polymer 1984; 25 (9):1317-1322.
    [35]. Wu Y. M. Aqueous dispersion polymerization of acrylamide with quaternary ammonium cationic comonomer. Journal of Applied Polymer Science 2008; 108:134-139.
    [36]. Zenitz B. L. Quaternary ammonium salts as antibacterial agents. Science 1950; 112(2911):422-422.
    [37]. Lombardi P. M., Angell H. D., Whittington D. A. Structure of Prokaryotic Polyamine Deacetylase Reveals Evolutionary Functional Relationships with Eukaryotic Histone Deacetylases. Biochemistry 2011.
    [38]. Mahon K. P., Love K. T., Whitehead K. A. Combinatorial approach to determine functional group effects on lipidoid-mediated siRNA delivery. Bioconjugate Chem 2010.
    [39]. Zhang H., Zhao C., Cao H. Hyperbranched poly (amine-ester) based hydrogels for controlled multi-drug release in combination chemotherapy. Biomaterials 2010; 31 (20):5445-5454.
    [40]. O'Reilly R. K. Using controlled radical polymerisation techniques for the synthesis of functional polymers containing amino acid moieties. Polym Int 2010; 59 (5):568-573.
    [41].王学川,丁建华,袁绪政,刘俊.甜菜碱型硅表面活性剂的合成和应用.日用化学工业2008;38(1):33-36.
    [42]. Salamone J. C. Spontaneous polymerization of 2-methyl-5-vinyl-pyridinium salts. Abstracts of Papers of the American Chemical Society 1975 (169):78-78.
    [43]. Salamone J. C. Molecular-weight analysis of poly-2-vinylpyridine from spontaneous polymerization. Abstracts of Papers of the American Chemical Society 1975 (169):90-90.
    [44]. Salamone J. C. Polymerization of vinylpyridinium salts.9. preparation of monomeric salt pairs. Journal of Polymer Science Part C-Polymer Letters 1977; 15(8):487-491.
    [45]. Fang R., Cheng X., Xu X. Synthesis of lignin-base cationic flocculant and its application in removing anionic azo-dyes from simulated wastewater. Bioresour Technol 2010; 101 (19):7323-7329.
    [46]. Bao G. L. Ionic-conductivity of polyelectrolyte derivatives of polyvinyl-alcohol-lithiumion complex films. Polymer Bulletin 1987; 18 (2):143-148.
    [47]. Hawker C. J. New polymer synthesis by nitroxide mediated living radical polymerizations. Chemical Reviews 2001; 101 (12):3661-3688.
    [48]. Xia J. H. Controlled/"living" radical polymerization. Homogeneous reverse atom transfer radical polymerization using AIBN as the initiator. Macromolecules 1997; 30 (25):7692-7696.
    [49]. Xia J. H. Controlled/"living" radical polymerization. Atom transfer radical polymerization using multidentate amine ligands. Macromolecules 1997; 30 (25):7697-7700.
    [50]. Colombani D. 1,3,5,5-Tetraphenyl-delta(3)-1,2,4-triazolin-2-yl radical properties in the controlled radical polymerization of poly(methyl methacrylate) and polystyrene. Macromolecular Rapid Communications 1997; 18 (3):243-251.
    [51]. Colombani D. Controlled radical polymerization of vinylic monomers in the presence of unusual stable radicals. Abstracts of Papers of the American Chemical Society 1997; 213:306-312.
    [52]. Chiefari J. Living free-radical polymerization by reversible addition-fragmentation chain transfer:The RAFT process. Macromolecules 1998; 31 (16):5559-5562.
    [53]. Chiefari J. Thiocarbonylthio compounds (S=C(Z)S-R) in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). Effect of the activating group Z. Macromolecules 2003; 36 (7):2273-2283.
    [54]. Mayadunne R. T. A. Living radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization) using dithiocarbamates as chain transfer agents. Macromolecules 1999; 32 (21):6977-6980.
    [55]. Mayadunne R. T. A. Living polymers by the use of trithiocarbonates as reversible addition-fragmentation chain transfer (RAFT) agents:ABA triblock copolymers by radical polymerization in two steps. Macromolecules 2000; 33 (2):243-245.
    [56]. Moad G. Living free radical polymerization with reversible addition-fragmentation chain transfer (the life of RAFT). Polymer International 2000;49(9):993-1001.
    [57]. Mantovani G. Design and synthesis of N-maleimido-functionalized hydrophilic polymers via copper-mediated living radical polymerization:A suitable alternative to PEGylation chemistry. Journal of the American Chemical Society 2005; 127 (9):2966-2973.
    [58]. Fournier E. A novel one-step drug-loading procedure for water-soluble amphiphilic nanocarriers. Pharmaceutical Research 2004; 21 (6):962-968.
    [59]. Dufresne M. H. Study of the micellization behavior of different order amino block copolymers with heparin. Pharmaceutical Research 2004; 21 (1):160-169.
    [60]. Yin M. Preparation of functional poly(acrylates and methacrylates) and block copolymers formation based on polystyrene macroinitiator by ATRP. Polymer 2005; 46 (10):3215-3222.
    [61]. Zhu Y. J., Tan Y. B., Du X. Preparation and self-assembly behavior of polystyrene-block-poly (dimethylaminoethyl methacrylate) amphiphilic block copolymer using atom transfer radical polymerization. Express Polymer Letters 2008;2(3):214-225.
    [62]. Cvetkovska M. Macro-azo-initiators having poly(ethylene glycol) units: Synthesis, characterization, and application to AB block copolymerization. Journal of Applied Polymer Science 1997; 65 (11):2173-2181.
    [63]. Zhu Y. J., Tan Y. B., Du X., Piao J. C., Zhou Q. F. Synthesis and characteristic of double hydrophilic block copolymer with amine pendant chains. Chin Chem Lett 2008; 19 (3):355-358.
    [64].何曼君,陈维孝,董西侠.高分子物理.上海:复旦大学出版社1990:137-139.
    [65].江明,艾森伯格,刘国军.大分子自组装.科学出版社2006.
    [66]. Discher D. E., Eisenberg A. Polymer vesicles. Science 2002; 297 (5583):967-973.
    [67]. Zhang L. F., Eisenberg A. Multiple morphologies and characteristics of "crew-cut" micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. J Am Chem Soc 1996; 118 (13):3168-3181.
    [68]. Sfika V. Association phenomena of poly(acrylic acid)-b-poly(2-vinyl-pyridine)-b-poly(acrylic acid) triblock polyampholyte in aqueous solutions:From transient network to compact micelles. Macromolecules 2003; 36 (13):4983-4988.
    [69]. Immaneni A. Flow-induced conformational changes and phase behavior of aqueous poly-L-lysine solutions. Biopolymers 1998; 45 (3):239-246.
    [70]. Wang Y. L. Synthesis and conformational transition of surface-tethered polypeptide:Poly(L-lysine). Macromolecules 2003; 36 (17):6511-6518.
    [71]. Wu X. L., Kim J. H., Koo H. Tumor-Targeting Peptide Conjugated pH-Responsive Micelles as a Potential Drug Carrier for Cancer Therapy. Bioconjugate Chem 2010; 21 (2):208-213.
    [72]. Yuan X., Yoshimoto K., Nagasaki Y. High-Performance Immunolatex Possessing a Mixed-PEG/Antibody Coimmobilized Surface:Highly Sensitive Ferritin Immunodiagnostics. Anal Chem 2009; 81 (4):1549-1556.
