中国白肋烟种质资源评价与土壤中有机氯农药残留分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文旨在建立白肋烟种质资源的化学及分子生物学的评价方法,从白肋烟农艺学性状、化学成分、遗传关系以及中国植烟烟区土壤中有机氯农药残留及武汉地区土壤中有机氯农药残留各个方面对中国白肋烟种质资源的品质进行系统研究,最终为拓宽白肋烟种质遗传基础,找到优质白肋烟种质资源提供理论支持与应用基础。第一部分中国白肋烟种质资源的农艺性状及品质性状分析
     为充分了解白肋烟种质资源之间的关系,根据测定的白肋烟19个农艺性状数据应用聚类分析软件NTSYS2.10对来自国内外149个白肋烟种质资源进行系统的聚类分析。结果表明,在相异性系数0.0375处可将149份白肋烟种质资源分为6个大类群及2个小亚群:种质类群Ⅰ含有25个品种,种质类群Ⅱ内含有22个品种,种质类群Ⅲ内含有23个品种,种质类群Ⅳ内含有18个品种,其中种质类群Ⅳ又可以被划分成2个小的亚群,种质类群Ⅴ内含有24个品种,种质类群Ⅵ内含有37个品种。白肋烟种质资源之间的相异性系数在0.01-0.53之间,表明了白肋烟种质资源之间存在着一定的差异。
     第二部分白肋烟种质资源的化学评价
     本章实验采用双列杂交及动态两种白肋烟材料,首先通过紫外分光光度法对36份双列杂交白肋烟样品叶面分泌物进行初步筛选,筛选出较高叶面分泌量的品种或杂交组合依次为:B37×KY8959,KY14×KY8959,BX2003×KY14,建选3号×B37,B37,B37×B21。
     此外,采用气-质联用技术分析了双列杂交及动态组白肋烟烟叶中主要香气物质成分,共检出31种烟叶香气物质成分,其中新植二烯含量最高。
     通过对36份双列杂交白肋烟种质资源上等烟率、亩产量、烟碱、钾含量、腺毛分泌物总量、香味物质总量、感官评析得分进行的综合分析,筛选具有较大利用价值的白肋烟品种或有性杂交组合:B37×BX2003(鄂烟101)、B21×KY14、KY8959×BX2003(鄂烟101)、KY8959×B21、B37×KY8959、建选3号×B37、建选3号×KY14、B21×BX2003(鄂烟101)、B37×B21。
     分析白肋烟香气物质的动态变化,测定6个样品在移栽后56天,63天,70天,77天,84天时香气物质的含量,做出动态变化图,确定不同品种白肋烟的最佳采收期。
     第三部分中国白肋烟种质资源的分子生物学评价
     通过ISSR分子标记法对119份白肋烟种质资源的遗传多样性进行了研究。结果表明,从100个ISSR引物筛选出14条,总共扩增出了131条带,其中127个条带具有多态性,每个ISSR引物平均扩增出了9.1个条带。根据ISSR条带的数据,白肋烟品种之间的相似性系数在0.40-0.99之间。119份白肋烟样品的UPGMA系统树图中可以看出,白肋烟样品可以被划分成3个大组。其结果与利用农艺性状进行聚类研究的结果有一定的差异。联系白肋烟种质的遗传背景和农艺学/品质性状,本研究有助于利用分子标记的方法制定适当的策略,来协助白肋烟的育种工程。
     第四部分土壤中有机氯农药残留状况分析
     本章节以我国6大产烟区的植烟土壤及武汉地区土壤为研究对象,对土壤中有机氯农药残留状况进行了分析,主要研究结果如下:
     1.建立了混合溶剂索氏提取法萃取,弗罗里硅土小柱净化,利用带微池电子捕获检测器的气相色谱仪同时分离检测植烟土壤中21种有机氯农药残留量的方法,该方法简便快速,准确灵敏。
     2.全国主要烟区有机氯农药残留在6大烟区植烟土壤中普遍存在,其中滴滴涕和六氯苯的检出率最高,为90%。六六六和滴滴涕占有机氯农药残留的主要部分。其总的平均值ΣDDTs和ΣHCHs分别为6.69μg/kg、5.91μg/kg,与我国规定的滴滴涕和六六六的指标限值100μg/kg相比要小很多,可以保障正常的农业生产和人体健康。
     3.武汉地区土壤样品中滴滴涕和六六六是土壤中有机氯农药的主要化合物,其中滴滴涕在总农药中比重为77.10%,其次是六六六(7.83%)、艾氏剂(4.21%),七氯(2.82%)和六氯苯(1.53%)。滴滴涕的浓度范围是nd至1198.0ng.g-1,滴滴涕的主要污染分布在武汉市汉南区和新洲区。六六六的浓度范围是n.d(未检出)至100.58ng.g1,黄陂区和汉南区土壤中检测到的六六六的含量较高。除七氯外,其他有机氯农药近期均未在土壤中使用。在武汉大部分农业土壤中滴滴涕的含量小于500ng.g-1,六六六也可以被归为无污染。
To explore the good germplasm of burley tobacco (Nicotiana tabacum L.) andestablish an effective evaluation method of the chemical and biologiacal, we analyzed withthe agronomy traits, chemical composition, genetic relationships, andorganochlorine pesticides residues in soil of tobacco ares in China and Wuhan, Hubeiprovince, China. It will provide theoretical support and application infrastructure to broadenthe genetic base and select quality germplasm of burley tobacco.
