检测肠出血性大肠埃希菌O157:H7及其它产志贺毒素大肠埃希菌的一种新的DNA扩增技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:A Novel DNA Amplification Method for Detection of Enterohemorrhagic E.coli O157: H7 and Other Shiga Toxin-Producing E.coli
  • 作者:赵春燕
  • 论文级别:博士
  • 学科专业名称:免疫学
  • 学位年度:2004
  • 导师:李凡
  • 学科代码:100102
  • 学位授予单位:吉林大学
  • 论文提交日期:2004-04-26
摘要
肠出血性大肠埃希菌O157:H7和其它产志贺样毒素大肠埃希菌是引起人类疾病的重要食源性致病菌,它们主要通过食物链传播。引起严重的临床症状,包括出血性肠炎、溶血性尿毒综合征和血小板减少性紫癜。发病率和死亡率都很高,而且很低的感染剂量就可威胁生命。传统的检测方法如分离培养、血清学鉴定,缺乏特异性和灵敏度,需要几天才能出结果,费时又费力。而常用的分子生物学方法如PCR虽然具有高度的灵敏度和特异度,但需要特殊的仪器,而且易产生假阳性结果,标本中存在的抑制剂会抑制PCR扩增产生假阴性结果。因此急需建立一种快速、灵敏的检测方法,用于病人的早期诊断、食品的监测和疾病爆发的调查。
    本实验介绍的网状分枝扩增技术是一种新奇的、恒温的DNA扩增方法,该方法利用环形探针和捕获探针分离和检测靶序列,当环形探针与靶基因结合时,在DNA连接酶的作用下以共价键连接成环状。然后,延着环形探针DNA聚合酶延伸连接的正向引物,置换下游链,产生多聚ssDNA,再以多聚ssDNA作为模板,反向引物与它杂交、延伸、置换下游链,产生大的分枝DNA复合物,导致指数级扩增,整个反应在等温条件下进行。
    为了确定该方法检测志贺毒素基因的灵敏度和特异度,以及确定该方法检测从食品、动物粪便和临床标本中分离菌株的可行性,我们设计并合成了志贺毒素基因和检测靶基因的环形探针和捕获探针,结果表明RAM最
    
    
    低能检测10个拷贝的志贺毒素基因,与PCR的灵敏度一致。我们又进一步检测不同血清型的产志贺样毒素大肠埃希菌O157:H7、O26:H11,O46:H38,O111:NM,O22:H8,以及3株非致病性大肠埃希菌和1株痢疾志贺杆菌,结果表明不同血清型产志贺样毒素大肠埃希菌和痢疾志贺杆菌志贺毒素均为阳性,而非致病性大肠埃希菌则为阴性,说明RAM具有高度的特异性。我们从食品、动物粪便和临床标本中分离127株大肠埃希菌,其中O157:H7为9株,来自牛粪、鸡粪、未消毒牛奶,而在临床病人标本中未检出O157:H7,用RAM和PCR同时要检测了这些菌株的志贺毒素基因,结果表明产志贺毒素大肠埃希菌为21株,占16.5%,而且两种方法检测结果一致。RAM除了具有高度的灵敏度和特异度,还具有以下特点。第一,由于闭合环形探针的形成是以环形探针与靶DNA特异性结合为前提,因此明显地提高了反应的特异性;第二,环形探针两端的连接与靶核酸的性质(DNA和RNA)无关,因而在检测RNA时无须进行逆转录,检测RNA 和DNA可以应用的一样的方法;第三,通过磁性分离方法废弃了以往、烦琐的人工DNA提取过程,使得临床实验室对大批量标本的检测成为可能;第四,由于没有对温度变化的要求,RAM反应可在最简单的水浴箱内进行,而无需价格昂贵的PCR仪器,因此RAM更适用于在基层医疗单位推广使用;第五,在RAM反应中,用于检测不同靶基因的环形探针可同时被一对引物扩增,消除了引物之间竞争,这样在一个反应中就可同时检测能引起腹泻的病原菌如志贺痢疾杆菌、伤寒沙门菌,STEC等。
    虽然液相RAM检测简化了在实验室中检测大肠埃希菌O157及其它STEC的方法,提高了检出率,但它不适用于在实验室外监测食品和现场检测病人标本中的STEC。因此,我们研究了在固相支持物进行RAM反应,制成检测纸片,用于现场检测食品和病人标本。在本实验中,用抗O157多克隆抗体将菌株捕获在硝酸纤维素膜上,裂解细菌释放DNA,DNA变性后,
    
    
    用环形探针与之杂交,在DNA连接酶的作用下环形探针闭合成环状,再在DNA 聚合酶作用下,扩增环形探针,用免疫学方法检测扩增产物并观察扩增结果。我们利用固相RAM检测来自不同国家地区分离的产志贺样毒素大肠埃希菌0157:H7,但该方法的灵敏度还有待进一步地提高。固相RAM操作不需复杂仪器,结果易于观察,便于推广,更适用于现场检测,这对早期诊断、病人治疗、追踪传染源、控制传播途径具有重要意义。
    大肠埃希菌O157:H7和其它产志贺样毒素大肠埃希菌可通过食物链传播,牛是主要宿主,而且许多次疾病的暴发都是由于食用了污染牛肉引起的,牛肉馅中污染O157:H7的量是很少的,通常少于100CFU/g,但是极微量的O157:H7就可致病。PCR是目前比较理想的检测O157:H7和其它产贺样毒素大肠埃希菌的方法,但是标本中存在多种PCR抑制剂,如牛肉中血红蛋白、脂肪和有机化合物,就是PCR反应的潜在抑制剂,即使少量的抑制剂可能在很大程度上抑制PCR反应。在实验中,我们以牛肉馅为标本模型,在牛肉馅中加入不同浓度的大肠埃希菌O157:H7,通过离心、过滤回收牛肉馅中的菌株,去除牛肉馅中的食物颗粒和抑制剂,并且采用酶裂解和反复冻融使菌株彻底裂解,释放DNA。实验结果表明,100×g的离心速度是最适宜的,既可有效地去除食物颗粒又能高效地回收细菌。本实验在不增菌的条件下,采用酶裂解和冻融法制备模板,PCR在牛肉馅中最低难检出103CFU/g,而且重复性很好,仅需要6h。增菌过程明显地提高了检测的灵敏度,增菌6h后能检测1CFU/g,这样利用酶裂解和冻融法制备模板,检出1CFU/g,就需要12h,与分离方法相比明显地节省了时间。这种标本处理和制备方法简便易行,总消费与传统的增菌分离培养方法是基本相同的。利用该方法?
E.coli O157:H7 and other Shiga toxin-producing E.coli(STEC) are important human pathogens that are mainly transmitted through the food chain.They can result in severe clinical manifestations,including haemorrhagic colitis,haemolytic uraemic syndrome and thrombotic thrombocytopenic purpura,symptoms associated with high morbidity and mortality.The pathogens have a low infectious dose and may cause life-threatening illness.Conventional methods for identification of these organisms such as culture isolation and serological test,lack specificity and sensitivity,and requires several days to generate results.They are laborious and consuming.Existing molecular methods such as PCR require sophisticated equipment and easy to cause false-positive result.The inhibitors in food and clinical speciments interferes with the reaction,therefore,leading to false-negative result.There is an urgent need for methods that can provide rapid,sensitive detection of the organism,in order to guide clinical management of patients,to monitor food processing and to investigate outbreaks.
