荧光纳米标记与编码技术用于几种重要病原菌检测的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
病原菌检测涉及到食品安全检验、疾病诊断、环境监测以及反生物恐怖等领域,与人类健康、社会安定和国家安全息息相关。传统的病原菌检测方法灵敏度低、费时耗力。各种建立在现代分子生物学、免疫学技术和现代分析仪器基础上的病原菌快速检测方法,为提高检测的灵敏度和可靠性做出了重要贡献,然而这些方法仍然存在各种局限性。功能化纳米材料具有许多普通材料无可比拟的优良特性,在病原菌的快速、灵敏检测上显示出广阔的应用前景。其中,硅壳荧光纳米材料是荧光最强的纳米材料之一,基于硅壳荧光纳米材料建立的荧光纳米标记技术比传统荧光标记技术具有更高的灵敏度和更好的光稳定性,为样品中少量病原菌的超灵敏检测提供了新的契机。本论文瞄准病原菌检测这一研究方向,在对各种病原菌检测方法进行简要综述的基础上,以荧光纳米标记与编码技术用于结核杆菌、大肠杆菌O157:H7等重要病原菌的快速、灵敏和多元检测为主线,主要开展了以下几个方面的研究工作:
     一、基于硅壳荧光纳米颗粒的间接免疫荧光显微镜法(FNP-IIFM)用于结核杆菌快速检测的研究。
     将荧光纳米标记技术与免疫荧光分析法相结合,发展了一种新型的基于硅壳荧光纳米颗粒的间接免疫荧光显微镜法用于结核杆菌的快速检测。通过采用兔抗结核杆菌抗体对目标结核杆菌进行特异性识别后,以修饰了葡萄球菌蛋白A的联吡啶钌(RuBpy)硅壳荧光纳米颗粒作为信号指示,利用葡萄球菌蛋白A与抗体之间的特异性结合,实现对结核杆菌的间接标记,通过荧光显微镜对标记的结核杆菌进行荧光成像检测。结果表明,该方法可以成功应用于对缓冲液体系、混合细菌样品和掺杂痰液样品中结核杆菌的检测,整个检测步骤包括样品预处理可在4h内完成;并且,采用硅壳荧光纳米颗粒作为荧光标记物用于结核杆菌的检测比传统荧光染料具有更高的信号强度与更好的光稳定性,有望应用于临床痰液标本中结核杆菌的快速检测。
     二、基于硅壳荧光纳米颗粒和SYBR Green I的双色流式细胞术(FSiNP@SG-FCM)用于结核杆菌检测的研究。
     将基于硅壳荧光纳米颗粒的免疫荧光分析法与流式细胞术相结合,发展了一种新型的基于功能化RuBpy硅壳荧光纳米颗粒和SYBR Green I的改良双色流式细胞术用于结核杆菌的检测。采用RuBpy硅壳纳米颗粒标记的抗体对样品中目标结核杆菌进行免疫荧光染色后,以核酸染料SYBR Green I对样品中细菌的核酸进行染色,从而将细菌与样品中的碎片杂质区分,通过多参数流式细胞术对样品中双染色的结核杆菌进行测定与分析。将该方法用于对缓冲液体系和掺杂尿液样品中的结核杆菌进行检测。结果表明,该方法显著地减小了由纳米颗粒团聚以及纳米颗粒对杂质碎片的非特异性吸附所引起的假阳性信号,对缓冲液体系和掺杂尿液样品的检测下限分别为3.5×10~3和3.0×10~4 cells/ml结核杆菌,并且比基于FITC标记的传统流式细胞术具有更高的灵敏度,整个检测步骤包括样品预处理可在2h内完成,有望应用于临床尿液标本中结核杆菌的快速检测。
     三、多色光学编码硅壳荧光纳米材料的制备研究。
     基于荧光共振能量转移(FRET)与反相微乳液法硅壳荧光纳米材料制备技术,发展了一种简易的多色光学编码硅壳荧光纳米材料的制备新方法。采用两种FRET供受体荧光染料按不同的比例与载体材料人免疫球蛋白(或多聚赖氨酸)作用制备荧光编码的载体材料,以荧光编码的载体材料为内核材料,利用氨水催化硅烷化试剂在反相微乳液中水解包裹内核材料制备成一系列多色光学编码硅壳纳米材料。对两类光学编码硅壳纳米材料的形貌和荧光性质进行考察,结果表明,以人免疫球蛋白为载体材料制备的光学编码硅壳纳米材料为球形,而以多聚赖氨酸作为载体材料制备的光学编码硅壳纳米材料为棒状,通过改变供受体染料的标记比,可以获得一系列具有不同荧光发射光谱性质的纳米球或纳米棒,由于荧光共振能量转移效应,这些材料能以同一波长的光激发出不同颜色的荧光,而且荧光强、性质稳定、制备方法简便易行,在病原菌多元检测、多基因表达分析、蛋白质多元分析、多通道生物学测定、医学诊断学等方面都有广阔的应用前景。
     四、多色光学编码硅壳荧光纳米棒用于病原菌DNA片断多元检测的研究。
     基于多色光学编码硅壳荧光纳米棒建立多元荧光标记技术并与三明治固相核酸杂交检测技术相结合,发展了一种可用于对大肠杆菌O157:H7、单核细胞增生性李斯特菌和金黄色葡萄球菌三种常见食源性病原菌DNA片断同时检测的多元分析方法。针对三种目标菌编码特异性毒素的基因序列合成目标DNA片断以及特异性的捕获探针和信号探针,在微珠上分别修饰三种捕获探针,对三种细菌目标DNA片断进行杂交捕获后,以分别修饰了三种信号探针的三种不同颜色的光学编码硅壳纳米棒作为信号指示对目标DNA进行杂交检测。利用该方法对单一目标细菌DNA片断检测性能的考察表明,方法的检测下限为0.3 nM DNA、线性范围为0.3-1.9 nM DNA、可在2 h内完成分析;在此基础上进一步利用三种不同颜色的光学编码硅壳纳米棒作为信号指示与三明治核酸杂交相结合成功地实现了对大肠杆菌O157:H7、单核细胞增生性李斯特菌和金黄色葡萄球菌三种食源性病原菌DNA片断的同时检测,极大地提高了检测的效率。该方法可望用于病原菌基因的多元分析中。
Detection of pathogenic bacteria is vital in food and environment safty,clinical diagnosis and anti-bioterrorism.Traditional methods for the detection of pathogenic bacteria either lack sensitivity or take a long time for analysis.Current rapid methods based on the modern molecular biology,immunology and analytical instruments have contributed much on the improvement of sensitivity and accuracy of the bacterial detection but still exhibit deficiencies in some extent.Recently,functionalized nanomaterials with unique chemical and physical properties have been successfully applied in the rapid and sensitive detection of pathogenic bacteria.Fluorescent silica nanoparticles are one of the most luminescent nanomaterials,which have gained increasing attention these years.Due to the superiority over conventional fluorophores in terms of fluorescence intensity and photostability,fluorescent silica nanoparticles will open new opportunity in ultrasensitive detection of trace amounts of pathogenic bacteria.Aiming at the important aspect of pathogenic bacterial detection,this thesis mainly focuses on development of rapid,sensitive and multiplexed detection methods for several important pathogenic bacteria by using fluorescent nanoparticle-based labeling and encoding technology.