     Part One Analysis of the agronomic/quality traits of the germplasmresources of burley tobacco
     In order to access the similarity among burley tobacco germplasm,149burley tobaccocultivars from China and abroad were systematicall clustered by cluster software NTSYS2.10e based on data of19traits. Results showed that all burley tobacco cultivars can beclustered into6large cultivar groups and2samll cultivar subgroups at dissimilitudecoefficient of0.0375. Group1to group6included25,22,23,18,24and37cultivars,respectively. Total coefficient of all burley tobacco cultivars ranged from0.01to0.53,indicating that there existed some diversity among various germplasm.
     Part Two Phytochemical evaluaion of the germplasm of burley tobacco
     This chapter we use two kinds of burley tobacco leaves: diallel cross and dynamicmaterial, UV spectrophotometry was used for the secretions initial screening in36diallelburley leaf samples, screening a higher secretion of species or foliar crosses were: B37×KY8959, KY14×KY8959, BX2003×KY14, Jianxuan3×B37, B37, B37×B21.
     In addition, gas chromatography-mass spectrometry technique was used to analysis thearoma components of the leaves of diallel and dynamic group.31kinds of tobacco aromacomponents were detected in the tobacco leaves, which neophytadiene was the highestcontent.
     Through comprenshensive analysis of36diallel burley varieties resources, screening for potential usage value of burley varieties or hybrid varieties:B37×BX2003、B21×KY14、 KY8959×BX2003、KY8959×B21、B37×KY8959、Jianxuan3×B37、Jianxuan3号×KY14、B21×BX2003、B37×B21。
     Analyses on the dynamic changes of aroma constituents in growth process of burleytobacco by GC/MS. six samples were measured56days after transplanting,63days,70days,77days,84days aroma substance content and make dynamic maps, determine thedifferent varieties of burley best harvest.
     Part Three Molecular biological evaluation of the germplasm of burleytobacco
     To assess the genetic diversity of germplasm resources of burley tobacco (Nicotianatabacum L.), we investigated genetic relationships among119burley tobacco accessions byusing inter simple sequences repeat (ISSR) markers. A total of14ISSR primers generated131bands, of which,127bands were polymorphic with an average of9.1bands per primerpair. Based on the ISSR band data, similarity indices between the accessions ranged from0.40to0.99. An unweighted pair group method using arithmetic averages algorithm(UPGMA) dendrogram was constructed and demonstrated that all119accessions could beassorted into3main groups. This result has certain differences with the clustering result,which was based on agronomic/quality traits. Accompanied with the genetic backgroundand agronomic/quality traits of germplasm resources of burley tobacco, these results willhelp in the formulation of appropriate strategies for assisting burley tobacco breedingprogramme by maker assisted selection.
     Part Four Residues of organochlorin pestricides in agricultural soils
     Soil samples collected from soils at six main tobacco growing regions in China werestudied, and the levels and distributions of OCPs were analyzed. The results were asfollowing.
     1. The method for the determination of21organochlorine pesticides (OCPs) by gaschromatography with μ-electron capture detection was constructed, soil samples wereextracted by Soxhlet method by a mixed solvent, and purified by a florisil chromatographiccolumn.
     2. Organochlorine pesticides residues in planting soils were widespread. DDTs and chlorobenzene had the highest detection rate of90%. The main residues of organochlorinepesticides in the soil were HCHs and DDTs, and the average content of ΣDDTs and ΣHCHswas6.69μg/kg,5.91μg/kg respectively, which were lower than the1imitation of nationalstandard (HJ332-2006). Risk assessment indicated that the soil could guarantee the normalagricultural production and human health.
     3. According to the measured concentrations and detection frequencies in agriculturalsoils of Wuhan, dichlorodiphenyltrichloroethanes(DDTs), hexachlorocyclohexanes(HCHs),hepta chlor (HEPT), hexachlorobenzene(HCB) and aldrin were the predominantcompounds in soil. DDTs accounted for77.10%of total OCPs, followed by HCHs(7.83%),aldrin(4.21%), HEPTs(2.82%) and HCB (1.53%). The total DDT concentration srangedfrom nd to1198.0ng.g-1and the main contaminated areas were distributed in Hannan andXinzhou districts of Wuhan. The total HCH concentration sranged from nd to100.58ng.g1in soil and relatively higher levels were observed in soil samples from Huangpi and Hannandistricts. Source analysis showed that OCPs residues except heptachlor originated mainlyfrom historical application, besides slight recent introduction at some sites. Based on theChina National Soil Quality Standard, DDT pollution in most samples of Wuhanagricultural soils could be considered as no and low contamination, while the level ofHCHs was classified as no pollution. Our study indicated that there existed potentialexposure risk of OCPs in Wuhan agricultural soils although the use of OCPs has beenbanned.