    In this study,we introduced a noval,isothemal DNA
    
    
    amplification technology,termed ramification amplification method(RAM),which utilizes a circular probe and a capture probe for target seperation and detection.When the C-probe hybridizes to a target,a DNA polymerase extends the bound forward primer along the C-probe and continuously displaces a downstream strand,generating a multimeric single-stranded DNA(ssDNA).Then this ssDNA serve as a template for multiple reverse primers to hybridize,extend and displace downstream DNA,generating a large ramified DNA complex,and resulting in an exponential amplification under an isothermal condition.
    In order to determine the analytical sensitivity and specificity of RAM to detect Shiga toxin and to determine the feasibility to detect E.coli O157:H7 and other STEC isolated from food and clinical specimens,we designed and synthesized Shiga toxin target ,C-probe and capture probe.The result showed that as few as 10 copies of synthesized target can be detected by RAM,which indicated that RAM assay is as sensitive as conventional PCR.We further test different serotypes which contain stx genes,including a E.coli O157:H7,a E.coli O26:H11,a E.coli O46:H38,a E.coli O111:NM,a E.coli O22:H8,and a Shigalla as well as 3 nonpathogenic E.coli by RAM.The results showed that different serotypes of strains were all positive for Shiga toxin gene,and Shigalla was also positive,
    while nonpathogenic E.coli were negative.We isolated 127 strains of E.coli from food,animal feces and clinical specimens,among of which 9 strains are O157:H7,isolated from cattle fecal,chicken
    
    
    fecal and raw milk.O157:H7 couldn’t be detected in clinical specimens.We further detected shiga toxin gene from these strains by PCR and RAM.21 Shiga toxin-producing isolates were detected.The result of RAM is similar to that of PCR.Besides of high sensitivity and specificity,RAM also offers several other unique features.
    First,the formation of closed C-probe requires target-specific ligation of the C-probe,therefore significantly increasing assay specificity.Second,both ends of the probe can be ligated regardless of the nature of target(DNA or RNA)eliminating the need for reverse transcription for detecting RNA and creating a uniform assay format for both RNA and DNA detection.Third, the use of magnetic isolation eliminates complicated, laborious manual DNA extraction procedures and enables the high-throughput processing of a large number of specimens in a clinical laboratory setting.Forth,since no temperature cycling is required,the reaction can be carried out in a simple water bath,obviating the use of an expensive thermocycler.