    [73]. Yoshitomi T., Suzuki R., Mamiya T. pH-Sensitive Radical-Containing-Nanoparticle (RNP) for the L-Band-EPR Imaging of Low pH Circumstances. Bioconjugate Chem 2009; 20 (9):1792-1798.
    [74]. Rieger J., Stoffelbach F., Cui D. Mannosylated Poly (ethylene oxide)-b-Poly (ε-caprolactone) diblock copolymers:synthesis, characterization, and interaction with a bacterial lectin. Biomacromolecules 2007; 8 (9):2717-2725.
    [75]. Kotz J. Self-assembled polyelectrolyte systems. Progress in Polymer Science 2001; 26 (8):1199-1232.
    [76]. Forster S. Structure of polyelectrolyte block copolymer micelles. Macromolecules 2002; 35 (10):4096-4105.
    [77]. Forster S. Polyelectrolyte block copolymer micelles. Polyelectrolytes with Defined Molecular Architecture Ii 2004; 166:173-210.
    [78]. Wen S. Microcapsules through polymer complexation.3. Encapsulation and culture of human burkitt-lymphoma cells in vitro. Biomaterials 1995; 16 (4):325-335.
    [79]. Liu L.-S. Controlled release of interleukin-2 for tumour immunotherapy using alginate/chitosan porous microspheres. Journal of Controlled Release 1996; 43(1):65-74.
    [80]. Tabata Y. Bone regeneration by basic fibroblast growth factor complexed with biodegradable hydrogels. Biomaterials 1998; 19 (7-9):807-815.
    [81]. Kakizawa Y. Block copolymer micelles for delivery of gene and related compounds. Advanced Drug Delivery Reviews 2002; 54 (2):203-222.
    [82]. Lee W. F. Aqueous-solution properties of poly(trimethyl acrylamido propylammonium iodide) [poly(TMAAI)]. Journal of Applied Polymer Science 1994; 52 (10):1447-1458.
    [83]. Vu C. Characterization of cationic water-soluble polyacrylamides. Journal of Applied Polymer Science 1991; 42 (11):2857-2869.
    [84]. Liaw D. J. Dilute-solution properties of cationic poly(dimethyl sulfate quaternized) dimethylaminoethylaminoethyl methacrylate. Journal of Applied Polymer Science 1992; 45 (1):61-70.
    [85]. Vishalakshi B. The effects of the charge-density and structure of the polymer on the dye-binding characteristics of some cationic polyelectrolytes. Journal of Polymer Science Part a-Polymer Chemistry 1995; 33 (3):365-371.
    [86]. 王景芹,李丹东,郑连波,李建华,申志兵.烷基季铵盐改性膨润土的膨胀性.辽宁石油化工大学学报2006;26(3):27-30.
    [87]. 鄢捷年.钻井液工艺学.石油大学出社2001.
    [88]. 王中华.国内外超高温高密度钻井液技术现状与发展趋势.石油钻探技术2011;39(2):1-7.
    [89]. 严思明,王杰,唐豹.提高采收率的三元复合驱原油破乳研究.钻采工艺2011;34(3):81-84.
    [90]. 檀国荣,张健,王金本,周继柱.高分子表面活性剂驱采出液破乳剂的研制和现场试验.石油与天然气化工2009;38(005):418-421.
    [91]. 赵修太,梁伟,邱广敏,李彬,韩有祥.聚合物驱抽油井缓蚀剂的研制.材料保护2010;43(005):55-57.
    [92]. 周永璋,张坚.用于含聚合物钻井液的缓蚀剂研究.腐蚀科学与防护技术2009(005):447-451.
    [93]. 陆柱.油田水处理技术.石油工业出版社1990.
    [94]. 胡兴刚,靳晓霞,孙继,马一骏,王亚权.“环境友好” 型阻垢分散剂及在油田水处理中的应用.工业水处理2004;23(11):30-34.
    [95]. 李翱,沈一丁,费贵强,王海花,杜经武.无皂硅丙胶乳表面施胶剂的制备及对纸张的增强作用.高分子材料科学与工程 2009;25(003):100-102.
    [96]. Bratskaya S. Comparative study of humic acids flocculation with chitosan hydrochloride and "chitosan glutamate. Water Research 2004; 38 (12):2955-2961.
    [97]. Kam S. K. The interaction of humic substances with cationic polyelectrolytes. Water Research 2001; 35 (15):3557-3566.
    [98]. Shen Y. H. Removal of phenol from water by adsorption-flocculation using organobentonite. Water Research 2002; 36 (5):1107-1114.
    [99]. Polubesova T. Water purification from organic pollutants by optimized micelle-clay systems. Environmental Science & Technology 2005; 39 (7):2343-2348.
    [100]. Laor Y. Complexation-flocculation:A new method to determine binding coefficients of organic contaminants to dissolved humic substances. Environmental Science & Technology 1997; 31 (12):3558-3564.
    [101]. Hankins N. P. Enhanced removal of heavy metal ions bound to humic acid by polyelectrolyte flocculation. Separation and Purification Technology 2006; 51 (1):48-56.
    [102]. Rebhun M. Using dissolved humic acid to remove hydrophobic contaminants from water by complexation-flocculation process. Environmental Science & Technology 1998; 32 (7):981-986.
    [103]. Porras-Rodriguez M. Removal of 2,4-dichlorophenoxyacetic acid from water by adsorptive micellar flocculation. Environmental Science & Technology 1999;33(18):3206-3209.
    [104].李蔚.季铵盐型阳离子抗静电剂的概况及发展趋势.国际纺织导报2007;35(11):68-72.
    [105]. Talelli M., Rijcken C. J. F., van Nostrum C. F., Storm G., Hennink W. E. Micelles based on HPMA copolymers. Adv Drug Deliv Rev 2010; 62 (2):231-239.
    [106]. Pasut G, Veronese F. M. PEG conjugates in clinical development or use as anticancer agents:An overview. Adv Drug Deliv Rev 2009; 61 (13):1177-1188.
    [107]. Choi J. S., Lee E. J., Choi Y. H., Jeong Y. J., Park J. S. Polyethylene glycol)-block-poly(l-lysine) Dendrimer:Novel linear polymer/dendrimer block copolymer forming a spherical water-soluble polyionic complex with DNA. Bioconjugate Chemistry 1999; 10:62-65.
    [108]. Kim T. I., Jang H. S., Joo D. K., Choi J. S., Park J. S. Synthesis of diblock copolymer, methoxypoly-(ethylene golycol)-block-polyamidoamine dendrimer and its generation-depenent self-assembly with plasmid DNA. Bulletin of Korean Chemical Society 2003; 24:123-125.
    [109]. Luo D., Haverstick B., K. N., Han E., Saltzman W. M. Polyethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery.. Macromolecules 2002; 35:3456-3462.
    [110]. Mannisto M., Vanderkerken S., Toncheva V. Structureactivity relationships of poly(L-lysines):effects of pegylation and molecular shape on physicochemical and biological properties in gene delivery.. Journal of Controlled Release 2002; 83:169-182.
    [111]. Ward C. M., Pechar, M., Oupicky, D., Ulbrich, K., and Seymour, L. W. Modification of PLL/DNA complexes with a multivalent hydrophilic polymer permits folate-mediated targeting in vitro and prolonged plasma circulation in vivo. Jouranl of Gene Medicine 2002; 4:536-547.