     1.Fluorescent nanoparticle-based indirect immunofluorescence microscopy (FNP-ⅡFM) for detection of Mycobacterium tuberculosis.
     A method of fluorescent nanoparticle-based indirect immunofluorescence microscopy(FNP-ⅡFM) has been developed for the rapid detection of M.tuberculosis. An anti-Mycobacterium tuberculosis antibody was used as primary antibody to recognize M.tuberculosis,and then an antibody binding protein(Protein A) labeled with Tris(2,2-bipyridyl)dichlororuthenium(Ⅱ) hexahydrate(RuBpy)-doped silica nanoparticles was used to generate fluorescent signal for microscopic examination. With this method,M.tuberculosis in bacterial mixture as well as in spiked sputum was detected.Total assay time including sample pretreatment was within 4h.The use of the fluorescent nanoparticles revealed amplified signal intensity and higher photostability than the direct use of conventional fluorescent dye as label.This proposed FNP-ⅡFM method will be promising for rapid detection of M.tuberculosis in clinical sputum samples.
     2.Fluorescent nanoparticles and SYBR GreenⅠbased two-color flow cytometry (FSiNP@SG-FCM) for detection of M.tuberculosis.
     A method using an improved two-color flow cytometric analysis by a combination of bioconjugated fluorescent silica nanoparticles and SYBR GreenⅠ(FSiNP@SG-FCM) has been developed for the rapid detection of M.tuberculosis.M. tuberculosis was specially labeled with antibody-conjugated RuBpy-doped silica nanoparticles,then stained with a nucleic acid dye SYBR GreenⅠto exclude background detrital particles,followed by multiparameter determination with flow cytometry.With this method,false positives caused by aggregates of nanoparticle-bioconjugates and nonspecific binding of nanoparticle-bioconjugates to background debris could be significantly decreased.This assay allowed for detection of as low as 3.5×10~3 and 3.0×10~4 cells/ml M.tuberculosis in buffer and spiked urine respectively with higher sensitivities than the FITC-based conventional flow cytometry.The total assay time including sample pretreatment was within 2 h.This proposed FSiNP@SG-FCM method will be promising for rapid detection of M. tuberculosis in clinical urine samples.
     3.Synthesis of the optically encoded silica nanomaterials.
     We have synthesized optically encoded silica nanomaterials with an easy water-in-oil microemulsion method.A pair of FRET(frequency resonance energy transfer) donor-acceptor chromophores were simultaneously labeled on immunoglobulin G(or poly lysine) at varied ratios to prepare the spectroscopically encoded core materials,which were then housed inside a silica shell by the hydrolysis and polycondensation of tetraethoxysilane(TEOS) in water-in-oil microemulsion to synthesize the optically encoded silica nanomaterials.The studies of the morphologies and fluorescence properties of the two kinds of optically encoded silica nanomaterials showed that different morphologies of encoded silica nanomaterials with the regular sphere-shape or rod-shape could be synthesized by using immunoglobulin G or poly lysine respectively as core materials in the preparation process.By varying the labeling ratios of the two chromophores,nanospheres or nanorods with varied emission spectra were obtained.FRET-mediated emission signatures could be tuned to have these nanomaterials exhibit multiple colors under one single wavelength excitation.These nanomaterials also possessed unique properties of intense fluorescence,high photostability and easy bioconjugation.These optically encoded silica nanomaterials are potential to be used as barcoding tags for multiplexed signaling and bioassays.
     4.Multiplexed detection of pathogenic bacteria DNA by using the optically encoded silica nanorods.
     A multiplexed microbead-based sandwich DNA hybridization assay by using the optically encoded silica nanorods as identification tags has been developed for detection of oligonucleotide sequences specific to three food-borne pathogenic Escherichia coli O157:H7,Listeria monocytogenes and Staphylococcus aureus simultaneously.For each bacteria strain,the capture and signal probes were selected within the sequence of a gene encoding a strain-specific toxin.The three capture probes were respectively immobilized onto different microbeads,and the encoded nanorods with three colors were each functionalized with signal probes for one of the pathogens.A mix of the capture probes functionalized microbeads were used to capture the complementary objective sequences,and then were exposed to a cocktail of the fluorescent nanorods labeled signal probes to provide detection signals.The microbead-based sandwich DNA hybridization assay was employed initially for single pathogenic bacteria DNA detection.Results showed that the detect limit of the assay was 0.3 nM DNA with a linear range of 0.3-1.9 nM DNA.The assay could be achieved in 2 h.Following the single-color study multiplexed microbead-based sandwich DNA hybridization assay was successfully used in the detection of the three target pathogenic bacteria DNA sequences simultaneously with encoded nanorods. This assay will be promising for multiplexed detection of nucleic acids of pathogenic bacteria.