    Fifth,different C-probes specific for different targets can be amplified with the same set of primers,eliminating competition among primers.This offers great adva ntage for the detection of most common food contaminants that can cause diarrhea(i.e. STEC,
    Shigella,Salminella,etc) in a single reaction.
    The RAM assay will
引文
1.Skidmore S,Zuckerman M,Parry J.Accuracy of plasma HIV RNA quantification :a multicentre study of variability.J Med Virol,2000;61(4):417-422
    2.Burgisser P,Vernazza P,Flepp M,et al.Performance of five differenct assays for the quantification of viral load in persons infected with various subtypes of HIV-1.Swiss HIV Cohort Study.J Acquir Immune Defic Syndr,2000;23(2):138-144
    3.Schmid I,Arrer E,Hawranek T,et al.Evaluation of two commrcial procedures for quantification of human immunodeficiency virus type 1 RNA with respect to HIV-1 viral subtype and antiviral treatment.Clin Lab, 2000;46(7-8):355-360
    4.de Barbeyrac B,Geniaux M,Hocke C,et al.Detection of Chlamydia trachomatis in symptomatic and asymptomatic population with urogenital speciments by AMP CT compared to others commercially available amplification assays.Diagn Microbiol Infect Dis,2000;37(3):181-185
    5.Holland P,Abramson R,Watson R,et al.Detection of specific polymerase chain reaction product by utilizing the 5’-3’exonuclease activity of Thermus aquaticus DNA polymerase.Proc Natl Acad Sci USA,1991;88(16):7276-7280
    6.Tyagi S,Kramer F.Molecular beacons:probes that fluoresce upon hybridization.Nat Biotechnol,1996;14(3):303-308
    7.Nazarenko IA,Bhatnagar S,Hohman R.A closed tube format for amplification and detection of DNA based on energy transfer.Nucleic Acid Res,1997;25(12):2516-2521
    8.Jordens JZ,Lanham S,Pickett MA,et al.Amplification with molecular beacon primers and reverse line blotting for the detection and typing of human papillomaviruses. J Virol Methods,2000;89(1-2):29-37
    9.Whitcombe D,Theaker J,Guy S,et al.Detection of PCR products using self-probing amplicons and fluorescence.Nat Biotechnol,1999;17(8):804-807
    10.Thelwell N,Millington S,Solinas A,et al.Mode of action and application of scorpion primers to mutation detection. Nucleic Acids Rev, 2000;28(19):3752-3761
    11.Barany F.Genetic disease detection and DNA amplification using cloned thermostable ligase.Proc Natl Acad Sci USA,1991;88(1):189-193.
    12.Guaschino S,DeSeta F.Update on Chlamydia trachomatis.Ann NY Acad Sci,2000;
    900:293-300
    13.Tong J,Cao W,Barrany F.Biochemical properties of a high fidelity DNA ligase from Thermus species AK16D.Nucleic Acids Res,1999;27(3):788-794
    14.Gerry N,Witowski N,Day J,et al.Universal DNA microarray method for multiplex detection of low abundance point mutations.J Mol Biol, 1999;292(2):251-262
    
    15.Favis R,Day J,Phelan C,et al.Universal DNA array detection of small insertions and deletions in BRCA1 and BRCA2.Nat Biotechnol, 2000;18(5):561-564.
    16.Little M,Andrews J,Moore R,et al.Strand displacement amplification and homogeneous real-time detection incorporated in a second-generation DNA probe system,BDProbe TecET. Clin Chem,1999;45 (6 Pt 1):777-784
    17.Westin L,Xu X,Miller C,et al.Anchored multiplex amplification on a microelectronic chip arrya.Nat Biotechnol,2000;18(2):199-204
    18.Compton J:Nucleic acid sequence-based amplification.Nature,1991; 350(6313):
    91-92.
    19.Morre SA,Sillekens P,Jacobs MV,et al.RNA amplification by nucleic acid sequence-based amplification with an internal standard enables reliable detection of Chlamydia trachomatis in cervical with an internal standard enables reliable detection of Chlamydia trachomati in cervical scrapings and urine samples.J Clin Microbiol,1996;34(12):3108-3114.
    20.Mani I,Cao H,Hom D,et al.Plasma RNA viral load as measured by the branched DNA and nucleic acid sequence-based amplification assays of HIV-1.J Acquir Immune Defic Syndr,1999;22(2):208-209
    21.Berndt C,Muller U,Bergmann F,et al.Comparison between a nucleic acid sequence-based amplification and branched DNA test for quantifying HIV-RNA load in blood plasma. J Virol Methods,2000;89(1-2):177-181
    22.Emery S,Bodrug S,Richardson B,et al.Evaluation of performance of the Gen-Probe human immunodeficiency virus type I viral load assay using primary subtype A,C and D isolates from Kenya.J Clin Microbiol,2000;38(7):2688-2695
    23.Erice A,Brambilla D,Bremer J,et al.Performance characteristics of the QUANTIPLEX HIV-1 RNA 3.0 assays for detection and quantitation of human immunodeficiency virus type 1 RNA in plasma.J Clin Microbiol,2000; 38(8):2837-2845.