引文
[1]高翔,庞红喜和裴阿卫,分子标记技术在植物遗传多样性研究中的应用。河北农业大学学报,2002,36(4):356-359.
    [2]蒋予恩,中国烟草品种资源。北京:中国农业出版社,1997.
    [3]全国中草药汇编编写组。全国中草药汇编(下册)。北京:人民卫生出版社,1975:476.
    [4]兰茂:《滇南本草》。云南人民主板社
    [5]谈迁:《枣林杂俎》。北京:中华书局,2006
    [6]王士祯:《香祖笔记》。上海:上海古籍出版社,1983
    [7]谢国桢:《明代社会经济史料选编》(下)。福州:福建人民出版社,2004
    [8]张介宾:《景岳全书》。北京:人民卫生出版社,1991
    [9]谭吉璁:《延绥镇志》。康熙十二年刻本
    [10]王逋:《蚓庵琐语》。光绪五年刻本
    [11]张璐《本草逢源》。续修四库全书
    [12]杨国安:《中国烟叶史汇编》。光明日报出版社,2002
    [13]王昂:《本草备要》。光绪七年扫叶山房藏本
    [14]陆耀:《烟谱》。光绪二年刻本
    [15]蔡家琬:《烟谱》。道光十六年刻本。
    [16]陈琮:《烟草谱》。嘘修四库全书本。
    [17]叶梦株:《阅世编》。上海:上海古籍出版社,1981
    [18]倪朱谟:《本草汇言》。续修四库全书
    [19]赵学敏:《本草纲目拾遗》。光绪十年合肥张氏味古斋刻本
    [20]褚逢椿、顾禄:《烟草录》。嘉庆十三年颐宿草堂刻本。
    [21]马士:《中华帝国对外关系史》(第一卷)。上海:上海书店出版社,2000.
    [22]林国平,王毅,肖宗友等。中国白肋烟育种现状与发展对策。烟草农业科学,2006,2(2):109-112
    [23]Hubei Tobacco Research Institute of Burley Tobacco Experimental Station, China:Burley tobacco germplasm in China. Hubei, Hubei Science and Technology Press, Hubei, pp.1-154,2009.[in Chinese]
    [24]王志德,王元英,牟建民等.烟草种质资源面熟规范和数据标准.中国农业出版色,2006.
    [25] YC/T142-1998,1998, State Tobacco Monopoly Bureau, China. Investigating methodsof agronomical character of tobacco.
    [26]Rohlf, F.J. NTSYS-pc: Numerical Taxonomy System (version2.1); Exeter Publishing,Ltd.: Setauket, NY, USA,2002.
    [27]黄学跃,刘敬业,赵丽红等。晾晒烟品种资源农艺性状的聚类分析。昆明师范高等专科学校学报,2001,23(4):40-43.
    [28]王胜军,陆作楣,万建民。采用表型和分子标记聚类研究杂交籼稻亲本的遗传多样性。中国农业科学,2006,20(5):475-480.
    [20]Barrera R.,Wrensman E.A. Trichome type,density and distilbution on the leaves ofcertain tobacco varieties and hybrids[J]. Tob Sei,1966,10:157-161.
    [30]Crlang K.W., Weeks W.W., Weybrew J.A. Changes in the suface chemistry of tobaccoleaves dring curing with particular emphasis on trichomes. Tob Sci.1985,29:122-127.
    [31]Keene C.K., Wanger G.J. Direct demonstration of duvatrlendiol biosynthesls heads oftobacco trichomes. Plant Physiol.1985,79:1026-1032
    [32]Severson R.F. et al. Isolation and characterization of the sucrcse estern of the cutlcularwaxes of greed tobacco leaf. J.Agric. Food chem.1985,33:870-873.
    [33]Severson R.F. et al. Cuticular constituents of tobacco: faction affecting their productionand their role in insect and diease resluance and smoke quality. Rec. Adv. Tob. Sci.1985,11:105-107
    [34]王宝华,吴帼英,黄静勋.烟叶植物学特性观察:1.烤烟烟叶腺毛密度及其烟叶品质和化学成分的关系》.中国烟草,1983(2):1-6.
    [35]左天觉.烟草的生产、生理和生物化学,朱尊权等译.上海远东出版社,1993:40-43。
    [36]Johnson A. W. Evaluation of several nicotiana tobacum entries resistance to twotobacco insect pests[J].Tob Sci,1978,22:41-43.
    [37]Johnson A. M., Severson R. F., Hudson., et a1. Tobacco leaf trichomesand their exudates[J].Tob Sci,1985,29:67-72.
    [38]Griffing, B.Concept of general and specific combining ability in relation to diallelcrossing systems[J]. Aust. J. Biol. Sci.,1956,9:463-493.