引文
[1] Maukonen J, Matto J, Wirtanen G, et al. Methodologies for the characterization of microbes in industrial environments: a review. Journal of Industrial Microbiology & Biotechnology, 2003, 30(6): 327-356
    [2] de Boer E, Beumer R R. Methodology for detection and typing of foodborne microorganisms. International Journal of Food Microbiology, 1999, 50(1-2): 119-130
    [3] Deisingh A K, Thompson M. Detection of infectious and toxigenic bacteria. Analyst, 2002, 127(5): 567-581
    [4] Signoretto C, Canepari P. Towards more accurate detection of pathogenic Gram-positive bacteria in waters. Current Opinion in Biotechnology, 2008, 19(3): 248-253
    [5] van Belkum A. Molecular diagnostics in medical microbiology: yesterday,today and tomorrow. Current Opinion in Pharmacology, 2003, 3(5): 497-501
    [6] Agarwal R, Shukla S K, Dharmani S, et al. Biological warfare—an emerging threat. The Journal of the Association of Physicians of India, 2004, 52: 733-738
    [7] Broussard L A. Biological agents: Weapons of warfare and bioterrorism. Molecular Diagnosis, 2001, 6(4): 323-333
    [8] Iqbal S S, Mayo M W, Bruno J G, et al. A review of molecular recognition technologies for detection of biological threat agents. Biosensors & Bioelectronics, 2000, 15(11-12): 549-578
    [9] Lazcka O, Del Campo F J, Munoz F X. Pathogen detection: A perspective of traditional methods and biosensors. Biosensors & Bioelectronics, 2007, 22(7): 1205-1217
    [10] Luo P G, Stutzenberger F J. Nanotechnology in the detection and control of microorganisms. Advances in Applied Microbiology, 2008, 63(63): 145-181
    [11] Abubakar I, Irvine L, Aldus C M, et al. A systematic review of the clinical, public health and cost-effectiveness of rapid diagnostic tests for the detection and identification of bacterial intestinal pathogens in faeces and food. Health Technology Assessment, 2007, 11(36): 1-216
    [12] Leonard P, Hearty S, Brennan J, et al. Advances in biosensors for detection of pathogens in food and water. Enzyme and Microbial Technology, 2003, 32(1): 3-13
    [13]Barken K B,Haagensen J A J,Tolker-Nielsen T.Advances in nucleic acidbased diagnostics of bacterial infections.Clinica Chimica Acta,2007,384(1-2):1-11
    [14]Alvarez-Barrientos A,Arroyo J,Canton R,et al.Applications of flow cytometry to clinical microbiology.Clinical Microbiology Reviews,2000,13(2):167-195
    [15]吕瑞芳.病原生物与免疫学基础.第1版.北京:高等教育出版社,2004,27
    [16]江正斌,郭志洪,栾荣生.国内外主要传染病流行态势及其影响因素研究进展.中外健康文摘(医药学刊),2007,4(9):193-195
    [17]姚敬业.1996年发生在日本的大肠菌O157食物中毒.安徽预防医学杂志,2000,6(1):79-80
    [18]孙洋,冯书章,郭学军,等.肠出血性大肠杆菌O157胶体金免疫层析试纸条的研制.中国人兽共患病学报,2008,24(4):356-359
    [19]吴仲鑫,周勇,贡树基,等.肠出血性大肠杆菌O157:H7的紧密黏附素基因eae的测序及生物信息学分析.热带医学杂志,2008,8(2):93-96
    [20]Fleming D W,Cochi S L,MacDonald K L,et al.Pasteurized milk as a vehicle of infection in an outbreak of listeriosis.The New England Journal of Medicine,1985,312(7):404-407
    [21]Schlech W F,Lavigne P M,Bortolussi R A,et al.Epidemic listeriosis--evidence for transmission by food.The New England Journal of Medicine,1983,308(4):203-206
    [22]田霞,李远钊,张培正.李斯特菌的污染现状及控制措施.现代食品科技,2005,21(1):160-162
    [23]Beran G W,Shoeman H P,Anderson K F.Food safety:an overview of problems.Dairy Food Environment Science,1991,11:189-194
    [24]刘秀梅,陈艳,王晓英,等.1992-2001年食源性疾病暴发资料分析--国家食源性疾病监测网.卫生研究,2004,33(6):725-727
    [25]Ivnitski D,Abdel-Hamid I,Atanasov P,et al.Biosensors for detection of pathogenic bacteria.Biosensors & Bioelectronics,1999,14(7):599-624
    [26]中国防痨协会.结核病诊断细菌学检验规程.中国防痨杂志,1996,18(1):28-31
    [27]Cheng V C C,Yew W W,Yuen K Y.Molecular diagnostics in tuberculosis.European Journal of Clinical Microbiology and Infectious Diseases,2005,24(11):711-720
    [28]易松林,谭云洪,欧阳辉.利用BACTEC 960分枝杆菌分析系统对分枝杆 菌进行快速菌型鉴定方法的研究.湖南师范大学学报(医学版),2008,5(1):42-44
    [29]王苏民.结核病及其实验技术的现状与展望.中华检验医学杂志,2001,24(2):71-72
    [30]Fleisher J M.Conducting recreational water quality surveys:some problems and suggested remedies.Marine Pollution Bulletin,1990,21(12):562-567
    [31]Rahman I,Shahamat M,Chowdhury M A,et al.Potential virulence of viable but nonculturable Shigella dysenteriae type 1.Applied and Environmental Microbiology,1996,62(1):115-120
    [32]张进忠.压电体声波微生物传感及其应用研究:[湖南大学博士学位论文].长沙:湖南大学,2006,9
    [33]范宏英.水体污染中常见食源性致病菌的PCR分子检测研究:[福建师范大学硕士学位论文].福建:福建师范大学,2001,9
    [34]Riad E M,Tanios A I,EL-Moghny A F A,et al.Antigen capture ELISA technique for rapid detection of Salmonella Typhimurium in fecal samples of diarrhoeic cow calves.Assiut Veterinary Medical Journal,1998,39(78):324
    [35]Leeming J P,Cartwright K,Morris R,et al.Diagnosis of invasive pneumococcal infection by serotype-specific urinary antigen detection.Journal of Clinical Microbiology,2005,43(10):4972-4976
    [36]Blais B W,Leggate J,Bosley J,et al.Comparison of fluorogenic and chromogenic assay systems in the detection of Escherichia coli O157 by a novel polymyxin-based ELISA.Letters in Applied Microbiology,2004,39(6):516-522
    [37]Neely E,Bell C,Finlay D,et al.Development of a capture/enrichment sandwich ELISA for the rapid detection of enteropathogenic and enterohaemorrhagic Escherichia coli 026 strains.Journal of Applied Microbiology,2004,97(6):1161-1165
    [38]Blais B W,Yamazaki H.Use of detergents in the preparation of Salmonella samples for enzyme-immunoassay on polymyxin-coated polyester cloth.International Journal of Food Microbiology,1990,11(3-4):329-336
    [39]Blais B W,Chan P L,Phillippe L M,et al.Assay of Salmonella in enrichment cultures of foods,feeds and environmental samples by the polymyxin-cloth enzyme immunoassay.International Journal of Food Microbiology,1997,37(2-3):183-188
    [40]Booth R A,Blais B W,Johnson R P,et al.A polymyxin-cloth enzyme immunoassay system for detection of Escherichia coli O157 in ground beef.Food Microbiology,1996,13(3):237-242
    [41]Blais B W,Bosley J,Martinez-Perez A,et al.Polymyxin-based enzyme-linked immunosorbent assay for the detection of Escherichia coli O111 and O26.Journal of Microbiological Methods,2006,65(3):468-475
    [42]马颀,任珊,许美玉.酶联免疫吸附技术在食品安全检测中的应用.仪器科技,2008,1:200-204
    [43]陈晓旭,刘杨,易彬,等.乙型肝炎病毒检测技术及应用.临床军医杂志,2005,33(5):619-621
    [44]徐宜为.免疫检测技术.第2版.北京:科学出版社,1991,132