    24.Yu M,Chuang W,Dai C,et al.Clinic evaluation of the automated COBAS AMPLICOR HCV MONITOR test version 2.0 for quantifying serum hepatitis C virus RNA and comparison to the Quantiplex HCV version 2.0 test. J Clin Microbiol,2000;38(8):2933-2339.
    25.Erali M,Ashwood E,Hillyard D.Performance characerisics of the COBAS AMPLICOR hepatitis C virus MONITOR Test,version 2.0.Am J Clin Pathol,2000;114(2):180-187.
    26.Martinot-Peignoux M,Le Breton V,Fritsch S,et al.Assessment of viral loads in patients with chronic hepatitis C with AMPLICOR HCV MONITOR version 1.0,COBAS HCV MONITOR version,and QUANTIPLEX HCV RNA version 2.0 assays.J Clin Microbiol, 2000; 38(7):2722-2725.
    27.Capaldi S,Getts R,Jayasena S.Signal amplification through nucleotide extension and excision and excision on a dendritic DNA platform.Nucleic Acdis
    
    
    Res,2000;28(7):21-28
    28.Wick M.Diagnosis of human papillomavirus gynecologic infection.Clin Lab Med,2000;20(2):271-287
    29.Fong W,Modrusan Z,McNevin J,et al.Rapid solid-phase immunoassay for detection of methicillin-resistant Staphylococcus aureus using cycling probe technology.J Clin Microbiol,2000;38(7):2525-2529
    30.Modrusan Z,Marlowe C,Wheeler D,et al.CPT-EIA assays for the detection of vancomycin resistant vanA and canB genges in enterococci.Diagn Microbiol Infect Dis,2000;37(1):45-50
    31.Lyamichev V,Mast A,Hall J,et al.Polymorphism identification and quantitative detection of genomic DNA by invasive cleavage of oligonucleotide probe.Nat Biotechnol,1999;17(3):292-296
    32.Hall J,Eis P,Law S,et al.Sensitive detection of DNA polymorphism by the serial invasive signal amplification reaction.Proc Natl Acad Sci USA,2000;97(15): 8272-
    8277
    33.Hessner M,Budish M,Friedman K.Genotying of Factor VG 1691A(leiden)without the use of PCR by invasive cleavage of oligonucleotide probes.Clin Chem.2000;46(8 Pt 1):1051-1056
    34.Lizardi PM,Huang X,Zhu Z,et al.Mutation detection and single molecule counting using isothermal rolling circle amplification.Nat Genet,1998;19(3):225-232
    35.Baner J,Nilsson M,Mendel-Hartvig M,Landegren U.Signal amplification of padlock probes by rolling circle replication.Nucleic Acids Res.1998;26(22):5073-5078
    36.Schweitzer B,Wiltshire S,Lambert J,et al.Inaugural article:immunoassay with rolling circle DNA amplification:a versatile platform for ultrasensitive antigen detection.Proc Natl Acad Sci USA,2000;97(18):10113-10119
    37.Gusev Y,Sparkowski J,Raghunathan A,et al.Rolling circle amplification:a new approach to increase sensitivity for immunohistochemistry and flow cytometry.Am.J.Pathol,2001;159(1):63-69.
    38.Thomas D,Nardone G,Randall S.Amplification or padlock probes for DNA diagnosis by cascade rolling circle amplification or the polymerase chain reaction.Arcb.Patbol.Lab.Med,1999;123(12):1170-1176.
    39.Zhang DY,Zhang W,Li X,et al.Detection of rare DNA targets by isothermal ramification amplification.Gene,2001; 274(1-2):209-216.
    40.Taton T,Mirkin C,Letsinger R.Scanometric DNA array detection with nanoparticle probes.Science,2000;289(5485):1757-1760.