    [39]朱军,估算遗传方差和协方差的混合模型方法.生物数学学报,1992,7(1):1-11.
    [40]朱军,季道攀,许馥华.作物品种间杂种优势遗传分析的新方法.遗传学报,1993,20(3):262-271.
    [41]朱军.遗传模型分析方法.北京:中国农业出版社,1997.
    [42]Zietkiewicz, E., Rafalski, A., Labuda, D.: Genome fnger-printing by simple sequencerepeat (SSR)-anchored polymerase chain reaction amplifcation. Genomics20:176-183,1994.
    [43]Maryam Sarwat: ISSR: A reliable and cost-effective technique for detection of DNApolymorphism. In: Nikolaus J. Sucher et al.(eds.), Plant DNA Fingerprinting and Barcoding:Methods and Protocols, Methods in Molecular Biology, Humana Press, NY, USA, pp.103-121,2012.
    [44]Bornet, B., Branchard, M.: Nonanchored inter simple sequence repeat (ISSR)markers: reproducible and specifc tools for genome fngerprinting. Plant Mol. Biol.Rep.19:209-215,2001
    [45]Fernandez, M.E., Figueiras, A.M., Benito, C.: The use of ISSR and RAPD markers fordetecting DNA polymorphism, genotype identification and genetic diversity among barleycultivars with known origin. Theor. Appel. Genet.104:845–851,2002.
    [46]Zhang, L., Zhou, R.H., Ding, C.B., Yang, R.W., Liu, S.G: Study on genetic variation ofgenus Kengyilia by ISSR markers. Guihaia4:375-380,2006.
    [47]Yang, B.C., Xiao, B.G., Chen, X.J., Shi, C.H.: Genetic diversity of fue-cured tobaccovarieties based on ISSR markers. Hereditas (Chinese)27:753-758,2005.
    [48]Yang, B.C., Xiao, B.G., Chen, X.J., Shi, C.H.: Assessing the genetic diversity of tobaccogermplasm using intersimple sequence repeat and inter-retrotransposon amplificationpolymorphism markers. Ann. Appl. Biol.150:393-401,2007.
    [49]Tobacco Research Institute of Chinese Academy of Agricultural Sciences: Floatingseedling technique. In: China Tobacco Cultivation. Shanghai Science and Technology Press,Shanghai, China, pp.291,2005.
    [50]Liang, Y. C., Yang, H.: Advances of plant tissue culture. Journal of Fujian College ofForextry (China)22:93-96,2002.
    [51]Cao, Z.Y., Liu, G.M.: plant tissue culture technology. Gansu Science Press, Lanzhou, pp.10-74,1996.
    [52]Doyle, J.J., Doyle J.L.: Isolation of plant DNA from fresh tissue. Foucus12:13-15,1990.
    [53]Yeh, F.C., Yang, R.C., Boyle, T.: POPGENE version1.21; CIFOR and University ofAlberta: Edmonton, Canada,1997.
    [54]Shannon, C.E., Weaver, W.: The mathematical theory of communication. Urbana:University of Illinois Press,1949.
    [55]Jaccard, P.: Nouvelles recherches sur la distribution florale.-Bul. Soc. Vaudoise. Sci.Nat.44:223-270,1908.
    [56]Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S.: MEGA5:Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, EvolutionaryDistance, and Maximum Parsimony Method. Molecular Biology and Evolution28:2731-2739,2011.
    [57]Lin, G.P., Cai, C.C., Wang, Y., Zhou, Y.B., Huang, W.C.: Cluster analysis of burleytobacco germplasm (in Chinese). Acta Tabacaria Sinica14(5):33-38,2008.
    [58]沈平.《斯德哥尔摩公约》与持久性有机污染物(POPs).化学教育,2005,(6):6-10.
    [59]Magdic, S., Pawliszyn, J.B.,1996. Analysis of organochlorine pesticides usingsolidphase microextraction. J.Chromatogr. A723,111–122.
    [60]USEPA,1998. Endocrine Disruptor Screening and Testing Advisor Committee(EDSTAC). United States Environmental Protection Agency, Washington, DC, FinalReport.
    [61]Bhattacharya, B., Sarkar, S.K., Mukherjee, N.,2003. Organochlorine pesticide residuesin sediments of a tropical mangrove estuary, India: implications for monitoring. Environ.Int.29,587–592.
    [62]Wurl, O., Obbard, J.P.,2005. Organochlorine pesticides, polychlorinated biphenyls andpolybrominated diphenyl ethers in Singapore's coastal marine sediments. Chemosphere58,925–933.
    [63]Li, Y.F., Cai, D.J., Singh, A.,1998. Technical hexachlorocyclohexane use trends inChina and their impact on the environment. Arch.Environ.Contam.Toxicol.35,688–697.
    [64]Li, Y.F., Cai, D.J., Singh, A.,1999. Historical DDT use trend in China and usage datagridding with1/4by1/6longitude/latitude resolution. Adv. Environ. Res.2,497–506.