    [112]. Ahn C. H., Chae S. Y., Bae Y. H., Kim S. W. Biodegradable poly(ethylenimine) for plasmid DNA delivery. Journal of Controlled Release 2002; 80:273-282.
    [113]. Boussif O., Delair T., Brua C. Synthesis of polyallylamine derivatives and their use as gene transfer vectors in vitro. Bioconjugate Chemistry 1999; 10:877-883.
    [1]. Weaver J. V. M., Adams D. J. Synthesis and application of pH-responsive branched copolymer nanoparticles (PRBNs):a comparison with pH-responsive shell cross-linked micelles. Soft Matter 2010; 6 (12):2575-2582.
    [2]. Pavan G. M., Danani A., Pricl S., Smith D. K. Modeling the Multivalent Recognition between Dendritic Molecules and DNA:Understanding How Ligand "Sacrifice" and Screening Can Enhance Binding. J Am Chem Soc 2009; 131 (28):9686-9694.
    [3]. Zayed J. M., Nouvel N., Rauwald U., Scherman O. A. Chemical complexity-supramolecular self-assembly of synthetic and biological building blocks in water. Chem Soc Rev 2010; 39 (8):2806-2816.
    [4]. Zhang H. C., Sun L. Z., Liu Z. N. pH-responsive vesicle-like particles based on inclusion complexes between cyclodextrins and methyl orange. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2010; 358 (1-3):115-121.
    [5]. Li Y., Zhu Y. D., Xia K. J. Dendritic Poly(L-lysine)-b-Poly(L-lactide)-b-Dendritic Poly(L-lysine) Amphiphilic Gene Delivery Vectors:Roles of PLL Dendritic Generation and Enhanced Transgene Efficacies via Termini Modification. Biomacromolecules 2009; 10 (8):2284-2293.
    [6]. Oishi M., Kataoka K., Nagasaki Y. pH-responsive three-layered PEGylated polyplex micelle based on a lactosylated ABC triblock copolymer as a targetable and endosome-disruptive nonviral gene vector. Bioconjugate Chem 2006; 17 (3):677-688.
    [7]. Park B. W., Yoon D. Y., Kim D. S. Recent progress in bio-sensing techniques with encapsulated enzymes. Biosensors & Bioelectronics 2010; 26 (1):1-10.
    [8]. Talelli M., Rijcken C. J. F., van Nostrum C. F., Storm G., Hennink W. E. Micelles based on HPMA copolymers. Adv Drug Deliv Rev 2010; 62 (2):231-239.
    [9]. Volkering F., Breure A. M., Rulkens W. H. Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 1997; 8 (6):401-417.
    [10]. Walker S., Sofia M. J., Axelrod H. R. Chemistry and cellular aspects of cationic facial amphiphiles. Adv Drug Deliv Rev 1998; 30 (1-3):61-71.
    [11]. Yoshitomi T., Suzuki R., Mamiya T. pH-Sensitive Radical-Containing-Nanoparticle (RNP) for the L-Band-EPR Imaging of Low pH Circumstances. Bioconjugate Chem 2009; 20 (9):1792-1798.
    [12]. Lapienis G. Star-shaped polymers having PEO arms. Prog Polym Sci 2009; 34 (9):852-892.
    [13]. Pasut G., Veronese F. M. PEG conjugates in clinical development or use as anticancer agents:An overview. Adv Drug Deliv Rev 2009; 61 (13):1177-1188.
    [14]. Wei X. W., Gong C. Y., Gou M. Y. Biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol) copolymers as drug delivery system. Int J Pharm 2009; 381 (1):1-18.
    [15]. Angelova A., Angelov B., Mutafchieva R., Lesieur S., Couvreur P. Self-Assembled Multicompartment Liquid Crystalline Lipid Carriers for Protein, Peptide, and Nucleic Acid Drug Delivery. Acc Chem Res 2011; 44 (2):147-156.
    [16]. Sawant R., Hurley J., Salmaso S. "SMART" drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjugate Chem 2006; 17 (4):943-949.
    [17]. Wu X. L., Kim J. H., Koo H. Tumor-Targeting Peptide Conjugated pH-Responsive Micelles as a Potential Drug Carrier for Cancer Therapy. Bioconjugate Chem 2010; 21 (2):208-213.
    [18]. Garbern J. C., Hoffman A. S., Stayton P. S. Injectable pH- and Temperature-Responsive Poly(N-isopropylacrylamide-co-propylacrylic acid) Copolymers for Delivery of Angiogenic Growth Factors. Biomacromolecules 2010; 11 (7):1833-1839.
    [19]. Sethuraman V. A., Na K., Bae Y. H. pH-responsive sulfonamide/PEI system for tumor specific gene delivery:An in vitro study. Biomacromolecules 2006;7(1):64-70.
    [20]. Boylan N. J., Kim A. J., Suk J. S. Enhancement of airway gene transfer by DNA nanoparticles using a pH-responsive block copolymer of polyethylene glycol and poly-1-lysine. Biomaterials 2011.
    [21]. Dehousse V., Garbacki N., Colige A., Evrard B. Development of pH-responsive nanocarriers using trimethylchitosans and methacrylic acid copolymer for siRNA delivery. Biomaterials 2010; 31 (7):1839-1849.
    [22]. Gupta P., Vermani K., Garg S. Hydrogels:from controlled release to pH-responsive drug delivery. Drug Discovery Today 2002; 7 (10):569-579.
    [23]. Graf P., Mantion A., Foelske A. Peptide-Coated Silver Nanoparticles: Synthesis, Surface Chemistry, and pH-Triggered, Reversible Assembly into Particle Assemblies. Chem-Eur J 2009; 15 (23):5831-5844.
    [24]. Oishi M., Hayashi H., Itaka K., Kataoka K., Nagasaki Y. pH-responsive PEGylated nanogels as targetable and low invasive endosomolytic agents to induce the enhanced transfection efficiency of nonviral gene vectors. Colloid Polym Sci 2007; 285 (9):1055-1060.
    [25]. Hussein I. A., Ali S. K. A., Suleiman M. A., Umar Y. Rheological behavior of associating ionic polymers based on diallylammonium salts containing single-, twin-, and triple-tailed hydrophobes. Eur Polym J 2010; 46 (5):1063-1073.
    [26]. Zhou J. H., Wang L., Ma J. Z. Temperature- and pH-responsive star amphiphilic block copolymer prepared by a combining strategy of ring-opening polymerization and reversible addition-fragmentation transfer polymerization. Eur Polym J 2010; 46 (6):1288-1298.
    [27]. Han S. C., He W. D., Li J., Li L. Y., Sun X. L. pH-Responsive Self-assembled Nanoparticles of Simulated P(AA-co-SA)-g-PEG for Drug Release. Journal of Macromolecular Science Part a-Pure and Applied Chemistry 2009;46(9):886-891.
    [28]. Wyatt P. J. Light scattering and the absolute characterization of macromolecules. Anal Chim Acta 1993; 272 (1):1-40.
    [29], Tsuji H., Tezuka Y., Saha S. K., Suzuki M., Itsuno S. Spherulite growth of L-lactide copolymers:Effects of tacticity and comonomers. Polymer 2005; 46 (13):4917-4927.
    [30]. Li M., Li G. L., Zhang Z. G. Self-assembly of pH-responsive and fluorescent comb-like amphiphilic copolymers in aqueous media. Polymer 2010; 51 (15):3377-3386.