    41.Nilsson M,Malmgren H,Samiotaki M,et al.Padlock probes:circularixing oligonucleotides for localized DNA detection.Science,1994;265(5181):2085-2088
    42.Zhang DY,Brandwein M,Hsuih TC,et al.Amplification of target-specific, ligation-
    
    dependent circular probe.Gene,1998;211(2):277-285
    43.Kool ET.Circular oligonucleotides:new concepts in oligonucleotides design.Ann.Rev.Biophys Biomol Struct,1996;25:1-28
    44.Wang S,Kool ET.Circular RNA oligonucleotides.Synthesis, nucleic acid binding properties and a comparison with circular DNAs.Nucleic Acids Res, 1994;22(12):2326-2333
    45.Hsuih TC,Park YN,Zaretsky C et al.Novel,ligation-dependent PCR assay for detection of hepatitis C virus in serum.J Clin Microbiol,1996;34(3):501-507
    46.Faruqi AF,Hosono S,Driscoll MD et al.High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification.BMC Genomics, 2001;2(1):4
    47.Christian AT,Pattee MS,Attix CM,Reed BE,Sorensen KJ,Tucker JD.Detection of DNA point mutations and mRNA expression levels by rolling circle amplification in individual cells.Proc Natl Acad Sci USA, 2001;98(25):14238-14243
    48.Nilsson M,Barbany G,Antson DO,Gertow K,Landegren U.Enhanced detection and distinction of RNA by enzymatic probe ligation .Nature Biotechnol, 2000;18(7):791-793
    49.Luo J,Bergstrom DE,Barany F.Improving the fidelity of Thermus thermohpilus DNA ligase.Nucleic Acids Rev, 1996;24(14):3071-3078
    50.Nilsson M,Krejci K,Koch J,Kwiatkowski M,et al.Padlock probes reveal single-nucleotide differences,parent of origin and in situ distribution of chromosomes 13 and 21.Nature Genet, 1997;16(3):252-255
    51.Fire A,Xu S.Rolling replication of short DNA circles.Proc Natl Acad Sci USA, 1995;92(10):4641-4645
    52.Perler FB,Kumar S,Kong H.Thermostable DNA polymerases. Adv Protein Chem , 1996;48:377-435
    53.Ausubel FM,Brent R,Kingston RE,et al.Current Protocols in Molecular Biology(Vol.1).John Wiley&Sons,Hoboken,NJ,USA(1995)
    54.Zhang DY,Brandwein M,Hsuih T,et al.Ramification amplification:a novel isothermal DNA amplification method.Mol Diagn,2001,6:141-150.
    55.Hatch A,Sano T,Misasi J,Smith CL.Rolling circle amplification of DNA immobilixed on solid surfaces and its application to multiplex mutation detection.Genet Mnal, 1999;15(2):26-40
    56.Baer RJ,Bankier AT,Biggin MD,et al.DNA sequence and expression of the B95-8 Epstein-Barr virus genome.Nature,1984;310(5974):207-211
    57.Kuhn H,Demidov VV,Frank-Kamenetskii M.Rolling-circle amplification under topological constrains. Nucleic Acids Res,2002;30(2):574-580
    58.Varadaraj K,Skinner DM.Denaturants or coslvents improve the specificity of PCR
    
    
    amplification of a G+C-rich DNA using genetically engineered DNA polymerases.Gene,1994;140(1):1-5
    59.Morris CF,Sinha NK,Alberts BM.Reconstruction of bacteriophage T4 DNA replication apparatus from purified components:rolling circle replication following de novo chain initiation on a single-stranded circular DNA template.Proc Natl Acad Sci USA, 1975;72(12):4800-4804
    60.Nuovo GJ.PCR in situ Hybridization:Protocols and Applications.(Second Ed.)Raven Press,New York,NY,USA(1994)
    61.Park YN,Abe K,Li H,et al.Detection of hepatitis C virus RNA using ligation-dependent polymerase chain reaction in formalin-fixed, paraffin -embedded liver tissues.Am J Pathol,1996;149(5):1485-1491
    62.Gerry NP,Witowski NE,Day J,et al.Universal DNA microarray method for multiplex detection of low abundance poin mutations.J Mol Biol, 1999;292(2):251-262
    63.Pickering J,Bamford A,Godbole V,et al.Integration of DNA ligation and rolling circle amplification for the homogeneous,end-point detection of single nucleotide polymorphisms. Nucleic Acids Res,2002;30(12):e60
    64.Ladner DP,Leamon JH,Hamann S,et al.Multiplex detection of hotspot mutations by rolling circle-enabled universal microarrays.Lab Invest, 2001;81(10):1079-1086
    65.Sano T,Smith CL,Cantor CR,et al.Immuno-PCR:very sensitive antigen detection by means of specific antibody-DNA conjugates. Science,1992;258(5079):120-122
    66.Joerger RD,Truby TM,Hendrichkson ER,et al.Analyte detection with DNA-labeled antibodies and polymerase chain reaction.Clin Chem,1995;41(9):1371-1377
    67.Schweitzer B,Roberts S,Grimwade B,et al.Multiplexed protein profiling on microarrays by rolling-circle amplification.Nature Biotechnol, 2002;20(4):359-365
    68.Anthony RM,Brown TJ,French GL.DNA array technology and diagnostic microbiology.Expert Rev Mol Diagn, 2001;1(1):30-38
    69.Nallur G,Luo C,Fang L et al.Signal amplification by rolling circle amplification on DNA microarrays.Nucleic Acids Res,2001;29(23):E118
    70.Dean FB,Hosono S,Fang L, et al.Comprehensive human genome amplification using multiple displacement amplification.Proc Natl Acad Sci USA, 2002;99(8): 5261-5266
    71.Nilsson M,Gullberg M,Dahl F,et al.Real-time monitoring of rolling circle amplification using a modified molecular beacon design.Nucleic Acids Res,2002;15(30):e66
    72.Tyagi S,Kramer FR.Molecular beacons:probes that fluoresce upon hybridization.