    [45]Husson M O,Leclerc H.Detection of Helicobacter pylori in stomach tissue by use of a monoclonal-antibody.Journal of Clinical Microbiology,1991,29(12):2831-2834
    [46]Goel A K,Tamrakar A K,Kamboj D V,et al.Direct immunofluorescence assay for rapid environmental detection of Vibrio cholerae O1.Folia Microbiologica,2005,50(5):448-452
    [47]Elverdal P,Jorgensen C S,Uldum S A.Comparison and evaluation of four commercial kits relative to an in-house immunofluoreseence test for detection of antibodies against Legionella pneumophila.European Journal of Clinical Microbiology & Infectious Diseases,2008,27(2):149-152
    [48]Tortorello M L,Stewart D S.Antibody-direct epifluorescent filter technique for rapid,direct enumeration of Escherichia coli O157:H7 in beef.Applied and Environmental Microbiology,1994,60(10):3553-3559
    [49]Rodrigues U M,Kroll R G.Rapid detection of Salmonellas in raw meats using a fluorescent-antibody microcolony technique.Journal of Applied Bacteriology,1990,68(3):213-223
    [50]Tortorello M L,Reineke K F,Stewart D S.Comparison of antibody direct epifluorescent filter technique with the most probable number procedure for rapid enumeration of Listeria in fresh vegetables.Journal of AOAC International,1997,80(6):1208-1214
    [51]Yan B,Cheng A C,Wang M S,et al.Application of an indirect immunofluorescent staining method for detection of Salmonella enteritidis in paraffin slices and antigen location in infected duck tissues.World Journal of Gastroenterology,2008,14(5):776-781
    [52]Bruno J G,Ulvick S J,Uzzell G L,et al.Novel immuno-FRET assay method for Bacillus spores and Escherichia coli O157:H7.Biochemical and Biophysical Research Communications,2001,287(4):875-880
    [53]刘彦仿.免疫组织化学.第一版.北京:人民卫生出版社,1990,80-88
    [54]范宏英.水体污染中常见食源性致病菌的PCR分子检测研究:[福建师范大学硕士学位论文].福建:福建师范大学,2001,15
    [55]Hardegger D,Nadal D,Bossart W,et al.Rapid detection of Mycoplasma pneumoniae in clinical samples by real-time PCR.Journal of Microbiological Methods,2000,41(1):45-51
    [56]Ahmed N,Mohanty A K,Mukhopadhyay U,et al.PCR-based rapid detection of Mycobacterium tuberculosis in blood from immunocompetent patients with pulmonary tuberculosis.Journal of Clinical Microbiology,1998,36(10):3094-3095
    [57]Niederhauser C,Candrian U,Hofelein C,et al.Use of polymerase chainreaction for detection of Listeria monocytogenes in food.Applied and Environmental Microbiology,1992,58(5),1564-1568
    [58]Brakstad O G,Aasbakk K,Maeland J A.Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene.Journal of Clinical Microbiology,1992,30(7):1654-1660
    [59]Wren B,Clayton C,Tabaqchali S.Rapid identification of toxigenic Clostridium difficile by polymerase chain reaction.Lancet,1990,335(8686):423
    [60]Kong R Y C,So C L,Law W F,et al.A sensitive and versatile multiplex PCR system for the rapid detection of enterotoxigenic(ETEC),enterohaemorrhagic (EHEC) and enteropathogenic(EPEC) strains of Escherichia coli.Marine Pollution Bulletin,1999,38(12):1207-1215
    [61]Lei I F,Roffey P,Blanchard C,et al.Development of a multiplex PCR method for the detection of six common foodborne pathogens.Journal of Food and Drug Analysis,2008,16(4):37-43
    [62]Lehmann L E,Hunfeld K P,Emrich T,et al.A multiplex real-time PCR assay for rapid detection and differentiation of 25 bacterial and fungal pathogens from whole blood samples.Medical Microbiology and Immunology,2008,197(3):313-324
    [63]范宏英.水体污染中常见食源性致病菌的PCR分子检测研究:[福建师范大学硕士学位论文].福建:福建师范大学,2001,15-16
    [64]徐茂军.基因探针技术及其在食品卫生检测中的应用.食品与发酵工业,2001,27(2):66-71
    [65] Martins S A M, Prazeres D M F, Fonseca L P, et al. Chemiluminescent bead-based hybridization assay for the detection of genomic DNA from E. coli in purified plasmid samples. Analytical and Bioanalytical Chemistry, 2008, 391(6): 2179-2187
    [66] Soumet C, Ermel G, Salvat G, et al. Detection of Salmonella spp. in food products by polymerase chain reaction and hybridization assay in microplate format. Letters in Applied Microbiology, 1997, 24(2): 113-116
    [67] Bej A K, Dicesare J L, Haff L, et al. Detection of Escherichia coli and Shigella spp in water by using the polymerase chain-reaction and gene probes for uid. Applied and Environmental Microbiology, 1991, 57(4): 1013-1017
    [68] Hill W E, Payne W L, Aulisio C C G. Detection and enumeration of virulent Yersinia enterocolitica in food by DNA colony hybridization. Applied and Environmental Microbiology, 1983, 46(3): 636-641
    [69] Oyarzabal O A, Behnke N M, Mozola M A. Validation of a microwell DNA probe assay for detection of Listeria spp. in foods-Performance-tested Method(SM) 010403. Journal of AOAC International, 2006, 89(3): 651-668
    [70] Notermans S, Heuvelman K J, Wernars K. Synthetic enterotoxin B DNA probes for detection of enterotoxigenic Staphylococcus aureus strains. Applied and Environmental Microbiology, 1988, 54(2): 531-533
    [71] Yokoigawa K, Inoue K, Okubo Y, et al. Primers for amplifying an alanine racemase gene fragment to detect E. coli strains in foods. Journal of Food Science, 1999, 64(4): 571-575
    [72] Tyagi S, Kramer F R. Molecular beacons: Probes that fluoresce upon hybridization. Nature Biotechnology, 1996, 14(3): 303-308
    [73] Jin Y, Wang K M, Tan W H, et al. Monitoring molecular beacon/DNA interactions using atomic force microscopy. Analytical Chemistry, 2004, 76(19): 5721-5725
    [74] Nielsen P E, Egholm M, Buchardt O. Peptide nucleic-acid (PNA) - a DNA mimic with a peptide backbone. Bioconjugate Chemistry, 1994, 5(1): 3-7
    [75] Jansen G J, Mooibroek M, Idema J, et al. Rapid identification of bacteria in blood cultures by using fluorescently labeled oligonucleotide probes. Journal of Clinical Microbiology, 2000, 38(2): 814-817
    [76] Llobet-Brossa E, Rossello-Mora R, Amann R. Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Applied and Environmental Microbiology, 1998, 64(7): 2691-2696
    [77]Worden A Z,Chisholm S W,Binder B J.In situ hybridization of Prochlorococcus and Synechococcus(marine cyanobacteria) spp.with rRNA-targeted peptide nucleic acid probes.Applied and Environmental Microbiology,2000,66(1):284-289
    [78]Perry-O'Keefe H,Rigby S,Oliveira K,et al.Identification of indicator microorganisms using a standardized PNA FISH method.Journal of Microbiological Methods,2001,47(3):281-292