    [31]. Discher B. M., Won Y. Y., Ege D. S. Polymersomes:Tough vesicles made from diblock copolymers. Science 1999; 284 (5417):1143-1146.
    [32]. Zhang L. F., Eisenberg A. Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers in solutions. Macromolecules 1996; 29 (27):8805-8815.
    [33]. Zhang L. F., Yu K., Eisenberg A. Ion-induced morphological changes in "crew-cut" aggregates of amphiphilic block copolymers. Science 1996; 272 (5269):1777-1779.
    [34]. Pasternack R. F., Bustamante C., Collings P. J., Giannetto A., Gibbs E. J. Porphyrin assemblies on DNA as studied by a resonance light-scattering technique. J Am Chem Soc 1993; 115 (13):5393-5399.
    [1]. Dobrynin A. V., Rubinstein M. Theory of polyelectrolytes in solutions and at surfaces. Prog Polym Sci 2005; 30(11):1049-1118.
    [2].Bajpai A. K., Shukla S. K., Bhanu S., Kankane S. Responsive polymers in controlled drug delivery. Prog Polym Sci 2008; 33 (11):1088-1118.
    [3]. Hoffman A. S., Stayton P. S. Conjugates of stimuli-responsive polymers and proteins. Prog Polym Sci 2007; 32 (8-9):922-932.
    [4]. Schmaljohann D. Thermo-and pH-responsive polymers in drug delivery. Adv Drug Del Rev 2006; 58 (15):1655-1670.
    [5]. Kamel S., Ali N., Jahangir K., Shah S. M., El-Gendy A. A. Pharmaceutical significance of cellulose:A review. Express Polym Lett 2008; 2 (11):758-778.
    [6]. Kumar A., Srivastava A., Galaev I. Y., Mattiasson B. Smart polymers: Physical forms and bioengineering applications. Prog Polym Sci 2007; 32 (10):1205-1237.
    [7]. Bagaria H. G., Wong M. S. Polyamine-salt aggregate assembly of capsules as responsive drug delivery vehicles. J Mater Chem 2011; 21 (26):9454-9466.
    [8]. Pang Y., Zhu Q., Liu J. Design and synthesis of cationic drug carriers based on hyperbranched poly (amine-ester) s. Biomacromolecules 2010; 11 (3):575- 582.
    [9]. Jiang M., Wang T., Xu Q., Wu Y. Novel Amphiphilic Hyperbranched Poly (amine-ester) Copolymers Nanoparticles as Protein Drug Delivery. Mini Reviews in Medicinal Chemistry 2009; 9 (11):1342-1356.
    [10]. Oh J. K., Drumright R., Siegwart D. J., Matyjaszewski K. The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 2008; 33 (4):448-477.
    [11]. Yan H., Li Z. F., Guo Z. F. Effective and reversible DNA condensation induced by bifunctional molecules containing macrocyclic polyamines and naphthyl moieties. Biorg Med Chem 2011.
    [12]. Boylan N. J., Kim A. J., Suk J. S. Enhancement of airway gene transfer by DNA nanoparticles using a pH-responsive block copolymer of polyethylene glycol and poly-1-lysine. Biomaterials 2011.
    [13]. Nayvelt I., Hyvonen M. T., Alhonen L. DNA Condensation by Chiral a-Methylated Polyamine Analogues and Protection of Cellular DNA from Oxidative Damage. Biomacromolecules 2009; 11 (1):97-105.
    [14]. Sarkar T., Petrov A. S., Vitko J. R. Integration host factor (IHF) dictates the structure of polyamine-DNA condensates:implications for the role of ihf in the compaction of bacterial chromatin. Biochemistry 2009; 48 (4):667-675.
    [15]. Wu X. L., Kim J. H., Koo H. Tumor-targeting peptide conjugated ph-responsive micelles as a potential drug carrier for cancer therapy. Bioconjugate Chem 2010; 21 (2):208-213.
    [16]. Henderson Pozzi M., Gawandi V., Fitzpatrick P. F. pH dependence of a mammalian polyamine oxidase:insights into substrate specificity and the role of lysine 315. Biochemistry 2009; 48 (7):1508-1516.
    [17]. Adachi M. S., Torres J. M., Fitzpatrick P. F. Mechanistic studies of the yeast polyamine oxidase Fms1:kinetic mechanism, substrate specificity, and pH dependence. Biochemistry 2010.
    [18]. Oda Y., Kanaoka S., Aoshima S. Synthesis of Dual pH/Temperature-Responsive Polymers with Amino Groups by Living Cationic Polymerization. J Polym Sci, Part A:Polym Chem 2010; 48 (5):1207-1213.
    [19]. Yodsang P., Raksajit W., Brandt A. M. Recombinant polyamine-binding protein of Synechocystis sp. PCC 6803 specifically binds to and is induced by polyamines. Biochemistry (Moscow) 2011; 76 (6):713-719.
    [20]. 赵瑾,王超杰.多胺衍生物NNIspm诱导肝癌细胞HepG2衰老及其分子机制.药学学报2012;47(3):405-408.
    [21]. 李强,杨洪强,沈伟.多胺含量及精胺和亚精胺对盐胁迫下平邑甜茶膜脂过氧化的影响.北京林业大学学报2011;23(6):12-15.
    [22]. Clark K., Niemand J., Reeksting S. Functional consequences of perturbing polyamine metabolism in the malaria parasite, Plasmodium falciparum. Amino Acids 2010; 38 (2):633-644.
    [23]. Pang X., Nada K., Kurosawa T., Ban Y., Moriguchi T. Effect of methylglyoxal bis-(guanylhydrazone) on polyamine and ethylene biosynthesis of apple fruit after harvest. Acta Physiol Plant 2010; 32 (5):1005-1010.
    [24]. Yoshimoto K., Nozawa M., Matsumoto S. Studies on the adsorption property and structure of polyamine-ended poly (ethylene glycol) derivatives on a gold surface by surface plasmon resonance and angle-resolved x-ray photoelectron spectroscopy. Langmuir 2009; 25 (20):12243-12249.
    [25]. Huynh C. T., Nguyen M. K., Huynh D. P., Kim S. W., Lee D. S. PH/temperature-sensitive 4-arm poly (ethylene glycol)-poly (amino urethane) copolymer hydrogels. Polymer 2010; 51 (17):3843-3850.
    [26]. Tamura A., Oishi M., Nagasaki Y. Enhanced cytoplasmic delivery of siRNA using a stabilized polyion complex based on PEGylated nanogels with a cross-linked polyamine structure. Biomacromolecules 2009; 10 (7):1818-1827.
    [27]. Unal B., Hedden R. C. pH-dependent swelling of hydrogels containing highly branched polyamine macromonomers. Polymer 2009; 50 (3):905-912.
    [28]. Ding J., Xiao C., He C. Facile preparation of a cationic poly (amino acid) vesicle for potential drug and gene co-delivery. Nanotechnology 2011; 22:494012.
    [29]. Obeid R., Scholz C. Synthesis and self-assembly of well-defined poly (amino acid) end-capped poly (ethylene glycol) and poly (2-methyl-2-oxazoline). Biomacromolecules 2011.
    [30]. Zhang H., Gerson T., Varney M. L., Singh R. K., Vinogradov S. V. Multifunctional peptide-peg intercalating conjugates:programmatic of gene delivery to the blood-brain barrier. Pharm Res 2010:1-16.