    [65]Li, Y.F., Cai, D.J., Shan, Z.J., Zhu, Z.L.,2001. Gridded usage inventories of technicalhexachlorocyclohexane and lindane for China with1/61latitude by1/41longituderesolution. Arch.Environ.Contam.Toxicol.41,261–266.
    [66]An, Q., Dong, Y.H., Wang, H., Wang, X.,Wang, M.L., Guo, Z.X. Organochlorinepesticide residues in cultivated soils in the south of Jiangsu, China. Acta Pedologica Sin(inChinese)2004,41:414–419
    [67]Wang, F., Jiang, X., Bian, Y.R., Yao, F.X., Gao, H.J., Yu, G.F., Munch, J.C., Schroll, R.,2007. Organochlorine pesticides in soils under different land usage in the Taihu Lakeregion,China.J.Environ.Sci.19,584–590.
    [68]Jiang, Y.F., Wang, X.T., Jia, Y., Wang,F., Wu, M.H., Sheng, G.Y., Fu, J.M.,2009.Occurrence, distribution and possible sources of organochlorine pesticides in agriculturalsoil of Shanghai, China. J.Hazard.Mater.170,989–997.
    [69]Zhang, H.B., Luo, Y.M., Li, Q.B.,2009. Burden and depth distribution of organo-chlorine pesticides in the soil profiles of Yangtze River Delta Region,China: implication forsources and vertical transportation.Geoderma153,69–75
    [70]Meijer, S.N., Shoeib, M., Jantunen, L.M.M., Jones, K.C., Harner, T.,2003. Air–soilexchange of organochlorine pesticides in agricultural soils.1. Field measurements using anovel in situ sampling device. Environ.Sci. Technol.37,1292–1299.
    [71]Kurt-karakus, P.B., Bidleman, T.F., Staebler, R., Jones, K.C.,2006. Measurement ofDDT fluxes from a historically treated agricultural soil in Canada. Environ.Sci.Technol.40,4578–4585.
    [72]Valle, M.D., Codato, E., Marcomini, A.,2007. Climate change influence on POPsdistribution and fate:acasestudy. Chemosphere67,1287–1295.
    [73]丁昌东.欧盟农药残留新指令草案浅析.世界标准化与质量管理,2004,8:37-39.
    [74] EPA Method8081A. Organochlorine pesticides by Gas Chromatography.
    [75]《土壤质量六六六和滴滴涕的测定气相色谱法》(GB/T14550-2003).
    [76]Wang, J., Yang, J.B., Han, C.R., Cai, L.W., Li, X.B., Bukkenscd, S.G.F., Paoletti, M.G.,1999. Pesticide residues in agricultural produce in Hubei Province, PRChina. Crit.Rev.PlantSci.18,403–416.
    [77]Chen, J.S., Gao, J.Q.,1993. The Chinese total dietstudy in1990.1. Chemicalcontaminants. J.AOAC Int.76,1193–1205.
    [78]Tang, Z., Yang, Z., Shen, Z., Niu, J., Liao, R.,2007. Distribution and sources oforganochlorine pesticidesinse dements from typical catchment of the Yangtze River.China Arch. Environ. Contam. Toxicol.53,303–312
    [79]《农田土壤环境质量监测技术规范》(NY/T395-2000).
    [80]《中华人民共和国农业行业标准农药残留试验准则》(NY/T788-2004).
    [81]《食用农产品产地环境质量评价标准》(HJ332-2006).
    [83]张利.有机氯农药在稻田中残留及毒死蜱的降解菌筛选,硕士论文,2008.
    [84]刘丽,罗军.基质效应对气相色谱分析有机磷农药残留的影响和解决方法.江西农业学报,2009,21(7):146-148.
    [85]方玲.有机氯农药在茶叶及其环境中的残留状况与评价.福建农业大学学报,1998,27(2):211-215.
    [86]赵玲,马永军.有机氯农药在农业环境中残留现状分析.农业环境与发展,2001,(1):37-39.
    [87]龚钟明,曹军,李本纲,等.天津地区土壤中六六六(HCH)的残留及分布特征.中国环境科学,2003,23(3):31.
    [88]Fu, J.M., Mai, B.X., Sheng, G.Y., Zhang, G., Wang, X.M., Xiao, X.M., Ran, R., Cheng,F.Z., Peng, X.Z., Wang, Z.S.,2003.Persistent organic pollutants in environment of thePearl River Delta, China: an overview. Chemosphere52,1411–1422.
    [89]Zhang, H.Y., Gao, R.T., Huang, Y.F., Jia, X.H., Jiang, S.R.,2007. Spatial variability oforganochlorine pesticides (DDTs and HCHs) in surface soils from the alluvial region ofBeijing,China.J.Environ.Sci.19,194–199.
    [90]Yang, X.L., Wang, S.S., Bian, Y.R., Chen, F., Yu, G.F., Gu, C.G., Jiang, X.,2008.Dicofol application resulted in high DDTs residuein cotton fields from northern Jiangsuprovince, China.J.Hazard.Mater.150,92–98.