    [79]邢德峰,任南琪,王爱杰.FISH技术在微生物生态学中的研究及进展.微生物学通报,2003,30(6):114-119
    [80]戴亚斌,何农跃,刘梅.基因芯片技术及其在微生物检测中的应用.动物医学进展,2006,27(10):41-46
    [81]卢美萍.DNA芯片及其在医学微生物检测中的应用.国外医学儿科学分册,2001,28(3):119-122
    [82]Volokhov D,Rasooly A,Chumakov K,et al.Identification of Listeria species by microarray-based assay.Journal of Clinical Microbiology,2002,40(12):4720-4728
    [83]Edman C F,Mehta P,Press R,et al.Pathogen analysis and genetic predisposition testing using microelectronic arrays and isothermal amplification.Journal of Investigative Medicine,2000,48(2):93-101
    [84]Keramas G,Bang D D,Lund M,et al.Development of a sensitive DNA microarray suitable for rapid detection of Campylobacter spp.Molecular and Cellular Probes,2003,17(4):187-196
    [85]高爽,谢明杰,金大智,等.运用基因芯片技术建立检测水产食品中常见病原微生物方法的研究.生物技术通讯,2007,18(1):72-76
    [86]邢丰峰,赵广英.免疫传感器在食品检测中的应用及相关思考.食品研究与开发,2006,27(3):98-103
    [87]张进忠.压电体声波微生物传感及其应用研究:[湖南大学博士学位论文].长沙:湖南大学,2006,10
    [88]Mirsky V M,Riepl M,Wolfbeis O S.Capacitive monitoring of protein immobilization and antigen-antibody reactions on monomolecular alkylthiol films on gold electrodes.Biosensors & Bioelectronics,1997,12(9-10):977-989
    [89]Mubammad-Tahir Z,Alocilja E C.A conductometric biosensor for biosecurity.Biosensors & Bioelectronics,2003,18(5-6):813-819
    [90]Yang L,Bashir R.Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnology Advances, 2008, 26(2): 135-150
    [91] Dill K, Song J H, Blomdahl J A, et al. Rapid, sensitive and specific detection of whole cells and spores using the light-addressable potentiometric sensor. Journal of Biochemical and Biophysical Methods, 1997, 34(2): 161-166
    [92] Dill K, Stanker L H, Young C R. Detection of Salmonella in poultry using a silicon chip-based biosensor. Journal of Biochemical and Biophysical Methods, 41(1): 61-67
    [93] Brewster J D, Mazenko R S. Filtration capture and immunoelectrochemical detection for rapid assay of Escherichia coli O157:H7. Journal of Immunological Methods, 1998,211(1-2): 1-8
    [94] Pathirana S T, Barbaree J, Chin B A, et al. Rapid and sensitive biosensor for Salmonella. Biosensors & Bioelectronics, 2000, 15(3-4): 135-141
    
    [95] 王柯敏. 光化学传感器理论与方法. 第1版. 长沙: 湖南教育出版社, 1995, 2
    [96] Tims T B, Lim D V. Rapid detection of Bacillus anthracis spores directly from powders with an evanescent wave fiber-optic biosensor. Journal of Microbiological Methods, 2004, 59(1): 127-130
    [97] Rijal K, Leung A, Shankar PM, et al. Detection of vathoizen Escherichia coli O157:H7 AT 70 cells/mL using antibody-immobilized biconical tapered fiber sensors. Biosensors & Bioelectronics, 2005, 21(6): 871-880
    [98] Ko S H, Grant S A. A novel FRET-based optical fiber biosensor for rapid detection of Salmonella typhimurium. Biosensors & Bioelectronics, 2006, 21(7): 1283-1290
    [99] Geng T, Morgan M T, Bhunia A K. Detection of low levels of Listeria monocytogenes cells by using a fiber-optic immunosensor. Applied and Environmental Microbiology, 2004, 70(10): 6138-6146
    [100] Epstein J R, Lee M, Walt D R. High-density fiber-optic genosensor microsphere array capable of zeptomole detection limits. Analytical Chemistry, 2002, 74(8): 1836-1840
    [101] Oh B K, Lee W, Kim Y K, et al. Surface plasmon resonance immunosensor using self-assembled protein G for the detection of Salmonella paratyphi. Journal of Biotechnology, 2004, 111(1): 1-8
    [102] Kai E, Ikebukuro K, Hoshina S, et al. Detection of PCR products of Escherichia coli O157:H7 in human stool samples using surface plasmon resonance (SPR). FEMS Immunology and Medical Microbiology, 2000, 29(4): 283-288
    [103]于新芬.生物传感器在医学检测中的应用.检验医学与临床,2004,1(3):120-126
    [104]赵现方,陈林海,李宗义,等.流式细胞术及其在微生物学中的应用.河南农业科学,2005,2005(6):5-9
    [105]Ingram M,Cleary T J,Price B J,et al.Rapid detection of Legionella pneumophila by flow-cytometry.Cytometry,1982,3(2):134-137
    [106]Donnelly C W,Baigent G J,Briggs E H.Flow-cytometry for automatedanalysis of milk containing Listeria-monocytogenes.Journal of the Association of Official Analytical Chemists,71(3):655-658
    [107]Mcclelland R G,Pinder A C.Detection of low-levels of specific Salmonella species by fluorescent-antibodies and flow-cytometry.Journal of Applied Bacteriology,1994,77(4):440-447
    [108]Tortorello M L,Stewart D S,Raybourne R B.Quantitative analysis and isolation of Escherichia coli O157:H7 in a food matrix using flow cytometry and cell sorting.FEMS Immunology and Medical Microbiology,1997,19(4):267-274
    [109]Stopa P J.The flow cytometry of Bacillus anthracis spores revisited.Cytometry,2000,41(4):237-244
    [110]Zahavy E,Fisher M,Bromberg A,et al.Detection of frequency resonance energy transfer pair on double-labeled microsphere and Bacillus anthracis spores by flow cytometry.Applied And Environmental Microbiology,2003,69(4):2330-2339
    [111]Kempf V A J,Mandle T,Schumacher U,et al.Rapid detection and identification of pathogens in blood cultures by fluorescence in situ hybridization and flow cytometry.International Journal of Medical Microbiology,2005,295(1):47-55
    [112]Vaahtovuo J,Korkeamaki M,Munukka E,et al.Quantification of bacteria in human feces using 16S rRNA-hybridization,DNA-staining and flow cytometry.Journal of Microbiological Methods,2005,63(3):276-286
    [113]Lenaerts J,Lappin-Scott H A,Porter J.Improved fluorescent in situ hybridization method for detection of bacteria from activated sludge and river water by using DNA molecular beacons and flow cytometry.Applied and Environmental Microbiology,2007,73(6):2020-2023
    [114]Yamaguchi N,Sasada M,Yamanaka M,et al.Rapid detection of respiring Escherichia coli O157:H7 in apple juice,milk,and ground beef by flow cytometry.Cytometry Part A,2003,54A(1):27-35
    [115]Iannelli D,D'Apice L,Fenizia D,et al.Simultaneous identification of antibodies to Brucella abortus and Staphylococcus aureus in milk samples by flow cytometry.Journal of Clinical Microbiology,1998,36(3):802-806
    [116]Tapp H,Stotzky G.Monitoring the insecticidal toxins from Bacillus thuringiensis in soil with flow cytometry.Canadian Journal of Microbiology,1997,43(11):1074-1078