    [31]. Liu Y., Yu Z. L., Zhang Y. M., Guo D. S., Liu Y. P. Supramolecular architectures of P-cyclodextrin-modified chitosan and pyrene derivatives mediated by carbon nanotubes and their DNA condensation. J Am Chem Soc 2008; 130 (31):10431-10439.
    [32]. Tan Y. B., Choi S. W., Lee J. W., Ko Y. H., Kim K. Synthesis and characterization of novel side-chain pseudopolyrotaxanes containing cucurbituril. Macromolecules 2002; 35 (18):7161-7165.
    [33]. Muramatsu N., Yoshida Y., Katayama Y., Ohshima H., Kondo T. Adsorption of negatively charged microcapsules to a poly-2-hydroxyethylmethacrylate polyamine graft co-polymer surface. J Biomater Sci, Polym Ed 1991; 2 (2):139-146.
    [34]. Hou Z. S., Tan Y. B., Kim K., Zhou Q. F. Synthesis, characterization and properties of side-chain pseudopolyrotaxanes consisting of cucurbituril 6 and poly-N-1-(4-vinylbenzyl)-1,4-diaminobutane dihydrochloride. Polymer 2006; 47 (2):742-750.
    [35]. Wyatt P. J. Light scattering and the absolute characterization of macromolecules. Anal Chim Acta 1993; 272 (1):1-40.
    [36]. Tsuji H., Tezuka Y., Saha S. K., Suzuki M., Itsuno S. Spherulite growth of l-lactide copolymers:effects of tacticity and comonomers. Polymer 2005; 46 (13):4917-4927.
    [37]. Zhang L. F., Eisenberg A. Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers in solutions. Macromolecules 1996; 29 (27):8805-8815.
    [38]. Zhang L. F., Yu K., Eisenberg A. Ion-induced morphological changes in "crew-cut" aggregates of amphiphilic block copolymers. Science 1996; 272 (5269):1777-1779.
    [39]. Weaver J. V. M., Adams D. J. Synthesis and application of pH-responsive branched copolymer nanoparticles (PRBNs):a comparison with pH-responsive shell cross-linked micelles. Soft Matter 2010; 6 (12):2575-2582.
    [40]. Diaz-Fernandez Y., Foti F., Mangano C. Micelles for the self-assembly of "off-on-off fluorescent sensors for pH windows. Chem-Eur J 2006; 12 (3):921-930.
    [41]. DeSilva A. P., Gunaratne H. Q. N., McCoy C. P. Direct visual indication of pH windows:'Off-on-off fluorescent PET (photoinduced electron transfer) sensors switches. Chem Commun 1996 (21):2399-2400.
    [42]. Li M., Li G. L., Zhang Z. G. Self-assembly of pH-responsive and fluorescent comb-like amphiphilic copolymers in aqueous media. Polymer 2010; 51 (15):3377-3386.
    [43]. Pasternack R. F., Bustamante C., Collings P. J., Giannetto A., Gibbs E. J. Porphyrin assemblies on DNA as studied by a resonance light-scattering technique. J Am Chem Soc 1993; 115 (13):5393-5399.
    [1]. Larranaga M., Serrano E., Martin M. D. Mechanical properties-morphology relationships in nano-/microstructured epoxy matrices modified with PEO-PPO-PEO block copolymers. Polym Int 2007; 56 (11):1392-1403.
    [2]. Peres B., Richardeau N., Jarroux N., Guegan P., Auvray L. Two independent ways of preparing hypercharged hydrolyzable polyaminorotaxane. Biomacromolecules 2008; 9 (7):2007-2013.
    [3]. Checot F., Lecommandoux S., Gnanou Y., Klok H. A. Water-soluble stimuli-responsive vesicles from peptide-based diblock copolymers. Angewandte Chemie-International Edition 2002; 41 (8):1339-1343.
    [4]. Oh J. K., Dong H., Zhang R., Matyjaszewski K., Schlaad H. Preparation of nanoparticles of double-hydrophilic PEO-PHEMA block copolymers by AGET ATRP in inverse miniemulsion. Journal of Polymer Science Part a-Polymer Chemistry 2007; 45 (21):4764-4772.
    [5]. Bajpai A. K., Shukla S. K., Bhanu S., Kankane S. Responsive polymers in controlled drug delivery. Progress in Polymer Science 2008; 33 (11):1088-1118.
    [6]. Oh J. K., Drumright R., Siegwart D. J., Matyjaszewski K. The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 2008; 33 (4):448-477.
    [7].Abetz V., Simon P. F. W. Phase behaviour and morphologies of block copolymers. Block Copolymers I. Springer-Verlag Berlin:Berlin 2005:125-212.
    [8]. Hadjichristidis N., Iatrou H., Pitsikalis M., Pispas S., Avgeropoulos A. Linear and non-linear triblock terpolymers. Synthesis, self-assembly in selective solvents and in bulk. Prog Polym Sci 2005; 30 (7):725-782.
    [9]. Discher D. E., Eisenberg A. Polymer vesicles. Science 2002; 297 (5583):967-973.
    [10]. Park B. W., Yoon D. Y., Kim D. S. Recent progress in bio-sensing techniques with encapsulated enzymes. Biosensors & Bioelectronics 2010; 26 (1):1-10.
    [11]. Zayed J. M., Nouvel N., Rauwald U., Scherman O. A. Chemical complexity-supramolecular self-assembly of synthetic and biological building blocks in water. Chem Soc Rev 2010; 39 (8):2806-2816.
    [12]. Schatz C., Lecommandoux S. Polysaccharide-Containing Block Copolymers:Synthesis, Properties and Applications of an Emerging Family of Glycoconjugates. Macromol Rapid Commun 2010; 31 (19):1664-1684.
    [13]. Volkering F., Breure A. M., Rulkens W. H. Microbiological aspects of surfactant use for biological soil remediation. Biodegradation 1997; 8 (6):401-417.
    [14]. Caputo A., Betti M., Altavilla G. Micellar-type complexes of tailor-made synthetic block copolymers containing the HIV-1 tat DNA for vaccine application. Vaccine 2002; 20 (17-18):2303-2317.
    [15]. Talelli M., Rijcken C. J. F., van Nostrum C. F., Storm G., Hennink W. E. Micelles based on HPMA copolymers. Adv Drug Deliv Rev 2010; 62 (2):231-239.
    [16]. Gaucher G., Satturwar P., Jones M. C., Furtos A., Leroux J. C. Polymeric micelles for oral drug delivery. European Journal of Pharmaceutics and Biopharmaceutics 2010; 76 (2):147-158.
    [17]. Lefevre N., Fustin C. A., Gohy J. F. Polymeric micelles induced by interpolymer complexation. Macromol Rapid Commun 2009; 30 (22):1871-1888.
    [18]. Kumar A., Srivastava A., Galaev I. Y., Mattiasson B. Smart polymers: Physical forms and bioengineering applications. Prog Polym Sci 2007; 32:1205-1237.
    [19]. Yoshitomi T., Suzuki R., Mamiya T. pH-Sensitive Radical-Containing-Nanoparticle (RNP) for the L-Band-EPR Imaging of Low pH Circumstances. Bioconjugate Chem 2009; 20 (9):1792-1798.
    [20]. Boudier A., Aubert-Pouessel A., Gerardin C, Devoisselle J. M., Begu S. pH-sensitive double-hydrophilic block copolymer micelles for biological applications. Int J Pharm 2009; 379 (2):212-217.