    Nature Biotech, 1996;14(3):303-308
    73.Zhang W,Cohenford M,Lentrichia B,et al.Detection of Chlamydia trachomatis by isothermal ramification amplification method:a feasibility study.J Clin Microbiol, 2002;40(1):128-132
    
    74.Wiltshire S,O’Malley S,Lambert J,et al.Detection of multiple allergen-specific IgEs on microarrays by immunoassay with rolling circle amplification.Clin Chem, 2000,46(12):1990-1993
    75.Konowalchuk J,Speirs JI,Stavric S.Vero response to a cytotoxin of Echerichia coli.Infect Immun.1977,18(3):775-779.
    76.O’Brien,AD,LaVeck GD,Thompson MR,et al.Production of Shigella dysenteriae type I-like cytotoxin by Escherichia coli.J Infect Dis.1982;146(6):763-769
    77.Karmali MA,Steele BT,Petric M,et al.Sporadic cases of hemolytic uremic syndrome associated with faecal cytotoxin-producing Escherichia coli in stools.Lancet,1983;
    1(8325):619-620
    78.Nataro JP,Kaper JB.Dearrheagenic Escherichia coli.Clin Microbiol Rev.1998; 11(2):
    1-60
    79.LeClerc JE,Li B,Payne WL,et al.High mutation frequencies among Escherichia coli and Salmonella pathogens.Science.1996; 274(5290):1208-1211
    80.Thomas A,Cheasty T,Frost JA,et al.Vero cytotoxin-producing Escherichia coli,particularly serogroup O157,associated with human infections in England and Wales:1992-4.Epidemiol Infect.1996;117(1):1-10
    81.Slutsker L,Ries AA,Greene KD,et al. Escherichia coli O157:H7 diarrhea in the United States:Clinical and epidemiologic features.Ann Intern Med;1997,126(7): 505-
    513
    82.National Institute of Health and Infectious Disease. Verocytotoxin-producing Escherichia coli.January 1991-November 1995,Japan.Infectious Agents Surveillance Report.1996;17:1-2
    83.Muhldorfer I,Harker J,Keusch GT,et al.Regulation of the Shiga-like toxin II operon in Escherichia coli.Infect Immun.1996;664(2):495-502
    84.Louise CB, Obrig TG.. Specific interaction of Escherichia coli O157:H7-derived Shiga-like toxin II with human renal endothelial cells.J. Infect. Dis. 1995;172(5):
    1397–1401.
    85.Griffin P M. Escherichia coli O157:H7 and other enterohemorrhagic Escherichia coli, p. 739–761. In Blaser MJ,. Smith PD, Ravdin JI,et al. (ed.).Infections of the gastrointestinal tract. Raven Press, 1995.New York, N.Y.
    86.Schmidt H, Beutin L,Karch H. Molecular analysis of the plasmid-encoded hemolysin of Escherichia coli O157:H7 strain EDL 933.Infect. Immun. 1995; 3(3):1055–1061.
    87.Benjamin P,Federman M,. Wanke CA.. Characterization of an invasive phenotype associated with enteroaggregative Escherichia coli. In-fect.Immun. 1995; 63(9):
    3417–3421.
    88.Bauer ME., Welch RA.Characterization of an RTX toxin from enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 1996;64(1):167–175.
    
    89.McKee ML, Melton-Celsa AR, Moxley RA,et al. Enterohemorrhagic Escherichia coli O157:H7 requires intimin to colonize the gnotobiotic pig intestine and to adhere to HEp-2 cells.Infect. Immun. 1995.63(9):3739–3744.
    90.Tzipori S, Gunzer F, Donnenberg MS, et al.The role of the eaeA gene in diarrhea and neuro-logicalcomplications in a gnotobiotic piglet model of enterohemorrhagic Escherichia coli infection. Infect. Immun. 1995;63(9):3621–3627.
    91.Schmidt H,Kernbach C,.Karch H.Analysis of the EHEC hly operon and its location in the physical map of the large plasmid of entero-haemorrhagic Escherichia coli O157:H7. Microbiology 1996;142(Pt 4):907–914
    92.Karch H, Heesemann J,. Laufs R,et al.A plasmid of enterohemorrhagic Escherichia coli O157:H7 is required for expression of a new fimbrial antigen and for adhesion to epithelial cells. Infect. Immun. 1987;55(2):455–461.
    93.Fratamico PM,Bhaduri S,Buchanan RL.Studies on Escherichia coli serotype O157:H7 strains containing a 60-MDa plasmid and on 60-MDa plasmid-cured derivatives. J. Med. Microbiol. 1993 39(5):371–381.
    94.Holmes RK,. Jobling MG,Connell TD. Cholera toxin and related enterotoxins of gram-negative bacteria, p. 225–255. In J. Moss, B.Iglewski, M. Vaughan, and A. T. Tu (ed.), Bacterial toxins and virulencefactors in disease. Marcel Dekker, Inc0.1995. New York, N.Y.
    95.Hall GA,Dorn CR,Chanter N,et al.. Attaching and effacing lesions in vivo and adhesion to tissue culture cells of Vero-cytotoxin-producing Escherichia coli belonging to se-rogroups and O103. J. Gen. Microbiol. 1990;136(Pt 4):779–786.