    [117]Seo K H,Brackett R E,Frank J F.Rapid detection of Escherichia coli O157:H7using immunomagnetic flow cytometry in ground beef,apple juice,and milk.International Journal of Food Microbiology,1998,44(1-2):115-123
    [118]Hibi K,Ushio H,Fukuda H,et al.Immunomagnetic separation using carbonyl iron powder and flow cytometry for rapid detection of Flavobacterium psychrophilum.Analytical and Bioanalytical Chemistry,2008,391(4):1147-1152
    [119]高春华.纳米材料的基本效应及其应用.江苏理工大学学报(自然科学版),2001,22(6):45-49
    [120]逄键涛,文思远,王升启.金纳米颗粒聚集以及金纳米探针-微阵列技术研究进展.分析化学,2006,34(6):884-888
    [121]Faulk W P,Taylor G M.An immunocolloid method for the electron microscope.Immunochemistry,1971,8(11):1081-1083
    [122]顾大勇,鲁卫平,周元国.纳米级金颗粒在基因芯片检测技术中的研究进展.国外医学生物医学工程分册,2005,28(2):75-80
    [123]孙双姣,蒋治良.金纳米微粒的制备和表征及其在生化分析中的应用.贵金属,2005,26(3):55-65
    [124]Hornyak G L,Patrissi C J,Martin C R.Fabrication,characterization,and optical properties of gold nanoparticle/porous alumina composites:The nonscattering Maxwell-Garnett limit.Journal of Physical Chemistry B,1997,101(9):1548-1555
    [125]Chan E D,Reves R,Belisle J T,et al.Diagnosis of tuberculosis by a visually detectable immunoassay for lipoarabinomannan.American Journal of Respiratory and Critical Care Medicine,2000,161(5):1713-1719
    [126]Huang S H.Gold nanoparticle-based immunochromatographic test for identification of Staphylococcus aureus from clinical specimens.Clinica Chimica Acta,2006,373(1-2):139-143
    [127]Lin F Y H,Sabri M,Alirezaie J,et al.Development of a nanoparticle-labeled microfluidic immunoassay for detection of pathogenic microorganisms. Clinical and Diagnostic Laboratory Immunology, 2005, 12(3): 418-425
    [128] Baptista P V, Koziol-Montewka M, Paluch-Oles J, et al. Gold-nanoparticle- probe-based assay for rapid and direct detection of Mycobacterium tuberculosis DNA in clinical samples. Clinical Chemistry, 2006, 52(7): 1433-1444
    [129] 谭翠燕, 梁汝强, 袁康成. 量子点在生命科学中的应用. 生物化学与生物物理学报, 2002, 34(1): 1-5
    [130] Hahn M A, Tabb J S, Krauss T D. Detection of single bacterial pathogens with semiconductor quantum dots. Analytical Chemistry, 2005, 77(15): 4861-4869
    [131] Chalmers N I, Palmer R J, Du-Thumm L, et al. Use of quantum dot luminescent probes to achieve single-cell resolution of human oral bacteria in biofilms. Applied and Environmental Microbiology, 2007, 73(2): 630-636
    [132] Dwarakanath S, Bruno J G, Shastry A, et al. Quantum dot-antibody and aptamer conjugates shift fluorescence upon binding bacteria. Biochemical and Biophysical Research Communications, 2004, 325(3): 739-743
    [133] Edgar R, McKinstry M, Hwang J, et al. High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proceedings of the National Academy Of Sciences of the United States of America, 2006, 103(13): 4841-4845
    [134] Magnani M, Galluzzi L, Bruce I J. The use of magnetic nanoparticles in the development of new molecular detection systems. Journal of Nanoscience and Nanotechnology, 2006, 6(8): 2302-2311
    [135] Ito A, Shinkai M, Honda H, et al. Medical application of functionalized magnetic nanoparticles. Journal of Bioscience and Bioengineering, 2005, 100(1): 1-11
    [136] Schuster M, Wasserbauer E, Ortner C, et al. Short cut of protein purification by integration of cell-disrupture and affinity extraction. Bioseparation, 2000, 9(2): 59-67
    [137] Alche J D, Dickinson K. Affinity chromatographic purification of antibodies to a biotinylated fusion protein expressed in Escherichia coli. Protein Expression and Purification, 1998, 12(1): 138-143
    [138] Varshney M, Yang L J, Su X L, et al. Magnetic nanoparticle-antibody conjugates for the separation of Escherichia coli O157:H7 in ground beef. Journal of Food Protection, 2005, 68(9): 1804-1811
    [139] Lin Y, Jiang X P, Elkin T, et al. Carbon nanotubes for immunomagnetic separation of Escherichia coli O157:H7. Journal of Nanoscience and Nanotechnology, 2006, 6(3): 868-871
    [140] Duan H L, Shen Z Q, Wang X W, et al. Preparation of immunomagnetic iron-dextran nanoparticles and application in rapid isolation of E.coli O157:H7 from foods. World Journal of Gastroenterology, 2005, 11(24): 3660-3664
    [141] Wang H, Li Y B, Slavik M. Rapid detection of Listeria monocytogenes using quantum dots and nanobeads-based optical biosensor. Journal of Rapid Methods and Automation in Microbiology, 2007, 15(1): 67-76
    [142] Varshney M, Li Y B. Interdigitated array microelectrode based impedance biosensor coupled with magnetic nanoparticle-antibody conjugates for detection of Escherichia coli O157:H7 in food samples. Biosensors & Bioelectronics, 2007,22(11): 2408-2414
    [143] Ho K C, Tsai P J, Lin Y S, et al. Using biofunctionalized nanoparticles to probe pathogenic bacteria. Analytical Chemistry, 2004, 76(24): 7162-7168
    [144] Grossman H L, Myers W R, Vreeland V J, et al. Detection of bacteria in suspension by using a superconducting quantum interference device. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(1): 129-134
    [145] Kaittanis C, Naser S A, Perez J M. One-step, nanoparticle-mediated bacterial detection with magnetic relaxation. Nano Letters, 2007, 7(2): 380-383
    [146] Wang L, Wang K M, Santra S, et al. Watching silica nanoparticles glow in the biological world. Analytical Chemistry, 2006, 78(3): 646-654
    [147] Zhao X J, Bagwe R P, Tan W H. Development of organic-dye-doped silica nanoparticles in a reverse microemulsion. Advanced Materials, 2004, 16(2): 173-176
    [148] Zhao X J, Hilliard L R, Mechery S J, et al. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(42): 15027-15032
    [149] Mechery S J, Zhao X J J, Wang L, et al. Using bioconjugated nanoparticles to monitor E. coli in a flow channel. Chemistry-an Asian Journal, 2006, 1(3): 384-390
    [150] Santra S, Wang K M, Tapec R, et al. Development of novel dye-doped silica nanoparticles for biomarker application. Journal of Biomedical Optics, 2001, 6(2): 160-166
    [151]Santra S,Yang H,Dutta D,et al.TAT conjugated,FITC doped silica nanoparticles for bioimaging applications.Chemical Communications,2004,24:2810-2811
    [152]原茵,何晓晓,王柯敏,等.嵌合异硫氰酸罗丹明B核壳荧光纳米颗粒制备的新方法研究.高等学校化学学报,2005,26(3):446-448
    [153]He X X,Chen J Y,Wang K M,et al.Preparation and properties of Cy3 doped core-shell silica fluorescent nanoparticals.Chemical Journal of Chinese Universities-Chinese,2006,27(10):1835-1839