    [91]Miglioranza, K.S.B., Aizpunde-Moreno, J.E., Moreno, V.J.,1998. Fate oforganochlorine pesticides in soils and terrestrial biotaof “Los Padres” pond watershed.Argentina. Environ.Pollut.105:91–99.
    [92]Aigner, E.J., Leone, A.D., Falconer, R.L.,1998. Concentrations and enantiomeric ratiosof organochlorine pesticide in soils from the US Corn Belt.Environ.Sci. Technol.32:1162–1168.
    [93]Manz, M., Wenze, K.D.,Dietze, U.,2001. Persistent organic pollutants in agriculturalsoils of central Germany. Sci.TotalEnviron.277,187–198.
    [94]Covaci, A., Hura, C., Schepens, P.,2001. Selected persistent organochlorine pollu-tantsin Romania.Sci.TotalEnviron.280,143–152.
    [95]Gaw, S.K., Palmer, G., Kim, N.D., Wilkins, A.L.,2003. Preliminary evidence thatcopper inhibits the degradation of DDT to DDE in pip and stonefruit or chard soilsintheAucklandregion,NewZealand.Environ.Pollut.122,1–5.
    [96]Aguillar, A.,1984. Relationship of DDE/DDT in marine mammals to the chronology ofDDT input to the ecosystem. Can.J.FishAquat.Sci.41,840–844.
    [97]Cavanagh, J.E., Burns, K.A., Burnskill, G.J., Coventry, R.J.,1999. Organochlorinepesticide residuesin soil sands ediments of the Herbert and Burdekin River regions, NorthQueensland—implications for contamination of the Great Barrier Reef.Mar.Pollut.Bull.39,367–375.
    [98]Gong, Z.M., Tao, S., Xu, F.L., Dawson, R., Liu, W.X., Cui, Y.H., Cao, J., Wang, X.J.,Shen, W.R., Zhang, W.J., Qing, B.P., Sun, R.,2004. Level and distribution of DDT insurface soils fromTianjin, China.Chemosphere54,1247–1253.
    [99]Li, X.H., Wang, W., Wang, J., Cao, X.L., Wang, X.F., Liu, J.C., Liu, X.F., Xu, X.B.,Jiang, X. N.,2008. Contamination of soils with organochlorine pesticides in urbanparks inBeijing,China. Chemosphere70,1660–1668.
    [100]Qiu, X.H., Zhu, T., Yao, B., Hu, S.W.,2005. Contribution of dicofol to current DDTpollution in China. Environ.Sci.Technol.39,4385–4390.
    [101]Chen, L.G., Ran, Y., Xing, B.S., Mai, B.X., He, J.H., Wei, X.G., Fu, J.M., Sheng, G.Y.,2005. Contents and sources of polycyclic aromatic hydrocarbons and organochlorinepesticides in vegetable soils of Guangzhou, China. Chemosphere60,879–890.
    [102]Bidleman, T.F., Leone, A.D.,2004. Soil-exchange of organochlorine pesticides in theSouthern United States. Environ.Pollut.128,49–57.
    [103]Kim, J.H., Smith, A.,2001. Distribution of organochlorine pesticidesin soils fromSouth Korea.Chemosphere43,137–140.
    [104]Falandysz, J., Brudnowska, B., Kawano, M., Wakimoto, T.,2001. Polychlorinatedbiphenyls and organochlorine pesticidesin soils from the southern part of Poland.Arch.Environ.Contam.Toxicol.40,173–178.
    [105]Fu, S., Cheng, H.X., Liu, Y.H., Xu, X.B.,2009. Level sand distribution oforganochlorine pesticides in various media inamega-city, China.Chemosphere75,588–594.
    [106]Ramesh, A., Tanabe, S., Murase, H., Subramanian, A.N., Tatsukawa, R.,1991.Distribution and behavior of persistent organochlorine insecticides in paddy soil andsediments in the tropical environment:a casestudy in South India.Environ.Pollut.74,293–307.
    [107]Mackay, D., Shiu, W.Y., Ma, K.C.,1997. Illustrated handbook of physical-chemicalproperties of environmental fate of organic chemicals, vol. V. Lewis Publishers, Boca Raton,FL.
    [108]Karlsson, H., Muir, D.C.G., Teixiera, C.F., Burniston, D.A., Strachan, W.M.J.,Hecky,R.E., Mwita, J., Bootsma, H.A., Grift, N.P., Kidd, K.A., Rosenberg, B.,2000.Persistent chlorinate dpesticides in air,water and precipitation from the Lake MalawiArea, Southern Africa.Environ.Sci.Technol.34,4490–4495
    [109]陈卫明,邓天龙,张勤,李庆霞.土壤中有机氯农药残留的分析技术研究进展,岩矿测试,2009,(2):151-156.
    [110]许行义,刘劲松,庞小露,土壤中有机氯农药残留分析前处理方法研究.浙江科技学报,2003,(15):36-38.