    96.Dytoc M, Soni R,. Cockerill F.. Multiple determinants of verotoxin-producing Escherichia coli O157 attachment-effacement. Infect. Immun. 993;61(8):3382–3391.
    97.Torres AG, Payne SM.. Haem iron-transport system in enterohaemorrhagic Escherichia coli O157:H7. Mol. Microbiol. 1997;23(4):825–833.
    98.Bell BP,Goldoft M,Griffin PM,et al.A multistate outbreak of Escherichia coli O157:H7-associated bloody diarrhea and hemolytic uremic syndrome from hamburgers.The Washington experience.J Am Med ssoc.1994;272(17):1349-1353
    99.Reilly WJ. Escherichia coli O157 in Scotland –An overview.Suppl.SCIEH Weekly Rep.97/13,4-5
    100.Chapman PA, Siddons CA, Malo ATC, Harkin MA. A 1-year study of Escherichia coli O157 in cattle, sheep, pigs and poultry. Epidemiol Infect 1997; 119(2): 245–50.
    101.Hancock DD, Besser TE, Rice DH, Ebel ED, Herriott DE, Carpenter LV. Multiple sources of Escherichia coli O157 in feedlots and dairy farms in the northwestern United States. Preventive Veterinary Med 1998; 35(1): 11–19.
    102.MacDonald IA, Gould IM, Curnow J. Epidemiology of infection due to Escherichia coli O157: a 3-year prospective study. Epidemiol Infect 1996; 116(3): 279–84.
    
    103.Pierard D. Infections with verotoxin-producing Escherichia coli. Acta Clin Belg 1992; 47(6): 387–96.
    104.Wall PG, McDonnell RJ, Adak GK, Cheasty T, Smith HR, Rowe B.General outbreaks of verocytotoxin producing Escherichia coli O157 in England and Wales from 1992 to 1994. Commun Dis Rep CDR Rev 1996; 6(2): R26–33.
    105.Griffin PM. Escherichia coli O157:H7 and other enterohemorrhagic Escherichia coli. In: Blaser MJ, Smith PD, Ravdin JI, Greenberg HB,Guerrant RL, eds. Infections of the gastrointestinal tract. New York:Raven Press, 1995: 739–61.
    106.Keene WE, Sazie E, Kok J, et al. An outbreak of Escherichia coli O157:H7 infections traced to jerky made from deer meat. JAMA 1997; 277(15): 1229–31.
    107.Tilden J Jr, Young W, McNamara AM, et al. A new route of transmission for Escherichia coli: infection from dry fermented salami.Am J Publ Hlth 1996; 86(8 Pt 1): 1142–45.
    108.Swerdlow DL, Griffin PM. Duration of faecal shedding of Escherichia coli O157:H7 among children in day-care centres. Lancet 1997; 349(9054):745–46.
    109.Huck LG,Dorn CR,Angrick EJ.DNA probe for detection of serogroup O157 enterohemorrhaic Escherichia coli.Int J Food Microbiol.1995;25(3):277-287
    110.Li Y, Mustapha A.Simultaneous detection of Escherichia coli O157:H7, Salmonella, and Shigella in apple cider and produce by a multiplex PCR. J Food Prot. 2004 ;67(1):27-33
    111.Osek J.Development of a multiplex PCR approach for the identification of Shiga toxin-producing Escherichia coli strains and their major virulence factor genes. J Appl Microbiol. 2003;95(6):1217-25
    112.Panutdaporn N, Chongsa-nguan M, Nair GB. Genotypes and phenotypes of Shiga toxin producing-Escherichia coli isolated from healthy cattle in Thailand. J Infect. 2004 ;48(2):149-60
    113.Albihn A, Eriksson E, Wallen C, Aspan A.Verotoxinogenic Escherichia coli (VTEC) O157:H7--a nationwide Swedish survey of bovine faeces. Acta Vet Scand. 2003;44(1-2):43-52
    114.Paiba GA, Wilesmith JW, Evans SJ,et al. Prevalence of faecal excretion of verocytotoxigenic Escherichia coli O157 in cattle in England and Wales. Vet Rec. 2003 ;153(12):347-353
    115.Sadowska B, Osek J, Bonar A,et al. Phenotypic and molecular characteristics of typical and atypical Escherichia coli O157, clinical and food isolates. Acta Microbiol Pol. 2003;52(2):149-58
    116.Radu S, Ling OW, Rusul G,et al,Detection of Escherichia coli O157:H7 by multiplex PCR and their characterization by plasmid profiling, antimicrobial resistance, RAPD and PFGE analyses.J Microbiol Methods. 2001 ;46(2):131-9
    
    117.Chapman PA, Ashton R.An evaluation of rapid methods for detecting Escherichia coli O157 on beef carcasses. Int J Food Microbiol. 2003;87(3):279-85.