    [154]He X X,Chen J Y,Wang K M,et al.Preparation of luminescent Cy5 doped core-shell SFNPs and its application as a near-infrared fluorescent marker.Talanta,2007,72(4):1519-1526
    [155]Wang L,Tan W H.Multicolor FRET silica nanoparticles by single wavelength excitation.Nano Letters,2006,6(1):84-88
    [156]Wang L,Zhao W J,O'Donoghue M B,et al.Fluorescent nanoparticles for multiplexed bacteria monitoring.Bioconjugate Chemistry,2007,18(2):297-301
    [157]He X X,Wang K M,Tan W H,et al.A novel fluorescent label based on biological fluorescent NPs and its application in cell recognition.Chinese Science Bulletin,2001,46(23):1962-1965
    [158]Peng J F,Wang K M,Tan W H,et al.Identification of live liver cancer cells in a mixed cell system using galactose-conjugated fluorescent nanoparticles.Talanta,2007,71(2):833-840
    [159]Shi H,He X X,Wang K M,et al.Rhodamine B isothiocyanate doped silica-coated fluorescent nanoparticles(RBITC-DSFNPs)-based bioprobes conjugated to Annexin V for apoptosis detection and imaging.Nanomedicine:Nanotechnology,Biology,and Medicine,2007,3(4),266-272
    [160]He X X,Ge J,Wang K M,et al.FSiNPs mediated improved double immunofluorescence staining for gastric cancer cells imaging.Talanta,2008,76(5):1199-1206
    [161]Gong P,He X X,Wang K M,et al.Combination of functionalized nanoparticles and PCR-based method for SARS-CoV gene detection.Journal of Nanoscience and Nanotechenology,2008,8:293-300
    [162]Cheng V C C,Yew W W,Yuen K Y.Molecular diagnostics in tuberculosis.European Journal of Clinical Microbiology and Infectious Diseases,2005,24(11):711-720
    [163]Palomino J C.Nonconventional and new methods in the diagnosis of tuberculosis: Feasibility and applicability in the field. European Respiratory Journal, 2005, 26(2): 339-350
    [164] Restrepo B I, Gomez D I, Shipley G L, et al. Selective enrichment and detection of mycobacterial DNA in paucibacillary specimens. Journal of Microbiological Methods, 2006, 67(2): 220-229
    [165] Yun Y J, Lee K H, Lin H H, et al. Detection and identification of Mycobacterium tuberculosis in joint biopsy specimens by rpoB PCR cloning and sequencing. Journal of Clinical Microbiology, 2005, 43(1): 174-178
    [166] Park H, Jang H, Song E, et al. Detection and genotyping of Mycobacterium species from clinical isolates and specimens by oligonucleotide array. Journal of Clinical Microbiology, 2005, 43(4): 1782-1788
    [167] Lin S Y, Probert W, Lo M, et al. Rapid detection of isoniazid and rifampin resistance mutations in Mycobacterium tuberculosis complex from cultures or smear-positive sputa by use of molecular beacons. Journal of Clinical Microbiology, 2004, 42(10): 4204-4208
    [168] Chan E D, Heifets L, Iseman M D. Immunologic diagnosis of tuberculosis: a review. Tubercle and Lung Disease, 2000, 80(3): 131-140
    [169] Arias-Bouda L M P, Kuijper S, van Deutekom H, et al. Enzyme-linked immunosorbent assays using immune complexes for the diagnosis of tuberculosis. Journal of Immunological Methods, 2003, 283(1-2): 115-124
    [170] Mustafa T, Wiker H G, Mfinanga S G M, et al. Immunohistochemistry using a Mycobacterium tuberculosis complex specific antibody for improved diagnosis of tuberculous lymphadenitis. Modern Pathology, 2006, 19(12): 1606-1614
    [171] Abe C, Hirano K, Tomiyama T. Simple and rapid identification of the Mycobacterium tuberculosis complex by immunochromatographic assay using anti-MPB64 monoclonal antibodies. Journal of Clinical Microbiology, 1999, 37(11): 3693-3697
    [172] Bhaskar S, Banavaliker J N, Bhardwaj K, et al. A novel ultrasound-enhanced latex agglutination test for the detection of antibodies against Mycobacterium tuberculosis in serum. Journal of Immunological Methods, 2002, 262(1-2): 181-186
    [173] Pai M, Kalantri S, Dheda K. New tools and emerging technologies for the diagnosis of tuberculosis: Part II. Active tuberculosis and drug resistance. Expert Review of Molecular Diagnostics, 2006, 6(3): 423-432
    [174] Tan W H, Wang K M, He X X, et al. Bionanotechnology based on silica nanoparticles. Medical Research Reviews, 2004, 24(5): 621-638
    [175] Yao G, Wang L, Wu Y R, et al. FloDots: luminescent nanoparticles. Analytical and Bioanalytical Chemistry, 2006, 385(3): 518-524
    [176] Zhao X J, Tapec-Dytioco R, Tan W H. Ultrasensitive DNA detection using highly fluorescent bioconjugated nanoparticles. Journal of the American Chemical Society, 2003, 125(38): 11474 -11475
    [177] Santra S, Zhang P, Wang K M, et al. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Analytical Chemistry, 2001, 73(20): 4988-4993
    [178] Santra S, Liesenfeld B, Dutta D, et al. Folate conjugated fluorescent silica nanoparticles for labeling neoplastic cells. Journal of Nanoscience and Nanotechnology, 2005, 5(6): 899-904
    [179] Herr J K, Smith J E, Medley C D, et al. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Analytical Chemistry, 2006, 78(9): 2918-2924
    [180] Schlesinger L S, Bellinger-Kawahara C G, Payne N R, et al. Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement C3. Journal of Immunology, 1990, 144(7): 2771-2780
    [181] Lu B, Smyth M R, O'Kennedy R. Oriented immobilization of antibodies and its applications in immunoassays and immunosensors. Analyst, 1996, 121(3): 29R-32R
    [182] Langone J J. Applications of immobilized protein A in immunochemical techniques. Journal of Immunological Methods, 1982, 55(3): 277-296
    [183] Prisyazhnoy V S, Fusek M, Alakhov Y B. Synthesis of high-capacity immunoaffinity sorbents with oriented immobilized immunoglobulins or their Fab' fragments for isolation of proteins. Journal of Chromatography, 1988, 424(2): 243-253
    [184] Su X L, Li Y. Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Analytical Chemistry, 2004, 76(16): 4806-4810
    [185] Graille M, Stura E A, Corper A L, et al. Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(10): 5399-5404
    [186] 蒋中华, 张津辉. 生物分子固定化技术及应用. 第1版.北京: 化学工业出版社, 1998, 27
    [187] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72(7): 248-254
    [188] Yavuz H, Denizli A. Immunoadsorption of cholesterol on Protein A oriented beads. Macromolecular Bioscience, 2005, 5(1): 39-48