    [111]Xuejun Wang, Xiuying Piao, Jing Chen, Jundong Hu, Fuliu Xu, Shu Tao.Organochlorine pesticides in soil profiles from Tianjin. Chemosphere,64(2006):1514-1520.
    [112]Haibo Zhang, Yongming Luo, Qingbo Li. Burden and depth distribution oforganochlorine pesticides in the soil profiles of Yangtze River Delta Region. Geoderma,153(2009):69-75.
    [113]European Commission. Concerning a coordinated community monitoringprogrammefor1999to ensure compliance with maximum levels of pesticide residues in andon cereals and certain products of plant origin,including fruit and vegetables.OfficialJournal of the European Communities,1999,L128:25-55.
    [114]Hill A. Quality control procedures for pesticide residues analysis-guideines for residuemonitoring in the European Union, Document7826/VI/97. Brussels: EuropeanCommission,1997.
    [115]LePage J T, Hebert V R, Tomaszew ska E M, et al. J AOAC Int,2005,88:1788.
    [116]Hu X Z, Yu J X, Yan Z G, et al. J AOAC Int,2004,87:972.
    [1] Sakari T, etal. Relationship between tobacco headspace volatiles and their smokingquality[J].Agric. Biol. Chem.1986,50(2):317-323.
    [2]张明显.中美合作开发优质烟叶的收获与启示:中国烟草1988(4)27-29
    [3]于川芳,王兵,罗登山。部分国产白肋烟与津巴布韦、马拉维及美国白肋烟的分析比较〔J〕.烟草科技,1999(4):6-8。
    [4]吴殿信,王兵,林平,等。当前制约我国混合型卷烟产品发展的几个技术问题〔J〕.烟草科技,1999(2):31-32。
    [5]金闻博,戴亚主编.烟草化学[M].北京:清华大学出版社,1994:6-7
    [6]肖协忠,李德臣,郭承芳,等.烟草化学[M].北京:中国农业科技出版社,1997:44-194
    [7]杜咏梅,郭承芳,张怀宝,等.水溶性糖,烟碱,总氮含量与烤烟吃味品质的关系研究[J].中国烟草科学,2000,(1):7-10
    [8]闫克玉,王鸿昊,张家荣,等.河南烤烟(40)级氮组分含量及规律性研究[J].烟草科技,1998,(5):4-6.
    [9]魏成熙,钱晓刚.烟草对氮吸收利用的研究[J].耕作与栽培,1995,3:37-43.
    [10] Dong M I Schmeltz,E Jacob, and D Hoff inmann. Aza-arenas in tobacco smoke[J].Anal Toxicology,1978:21-25.
    [11]洪其琨著.烟草栽培[M].上海:上海科学技术出版社,1982:47-50.
    [12]胡国松,郑伟,王震东,等.烤烟营养原理[M].北京:科学出版社,2000:247-252.
    [13]刘国顺.国内外烟叶质量差据分析和提高质量技术途径探讨[J].中国烟草学报,2003,(8):18-22.
    [14] Rowland R L.Flue-cured Tobacco Neophytadiene[J].J.Amer.Chem.Soc.,1957.79:5007-5010.
    [15] Stedmm R L.The Chemical Composition of Tobacco and Tobacco Smoke[J].Chem.Rey.,1968,68:153-207.
    [16] Lloyd R A.Miller C W.Robert D L, et a1.Fleu-cured Tobacc Flavor.I.Essenceand Essential Oil Components [J].Tob.Sci.,1976,XX:40-48.
    [17] Demole E,Berthet D.A Chemical study of Burley Tobacco Flavour (Nicotianatabacum L.).Volatile to Medium-Volatile Constituents [J].Helv.Chem.Acts,1972,55:1866-1882.
    [18] FujimoriT. Neutral Volatile Components of BurleyTobacco[J].Beitr. Tabakforsch.,l978,9;317-325.
    [19] Kimlar,d.Tobacco Chemistry.Volatile Constituents of Greak Tobacco [J].ActaChem.Scand.,l972,26:2177-2184.
    [20] schumacher J N.Vestal L.Isolation and Identification of Some Cornponents ofTurkish Tobacco[J].Tobacco Sci.,1974,18:43-48.
    [21] Chuman T. Chemical Studies on Aroma Constituents of TurkishTobacco[J].sci.Papers,Cent.Res.Inst.Japan Tobacco&Salt Public Corp.,1977.19:45-92.
    [22] Matsushima S.Relationship between Composition of Tobacco Essential Oil and itsAroma[J].Nippon Nogeikaku Kaishi.1980,54(12):1027-1035.
    [22] Schurnacher J N. Flavor Composition of Maryland Tobacco[J]. Beitr,Tabakforach.,1984.5:271-278.
    [23] Wahlberg I.Efects of Flue-Curing and Aging on the Volatile Neutral and AcidicConstituents of Virginia Tobacco[J].Phytochemistry,1977.16:1217-1232.