    [21]. Sun T., Li Y. M., Zhang H. C. pH-reversible vesicles based on the "supramolecular amphiphilies" formed by cyclodextrin and anthraquinone derivate. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2011; 375(1-3):87-96.
    [22]. Zhang H. C., Sun L. Z., Liu Z. N. pH-responsive vesicle-like particles based on inclusion complexes between cyclodextrins and methyl orange. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2010; 358 (1-3):115-121.
    [23]. Vo C. D., Rosselgong J., Armes S. P., Tirelli N. Stimulus-responsive polymers based on 2-hydroxypropyl acrylate prepared by raft polymerization. Journal of Polymer Science Part a-Polymer Chemistry 2010; 48 (9):2032-2043.
    [24]. He E., Yue C. Y., Tam K. C. Association behavior of star-shaped ph-responsive block copolymer:four-arm poly(ethylene oxide)-b-poly(meth-acrylic acid) in aqueous medium. Langmuir 2009; 25 (9):4892-4899.
    [25]. Dan K., Pan R., Ghosh S. Aggregation and pH Responsive Disassembly of a New Acid-Labile Surfactant Synthesized by Thiol-Acrylate Michael Addition Reaction. Langmuir 2011; 27 (2):612-617.
    [26]. Lapienis G. Star-shaped polymers having PEO arms. Prog Polym Sci 2009; 34 (9):852-892.
    [27]. Pasut G., Veronese F. M. PEG conjugates in clinical development or use as anticancer agents:An overview. Adv Drug Deliv Rev 2009; 61 (13):1177-1188.
    [28]. Wei X. W., Gong C. Y., Gou M. Y. Biodegradable poly(epsilon-caprolactone)-poly(ethylene glycol) copolymers as drug delivery system. Int J Pharm 2009; 381 (1):1-18.
    [29]. Angelova A., Angelov B., Mutafchieva R., Lesieur S., Couvreur P. Self-Assembled Multicompartment Liquid Crystalline Lipid Carriers for Protein, Peptide, and Nucleic Acid Drug Delivery. Acc Chem Res 2011; 44 (2):147-156.
    [30]. Tomasi S., Le Roch M., Renault J. Solid phase organic synthesis of polyamine derivatives and initial biological evaluation of their antitumoral activity. Bioorg Med Chem Lett 1998; 8 (6):635-640.
    [31]. Lebreton L., Jost E., Carboni B. Structure-immunosuppressive activity relationships of new analogues of 15-deoxyspergualin.2. Structural modifications of the spermidine moiety. J Med Chem 1999; 42 (23):4749-4763.
    [32]. Kean L. S., Adams A. B., Strobert E. Induction of chimerism in rhesus macaques through stem cell transplant and costimulation blockade-based immunosuppression. Am J Transplant 2007; 7 (2):320-335.
    [33]. Khomutov A. R., Keinanen T. A., Grigorenko N. A. Methylated analogs of spermine and spermidine as tools to investigate cellular functions of polyamines and enzymes of their metabolism. Mol Biol+2009; 43 (2):249-259.
    [34]. Le Berre L., Bruneau S., Naulet J. Induction of T Regulatory Cells Attenuates Idiopathic Nephrotic Syndrome. J Am Soc Nephrol 2009; 20 (1):57-67.
    [35]. Evans C. G., Chang L., Gestwicki J. E. Heat Shock Protein 70 (Hsp70) as an Emerging Drug Target. J Med Chem 2010; 53 (12):4585-4602.
    [36]. Walker S., Sofia M. J., Axelrod H. R. Chemistry and cellular aspects of cationic facial amphiphiles. Adv Drug Deliv Rev 1998; 30 (1-3):61-71.
    [37]. Izumrudov V. A., Zhiryakova M. V., Kudaibergenov S. E. Controllable stability of DNA-containing polyelectrolyte complexes in water-salt solutions. Biopolymers 1999; 52 (2):94-108.
    [38]. Paquet V., Volmer A. A., Carreira E. M. Synthesis and in vitro biological properties of novel cationic derivatives of amphotericin B. Chem-Eur J 2008; 14 (8):2465-2481.
    [39]. Vicennati P., Giuliano A., Ortaggi G., Masotti A. Polyethylenimine In Medicinal Chemistry. Current Medicinal Chemistry 2008; 15 (27):2826-2839.
    [40]. Li Y., Zhu Y. D., Xia K. J. Dendritic poly(1-lysine)-b-poly(1-lactide)-b-dendritic poly(1-lysine) amphiphilic gene delivery vectors:roles of PLL dendritic generation and enhanced transgene efficacies via termini modification. Biomacromolecules 2009; 10 (8):2284-2293.
    [41]. Pavan G. M., Danani A., Pricl S., Smith D. K. Modeling the multivalent recognition between dendritic molecules and DNA:understanding how ligand "sacrifice" and screening can enhance binding. J Am Chem Soc 2009; 131 (28):9686-9694.
    [42]. Jones S. P., Pavan G. M., Danani A., Pricl S., Smith D. K. Quantifying the effect of surface ligands on dendron-DNA interactions:insights into multivalency through a combined experimental and theoretical approach. Chem-Eur J 2010; 16 (15):4519-4532.
    [43]. Oishi M., Kataoka K., Nagasaki Y. pH-responsive three-layered PEGylated polyplex micelle based on a lactosylated ABC triblock copolymer as a targetable and endosome-disruptive nonviral gene vector. Bioconjugate Chem 2006; 17 (3):677-688.
    [44]. Dehousse V., Garbacki N., Colige A., Evrard B. Development of pH-responsive nanocarriers using trimethylchitosans and methacrylic acid copolymer for siRNA delivery. Biomaterials 2010; 31 (7):1839-1849.
    [45]. Oishi M., Hayashi H., Itaka K., Kataoka K., Nagasaki Y. pH-responsive PEGylated nanogels as targetable and low invasive endosomolytic agents to induce the enhanced transfection efficiency of nonviral gene vectors. Colloid Polym Sci 2007; 285 (9):1055-1060.
    [46]. Twaites B. R., Alarcon C. D., Cunliffe D. Thermo and pH responsive polymers as gene delivery vectors:effect of polymer architecture on DNA complexation in vitro. J Controlled Release 2004; 97 (3):551-566.
    [47]. Wyatt P. J. Light scattering and the absolute characterization of macromolecules. Anal Chim Acta 1993; 272 (1):1-40.
    [48]. Tsuji H., Tezuka Y., Saha S. K., Suzuki M., Itsuno S. Spherulite growth of L-lactide copolymers:Effects of tacticity and comonomers. Polymer 2005; 46 (13):4917-4927.
    [49]. Blagbrough I. S., Metwally A. A., Geall A. J. Measurement of polyamine pKa values. Methods Mol Biol 2011; 720:493-503.
    [50]. Oganesyan A., Cruz I. A., Amador R. B. High yield selective acylation of polyamines:Proton as protecting group. Org Lett 2007; 9 (24):4967-4970.
    [51]. Labadi I., Jenei E., Lahti R., Lonnberg H. Interaction of pyrophosphate ion with di-, tri-and tetra-amines in aqueous solution:a potentiometric and calorimetric study. Acta Chem Scand 1991; 45 (10):1055-1059.
    [52]. Von Harpe A., Petersen H., Li Y., Kissel T. Characterization of commercially available and synthesized polyethylenimines for gene delivery. J Controlled Release 2000; 69 (2):309-322.