    118.Bell BP, Griffin PM, Lozano P, et al.Predictors of hemolytic uremic syndrome in children during a large outbreak of Escherichia coli O157:H7 infections. Pediatrics 1997; 100(1):e12.
    119.Takeda T, Yoshino K, Uchida H, et al. Early use of fosfomycin for Shiga Toxin-producing Escherichia coli O157 infection reduces the risk of hemolytic-uremic syndrome. In: Kaper JB, O’Brien AD, eds. Escherichia coli O157:H7 and other shiga-toxin producing E coli strains. Washington, DC: ASM Press, 1998: 385–87.
    120.Lissner R, Schmidit H, Karch H. A standard immunoglobin preparation produced from bovine colostra shows antibody reactivity and neutralization activity against Shiga-like toxins and EHEChemolysin of Escherichia coli O157:H7. Infection 1996; 24(5): 378–83.
    121.Johnson, R P, Clarke RC, Wilson JB, et al.. Growing concerns and recent outbreaks involving non-O157:H7 serotypes of verotoxigenic Escherichia coli. J Food Prot. 1996;59:1112–1122.
    122.徐建国。我国产志贺样毒素大肠埃希菌的流行状况和预防措施。中华医学杂志,1998;5:325-326
    123.Meng J,Doyle MP,Zhao T,et al. Enterohemorrha-gic Escherichia coli. In Food Microbiology: Fundamentals and Fron-tiers.eds Doyle, M.P., Beauchat, L.R. and Montville, T.J.Washington, DC: American Society of Microbiology Press.
    124.Stacy-Phipps S,JJ Mecca,JB Weiss.Multiplex PCR assay and simple preparation method for stool specimens detect enterotoxigenic Escherichia coli DNA during course of infection. J Clin Microbiol,1995,33:1054-1059
    125.Kim MS, Doyle MP.Dipstick immunoassay to detect enterohemorrhagic Escherichia coli O157:H7 in retail ground beef. Appl Environ Microbiol, 1992 ;58(5):1764-7
    126.Mittelman MW,Habash M,Lacroix JM,et al.Rapid detection of Enterobacteriaceae in urine by fluorescent 16S Rrna in situ hybridization on membrane filters.J Microbiol Methods,1997;30(2):153-160
    127.Nato F,Boutonnier A,Rajerison M,et al.One-step immunochromatographic dipstick tests for rapid detection of Vibrio cholerae O1 and O139 in stool samples. Clin Diagn Lab Immunol, 2003;10(3):476-8
    128.Huck LG, Dorn CR, Angrick EJ.DNA probe for detection of serogroup O157 enterohemorrhagic Escherichia coli. Int J Food Microbiol,1995;25(3):277-87
    129.Maruyama F, Kenzaka T, Yamaguchi N,et al. Detection of bacteria carrying the stx2 gene by in situ loop-mediated isothermal amplification. Appl Environ Microbiol, 2003;69(8):5023-8
    
    130.Bej AK,Mahbubani MH,Dicesare JL,et al.Polymerase chain reaction-gene probe detection of microorganixms by using filter-concentrated samples.Appl Environ Microbiol,1991;57(2):3529-3534
    131.Nuovo GJ, Hohman RJ, Nardone GA,et al. In situ amplification using universal energy transfer-labeled primers.J Histochem Cytochem.,1999;47(3):273-80
    132.Elder RO, Keen JE, Siragusa GR,et al. (2000) Correlation of enter-ohemorrhagic Escherichia coli O157 prevalence in feces, hides, andcarcasses of beef cattle during processing. Proc Natl Acad Sci U S A,2000;97(7):2999-3003
    133.Abu Al-Soud, W. and Radstrom, P. Effects of amplification facilitators on diagnostic PCR in the presence of blood, feces, and meat. Journal of Clinical Microbiology,2000;38(12): 4463–4470.
    134.Bhaduri, S. and Cottrell, B. Sample preparation methods for PCR detection of Escherichia coli O157:H7, Salmonella typhimurium,and Listeria monocytogenes on beef chuck shoulder using a single enrichment medium. Molecular and Cellular Probes,2001;15(5):267–274.
    135.Wilson IG.Inhibition and facilitation of nucleic acid amplification.Appl Environ Microbiol,1997;63(10):3741-51
    136.Seo KH, Brackett RE, Frank JF,et al.Immunomagnetic separation and flow cytometry for rapid detection of Escherichia coli O157:H7. J Food Prot,1998;61(7):
    812-6
    137.Tomoyasu T Improvement of the immunomagnetic separation method selective for Escherichia coli O157 strains. Appl Environ Microbiol. 1998 Jan;64(1):376-82
    138.Kaclikova E, Kuchta TV, Kay H,et al.Separation of Listeria from cheese and enrichment media using antibody-coated microbeads and centrifugation.J Microbiol Methods,2001 ;46(1):63-7
    139.Witham PK, Yamashiro CT, Livak KJ,et al.A PCR-based assay for the detection of Escherichia coli Shiga-like toxin genes in ground beef. Appl Environ Microbiol,
    1996;62(4):1347-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700