    [189] Reynolds F, O'loughlin T, Weissleder R, et al. Method of determining nanoparticle core weight. Analytical Chemistry, 2005, 77(3): 814-817
    [190] Vives-Rego J, Lebaron P, Nebe-von Caron G. Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiology Reviews, 2000, 24(4): 429-448
    [191] Ferrari B C, Bergquist P L. Quantum dots as alternatives to organic fluorophores for Cryptosporidium detection using conventional flow cytometry and specific monoclonal antibodies: lessons learned. Cytometry Part A, 2007, 71A(4): 265-271
    [192] Ng T K. Rapid laboratory diagnosis of tuberculosis, http://www.hksid.org/ left2.php?action=bulletin&document=vol_5_no_ 1 #4, 2001 -05-01
    [193] Arias-Bouda L M P, Nguyen L N, Ho L M, et al. Development of antigen detection assay for diagnosis of tuberculosis-using sputum samples. Journal of Clinical Microbiology, 2000, 38(6): 2278-2283
    [194] Perera J, Arachchi D M. The optimum relative centrifugal force and centrifugation time for improved sensitivity of smear and culture for detection of Mycobacterium tuberculosis from sputum. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1999, 93(4): 405-409
    [195] Hamasur B, Bruchfeld J, Haile M, et al. Rapid diagnosis of tuberculosis by detection of mycobacterial lipoarabinomannan in urine. Journal of Microbiological Methods, 2001, 45(1): 41-52
    [196] Casalinuovo I A, Di Pierro D, Coletta M, et al. Application of electronic noses for disease diagnosis and food spoilage detection. Sensors, 2006, 6(11): 1428-1439
    [197] Gehring A G, Albin D M, Bhunia A K, et al. Antibody microarray detection of Escherichia coli O157:H7: Quantification, assay limitations, and capture efficiency. Analytical Chemistry, 2006, 78(18): 6601-6607
    [198] Chen C S, Durst R A. Simultaneous detection of Escherichia coli O157:H7, Salmonella spp.and Listeria monocytogenes with an array-based immunosorbent assay using universal protein G-liposomal nanovesicles.Talanta,2006,69(1):232-238
    [199]Spiro A,Lowe M,Brown D.A bead-based method for multiplexed identification and quantitation of DNA sequences using flow cytometry.Applied and Environmental Microbiology,2000,66(10):4258-4265
    [200]Lowe M,Spiro A,Zhang Y Z,et al.Multiplexed,particle-based detection of DNA using flow cytometry with 3DNA dendrimers for signal amplification.Cytometry Part A,2004,60A(2):135-144
    [201]Finkel N H,Lou X H,Wang C Y,et al.Barcoding the microworld.Analytical Chemistry,2004,76(19):353A-359A
    [202]张雪松,倪国强.便携式条形码阅读器的设计.光学技术,1994,1994(2):5-10
    [203]Han M Y,Gao X H,Su J Z,et al.Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules.Nature Biotechnology,2001,19(7):631-635
    [204]Jaiswal J K,Mattoussi H,Mauro J M,et al.Long-term multiple color imaging of live cells using quantum dot bioconjugates.Nature Biotechnology,2003,21(1):47-51
    [205]Lawrie G A,Battersby B J,Trau M.Synthesis of optically complex core-shell colloidal suspensions:Pathways to multiplexed biological screening.Advanced Functional Materials,2003,13(11):887-896
    [206]Wang L,Yang C Y,Tan W H.Dual-luminophore-doped silica nanoparticles for multiplexed signaling.Nano Letters,2005,5(1):37-43
    [207]Kurner J M,Klimant I,Krause C,et al.A new type of phosphorescent nanospheres for use in advanced time-resolved multiplexed bioassays.Analytical Biochemistry,2001,297(1):32-41
    [208]Braeckmans K,De Smedt S C,Leblans M,et al.Encoding microcarriers:Present and future technologies.Nature Reviews Drug Discovery,2002,1(6):447-456
    [209]鞠少卿,王旭东,王跃国,等.悬浮阵列技术在研究与临床中的应用.中华检验医学杂志,2006,29(5):393-396
    [210]Smith A M,Nie S M.Chemical analysis and cellular imaging with quantum dots.Analyst,2004,129(8):672-677
    [211]何晓晓,王柯敏,谭蔚泓,等.静电相互作用对微乳液法制备核壳纳米颗 的影响.科学通报,2005,50(20):2185-2190
    [212]刘彦仿.免疫组织化学.第一版.北京:人民卫生出版社,1990,28
    [213]沈同,王镜岩.生物化学(上册).第二版.北京:高等教育出版社,2001,148-149
    [214]刘秀梅.食源性疾病监控技术的研究.中国食品卫生杂志,2004,16(1):3-9
    [215]Straub T M,Chandler D P.Towards a unified system for detecting waterborne pathogens.Journal of Microbiological Methods,2003,53(2):185-197
    [216]Kawasaki S,Horikoshi N,Okada Y,et al.Multiplex PCR for simultaneous detection of Salmonella spp.,Listeria monocytogenes,and Escherichia coli O157:H7 in meat samples.Journal of Food Protection,2005,68(3):551-556
    [217]Kim H,Kane M D,Kim S,et al.A molecular beacon DNA microarray system for rapid detection of E.coli O157:H7 that eliminates the risk of a false negative signal.Biosensors & Bioelectronics,2007,22(6):1041-1047
    [218]Spiro A,Lowe M.Quantitation of DNA sequences in environmental PCR products by a multiplexed,bead-based method.Applied and Environmental Microbiology,2002,68(2):1010-1013
    [219]Ye F,Li M S,Taylor J D,et al.Fluorescent microsphere-based readout technology for multiplexed human single nucleotide polymorphism analysis and bacterial identification.Human Mutation,2001,17(4):305-316
    [220]Yoshitomi K J,Jinneman K C,Weagant S D.Detection of Shiga toxin genes stx1,stx2,and the +93 uidA mutation of E.coli O157:H7/H-using SYBR(R)Green I in a real-time multiplex PCR.Molecular and Cellular Probes,2006,20(1):31-41
    [221]Derveaux S,De Geest B G,Roelant C,et al.Multifunctional layer-by-layer coating of digitally encoded microparticles.Langmuir,2007,23(20):10272-10279
    [222]Farabullini F,Lucarelli F,Palchetti I,et al.Disposable electrochemical genosensor for the simultaneous analysis of different bacterial food contaminants.Biosensors & Bioelectronics,2007,22(7):1544-1549
    [223]Jaradat Z W,Schutze G E,Bhunia A K.Genetic homogeneity among Listeria monocytogenes strains from infected patients and meat products from two geographic locations determined by phenotyping,ribotyping and PCR analysis of virulence genes.International Journal of Food Microbiology,2002,76(1-2):1-10
    [224] Balaban N, Rasooly A. Staphylococcal enterotoxins. International Journal of Food Microbiology, 2000, 61(1): 1-10
    [225] Call D R, Brockman F J, Chandler D P. Detecting and genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays. International Journal of Food Microbiology, 2001, 67(1-2): 71-80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700