    [53]. Li M., Li G. L., Zhang Z. G. Self-assembly of pH-responsive and fluorescent comb-like amphiphilic copolymers in aqueous media. Polymer 2010; 51 (15):3377-3386.
    [54]. Discher B. M., Won Y. Y., Ege D. S. Polymersomes:Tough vesicles made from diblock copolymers. Science 1999; 284 (5417):1143-1146.
    [55]. Zhang L. F., Eisenberg A. Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers in solutions. Macromolecules 1996; 29 (27):8805-8815.
    [56]. Zhang L. F., Yu K., Eisenberg A. Ion-induced morphological changes in "crew-cut" aggregates of amphiphilic block copolymers. Science 1996; 272 (5269):1777-1779.
    [57]. Weaver J. V. M., Adams D. J. Synthesis and application of pH-responsive branched copolymer nanoparticles (PRBNs):a comparison with pH-responsive shell cross-linked micelles. Soft Matter 2010; 6 (12):2575-2582.
    [58]. Diaz-Fernandez Y., Foti F., Mangano C. Micelles for the self-assembly of "off-on-off" fluorescent sensors for pH windows. Chem-Eur J 2006; 12 (3):921-930.
    [59]. DeSilva A. P., Gunaratne H. Q. N., McCoy C. P. Direct visual indication of pH windows:'Off-on-off fluorescent PET (photoinduced electron transfer) sensors switches. Chem Commun 1996 (21):2399-2400.
    [60]. Torchilin V. P. Micellar nanocarriers:Pharmaceutical perspectives. PharmRes2007;24(l):l-16.
    [61]. Gota C., Okabe K., Funatsu T., Harada Y., Uchiyama S. Hydrophilic Fluorescent Nanogel Thermometer for Intracellular Thermometry. J Am Chem Soc 2009; 131 (8):2766-2767.
    [62]. Pasternack R. F., Bustamante C., Collings P. J., Giannetto A., Gibbs E. J. Porphyrin assemblies on DNA as studied by a resonance light-scattering technique. J Am Chem Soc 1993; 115 (13):5393-5399.
    [63]. Gupta P., Vermani K., Garg S. Hydrogels:from controlled release to pH-responsive drug delivery. Drug Discovery Today 2002; 7 (10):569-579.
    [64]. Sawant R., Hurley J., Salmaso S. "SMART" drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. Bioconjugate Chem 2006; 17 (4):943-949.
    [65]. Liang L., Feng X., Peurrung L., Viswanathan V. Temperature-sensitive membranes prepared by UV photopolymerization of N-isopropylacrylamide on a surface of porous hydrophilic polypropylene membranes. Journal of Membrane Science 1999; 162 (1-2):235-246.
    [66]. Osland A., Kleppe K. Polyamine induced aggregation of DNA. Nucleic Acids Res 1977; 4 (3):685.
    [67]. Raspaud E., Chaperon I., Leforestier A., Livolant F. Spermine-induced aggregation of DNA, nucleosome, and chromatin. Biophys J 1999; 77 (3):1547-1555.
    [68]. Hou M. H., Lu W. J., Huang C. Y., Fan R. J., Yuann J. M. P. Effects of polyamines on the DNA-reactive properties of dimeric mithramycin complexed with cobalt (Ⅱ):implications for anticancer therapy. Biochemistry 2009; 48 (22):4691-4698.
    [69]. Millili P. G., Selekman J. A., Blocker K. M. Structural and functional consequences of poly (ethylene glycol) inclusion on DNA condensation for gene delivery. Microsc Res Tech 2010; 73 (9):866-877.
    [70]. Iacomino G., Picariello G., Sbrana F. DNA is Wrapped by the Nuclear Aggregates of Polyamines:The Imaging Evidence. Biomacromolecules 2011.
    [71]. Suzuki M., Crozatier C., Yoshikawa K., Mori T., Yoshikawa Y. Protamine-induced DNA compaction but not aggregation shows effective radioprotection against double-strand breaks. Chem Phys Lett 2009; 480 (1-3):113-117.
    [72]. Tan J. F., Too H. P., Hatton T. A., Tam K. C. Aggregation behavior and thermodynamics of binding between poly(ethylene oxide)-block-poly(2-(diethylamino)ethyl methacrylate) and plasmid DNA. Langmuir 2006; 22 (8):3744-3750.
    [73].冯喜增,金瑞祥,曲芸,何锡文.各种离子对血卟啉与牛血清白蛋白相互结合反应的影响研究.高等学校化学学报1996;17(6):866-869.
    [74]. Saurer E. M., Jewell C. M., Kuchenreuther J. M., Lynn D. M. Assembly of erodible, DNA-containing thin films on the surfaces of polymer microparticles: Toward a layer-by-layer approach to the delivery of DNA to antigen-presenting cells. Acta Biomaterialia 2009; 5 (3):913-924.
    [1]. Lee H. K., Park K. M., Jeon Y. J. Vesicle formed by amphiphilc cucurbit 6 uril:Versatile, noncovalent modification of the vesicle surface, and multivalent binding of sugar-decorated vesicles to lectin. J Am Chem Soc 2005; 127 (14):5006-5007.
    [2]. Saleh N. i., Koner A. L., Nau W. M. Activation and stabilization of drugs by supra molecular pK(a) shifts:Drug-delivery applications tailored for cucurbiturils. Angewandte Chemie-International Edition 2008; 47 (29):5398-5401.
    [3]. Wang R., Macartney D. H. Cucurbit 7 uril host-guest complexes of the histamine H(2)-receptor antagonist ranitidine. Organic & Bio molecular Chemistry 2008; 6 (11):1955-1960.
    [4]. Bernardos A., Aznar E., Dolores Marcos M. Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie-International Edition 2009; 48 (32):5884-5887.
    [5]. Hennig A., Bakirci H., Nau W. M. Label-free continuous enzyme assays with macrocycle-fluorescent dye complexes. Nature Methods 2007; 4 (8):629-632.
    [6]. Ghale G., Ramalingam V., Urbach A. R., Nau W. M. Determining Protease Substrate Selectivity and Inhibition by Label-Free Suprannolecular Tandem Enzyme Assays. J Am Chem Soc 2011; 133 (19):7528-7535.
    [7]. Miyahara Y., Abe K., Inazu T. " molecular" molecular sieves:Lid-free decamethylcucurbit 5 uril absorbs and desorbs gases selectively. Angewandte Chemie-International Edition 2002; 41 (16):3020-3023.
    [8]. Harada A. Cyclodextrin-based molecular machines. Acc Chem Res 2001; 34 (6):456-464.
    [9]. Lee J. W., Samal S., Selvapalam N., Kim H. J., Kim K. Cucurbituril ho mologues and derivatives:New opportunities in supra molecular chemistry. Acc Chem Res 2003; 36 (8):621-630.
    [10]. Wenz G., Han B. H., Muller A. Cyclodextrin rotaxanes and polyrotaxanes. Chem Rev 2006; 106 (3):782-817.
    [11]. Harada A. Design and construction of supra molecular architectures consisting of cyclodextrins and polymers. Metal Complex Catalysts Supercritical Fluid Polymerization Supra molecular Architecture 1997; 133:141-191.
    [12]. Okumura Y., Ito K. The polyrotaxane gel:A topological gel by figure-of-eight cross-links. Adv Mater 2001; 13 (7):485-487.