    [24] Sakaki T.Changes in the Composition of Hesdspace Volatiles of Flue-cured Tobaccoby Aging[J].Agric.Biol.Chem.,1985.49(6):1785-1791.
    [25]李云.气相色谱法分析中国烟叶的低级脂肪酸[J].烟草科技,1989.3:27-3O.
    [26]冼可法,沈朝智,戚万敏.云南烤烟中性香味物质分析研究[J].中国烟草学报,1992,1(2):1-9.
    [27]刘百战,冼可法.不同部位、成热度及颜色的云南烤烟中某些中性香味成分的分析研究[J].中国烟草学报,1993,1(3):46-53.
    [28]夏巧玲.顶空分离分析法分析我国名优卷烟烟气中的香味成分[J].烟草科技,1996(6):9-12.
    [29]李炎强,冼可法.顶空共蒸馏法分析烟草中性香味成分[J].中国烟草学报,1997.3(3):1-9.
    [30]景延秋,冼可法.不同滤嘴稀释度对卷烟主流烟气中重要香味成分输送量的影响[J].中国烟草学报,1992,5(2):7-13.
    [31]谢剑平,赵明月,吴鸣,等.白肋烟重要香味物质组成的研究[J].烟草科技.2002(1O):3-16.
    [32]任永浩,陈建军,马常力.不同PH值烤烟香气化学成分的研究.华南农业大学学报,1994,15(1):127-132.
    [33]李天福,刘敬业,冉邦定.成熟度、施肥量、留叶数与烟叶质量评吸的关系.云南烟草,1994,3:63-64.
    [34]胡志昂。王洪新.研究遗传多样性德原理和方法.见钱迎倩,马克平主编.生物多样性研究的原理与方法.北京:中国科学技术出版社,1994,117~122.
    [35] Fitzsimmons N.N., MoritzC. MooreS.S.. Conservation and dynamics of microsatelliteloci over300million years of marine turtle evolution. Mol.Bio.Evol.,1995,12:432-440.
    [35]葛颂,洪德元.遗传多样性及其检测方法,见:中国科学院遗传多样性委员会编,生物多样性研究的原理和方法.北京.中国科技出版社.1994:123-140.
    [36] BaumB.1L,YangJ.L,YenC.. Rcegneria: its genetics limits and justification for itsrecognition.Canj.Bot.,1991,69:282~294,
    [37]潘莹,赵挂仿.分子水平的遗传多样性及其测量方法,西北植物学报,1998,18(4):fi45-653.
    [38]黄宏文.猴桃属(Actinidia)植物的遗传多样性.生物多样性,2000,8(1):l-12.
    [39]魏润鹏.如何管理林木长期育种项目中的遗传多样性.世界林业研究,1995,3:13-20.
    [40]尚占环,姚爱兴.生物遗传多样性研究方法及其保护措施.宁夏农学院学报,2002,23(1):66-69.
    [41]贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学,1996,29(4),1-l0.
    [42]王中仁,植物等位酶分析.北京:科学出版社.1996:10-19.
    [43] Soils D.E.,Soltis P.S..1sozymes in plant Biology. Portland: Dioscorides Press,1989.
    [44]胡志昂,王洪新.研究遗传多样性德原理和方法.见钱迎倩,马克平主编.生物多样性研究的原理与方法.北京:中国科学技术出版社,1994,117-122.
    [45]张献龙,唐克轩主编.植物生物技术.北京:科学出版社.2004:406-416.
    [46]张德强,张志毅,杨凯.AFLP技术在林木遗传改良中的应用.北京林业大学学报2000,22(6):75-78.
    [47] Pandeya RS,VA Dicks and G Poushinsky.Quantative genetic studies in flue-curedtobacco,1.Agronomic characters.Canadian Journal of Genetics and Cytology,l983,25:336-345.
    [48]牛佩兰和蒋予恩,烟草种质资源烟叶化学成分的研究。作物出种资源,1992,2:24-26.
    [49]何川生,何兴金等,烤烟品种资源的RAPD分析。植物学报2001(6).
    [50] Atanassov ll,SA Atanassova,AI Dragoeva and AI Atanassov.A new CMS source inNicotiana developed via somatic cybridization between N.tabacum and N.alata。Theoretical and Applied Genetics,1998,97:982-985.
    [51]郑慧琼、工六发、酗;爱地和刘承宪,烟草细胞的空间电融合。科学通报.2003,48(13):1438-144l.
    [52] Brandle JD,DBai,生物技术在烟草农业中的研究和应用。Davis DL和MT Nielsen,烟草-生产,化学和技术。北京:化学T业出版社,2003。49-63.
    [53] Bai D.JE Brandie and R Reeleder.Identification of two RAPD markers Linked with agene for resistance to black root rot of tobacco.Theoretical and Applied Genetics,1996,1184-1189.
    [54] Kenward K,D Bai,M Ban and JE Brandle.Isolation and characterization of Tndl:
    a retrotransposon marker Linked to black root rot resistance in tobacco.Theoretical and
    Applied Genetics,1999,98(3):387-395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700