    [13]. Ritter H., Sadowski O., Tepper E. Influence of cyclodextrin molecules on the synthesis and the thermoresponsive solution behavior of N-isopropylacrylamide copolymers with adamantyl groups in the side-chains. Angewandte Chemie-International Edition 2003; 42 (27):3171-3173.
    [14]. Kihara N., Hinoue K., Takata T. Solid-state end-capping of pseudopolyrotaxane possessing hydroxy-terminated axle to polyrotaxane and its application to the synthesis of a functionalized polyrotaxane capable of yielding a polyrotaxane network. Macro molecules 2005; 38 (2):223-226.
    [15]. Koopmans C., Ritter H. Color change of N-isopropylacrylamide copolymer bearing Reichardts dye as optical sensor for lower critical solution temperature and for host-guest interaction with beta-cyclodextrin. J Am Chem Soc 2007; 129 (12):3502-3503.
    [16]. Mock W. Cucurbituril. Supra molecular Chemistry Ⅱ-Host Design and molecular Recognition 1995:1-24.
    [17]. Kim K. Mechanically interlocked molecules incorporating cucurbituril and their supra molecular assemblies. Chem Soc Rev 2002; 31 (2):96-107.
    [18]. Tuncel D., Steinke J. H. G. Catalytic self-threading:A new route for the synthesis of polyrotaxanes. Macro molecules 2004; 37 (2):288-302.
    [19]. Geng J., Biedermann F., Zayed J. M., Tian F., Scherman O. A. Supra molecular Glycopolymers in Water:A Reversible Route Toward Multivalent Carbohydrate-Lectin Conjugates Using Cucurbit 8 uril. Macro molecules 2011; 44(11):4276-4281.
    [20]. Yang H., Hao J. C., Tan Y. B. Cucurbit 7 uril Moving on Side Chains of Polypseudorotaxanes:Synthesis, Characterization, and Properties. Journal of Polymer Science Part a-Polymer Chemistry 2011; 49 (10):2138-2146.
    [21]. Tan Y. B., Choi S. W., Lee J. W., Ko Y. H., Kim K. Synthesis and characterization of novel side-chain pseudopolyrotaxanes containing cucurbituril. Macro molecules 2002; 35 (18):7161-7165.
    [22]. Hou Z. S., Tan Y. B., Kim K., Zhou Q. F. Synthesis, characterization and properties of side-chain pseudopolyrotaxanes consisting of cucurbituril 6 and poly-N-1-(4-vinylbenzyl)-1,4-diaminobutane dihydrochloride. Polymer 2006; 47 (2):742-750.
    [23]. Isobe H., Tomita N., Lee J. W. Ternary complexes between DNA, polyamine, and cucurbituril:A modular approach to DNA-binding molecules. Angewandte Chemie-International Edition 2000; 39 (23):4257-4260.
    [24]. Jeon Y. J., Bharadwaj P. K., Choi S. W., Lee J. W., Kim K. Supra molecular amphiphiles:Spontaneous formation of vesicles triggered by formation of a charge-transfer complex in a host. Angewandte Chemie-International Edition 2002; 41 (23):4474-4476.
    [25]. Park K. M., Roh S. G., Lee E. Construction of a square-wave-shaped one-dimensional polyrotaxane using a preorganized L-shaped pseudorotaxane. Supra mol Chem 2002; 14 (2-3):153-158.
    [26]. Choi S., Park S. H., Ziganshina A. Y. A stable cis-stilbene derivative encapsulated in cucurbit 7 uril. Chem Commun 2003 (17):2176-2177.
    [27]. Isobe H., Sato S., Lee J. W. Supra molecular modulation of action of polyamine on enzyme/DNA interactions. Chem Commun 2005 (12):1549-1551.
    [28]. Jeon W. S., Kim E., Ko Y. H. molecular loop lock:A redox-driven molecular machine based on a host-stabilized charge-transfer complex. Angewandte Chemie-International Edition 2005; 44 (1):87-91.
    [29]. Munteanu M., Choi S., Ritter H. Cyclodextrin-click-cucurbit 6 uril: Combi-Receptor for Supra molecular Polymer Systems in Water. Macro molecules 2009; 42 (12):3887-3891.
    [30]. Yang H., Tan Y. B., Wang Y. X. Fabrication and properties of cucurbit 6 uril induced thermo-responsive supra molecular hydrogels. Soft Matter 2009; 5 (18):3511-3516.
    [31]. Wang H., Tan Y., Zhu Y., Du X., Zhang L. Synthesis and Properties of pH-Responsive Polymers with Cadaverine Side Groups. Journal of Macro molecular Science, Part A 2011; 48 (10):816-822.
    [32]. Freeman W. A., Mock W. L., Shih N. Y. Cucurbituril. J Am Chem Soc 1981; 103 (24):7367-7368.
    [33]. Zhu Y. J., Tan Y. B., Du X., Piao J. C., Zhou Q. F. Synthesis and characteristic of double hydrophilic block copolymer with amine pendant chains. Chin Chem Lett 2008; 19 (3):355-358.
    [34]. Burger C. Multilayer vesicles and vesicle clusters formed by the fullerene-based surfactant C-60(CH3)(5)K. J Colloid Interface Sci 2004; 275 (2):632-641.
    [35]. Liu T. B. Self-assembly of poly(oxybutylene)-poly(oxyethylene)-poly(oxybutylene) (B6E46B6) triblock copolymer in aqueous solution. J Phys Chem B 1997; 101 (43):8808-8815.
    [36]. Nie T. Micellar formation of poly(caprolactone-block-ethylene oxide-block-caprolactone) and its enzymatic biodegradation in aqueous dispersion. Macro molecules 2003; 36 (23):8825-8829.
    [37]. Zhao Y. Self-assembly of poly(caprolactone-b-ethylene oxide-b-caprolactone) via a microphase inversion in water. J Phys Chem B 2001; 105 (4):848-851.
    [38]. Zhang H. C., Sun L. Z., Liu Z. N. pH-responsive vesicle-like particles based on inclusion complexes between cyclodextrins and methyl orange. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2010; 358 (1-3):115-121.
    [39]. Zapotoczny S., Rymarczyk-Machal M., Stradomska A., Petelenz P., Nowakowska M. Aggregates of naphthalene chromophores in poly(vinylalcohol)-graft-poly(vinylnaphthalene) pseudomicelles. J Phys Chem B 2007; 111 (34):10088-10094.
    [40]. Taktak F. F., Butun V. Synthesis and physical gels of pH-and thermo-responsive tertiary amine methacrylate based ABA triblock copolymers and drug release studies. Polymer 2010; 51 (16):3618-3626.
    [41]. Pasternack R. F., Bustamante C., Collings P. J., Giannetto A., Gibbs E. J. Porphyrin assemblies on DNA as studied by a resonance light-scattering technique. J Am Chem Soc 1993; 115 (13):5393-5399.
    [42]. Torchilin V. P. Micellar nanocarriers:Pharmaceutical perspectives. Pharm Res 2007; 24 (1):1-16.
    [43]. Gota C., Okabe K., Funatsu T., Harada Y., Uchiyama S. Hydrophilic Fluorescent Nanogel Thermometer for Intracellular Thermometry. J Am Chem Soc 2009; 131 (8):2766-2767.
    [44]. Saleh N., Al-Rawashdeh N. A. F. Fluorescence enhancement of carbendazim fungicide in cucurbit 6 uril. Journal of Fluorescence 2006; 16 (4):487-493.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700