纳米铁/粘土杂化材料的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
零价铁是一种廉价却简单有效的脱氯剂,与一般的铁颗粒相比,纳米零价铁由于其超微粒径和巨大的表面积,能更有效的转化多种环境污染物,反应活性更大。但是因为纳米铁易氧化、易团聚,限制了它的广泛利用。本文以粘土材料作为载体,达到提高纳米铁稳定性,进而拓宽其应用范围的目的。
     论文以钠基蒙脱土为原料,确定了利用离子交换法合成了纳米铁/粘土杂化材料的具体制备方法和操作条件。通过X射线衍射(XRD)、透射电子显微镜(TEM)等分析检测手段,表征了杂化材料的微观结构、晶粒度等特征,并通过邻氯苯酚降解实验考查纳米铁/粘土杂化材料的降解性能。
     结果表明,在制备材料的过程中,离子交换时的浸泡时间、浸泡比例均有导致材料存在最佳性能的最佳值。离子交换过程中,浸泡比例为2.50mmol/g,交换3d效果最好。
     通过XRD和TEM检测可知,制得材料中所含铁为单质铁,在40-60nm之间,外形以球形为主,均匀地负载于粘土上。材料较为稳定,无需特殊保存即可稳定存放,无明显氧化现象。在相同工艺条件下,纳米铁/粘土杂化材料对邻氯苯酚的去除能力与纳米铁相近,去除率高达98.4%,且放置30d后,其降解率为96.7%,降解效率无明显降低。
Zero-valent iron is a cheap but simple and effective antichlor. The amount of nano- iron is much less than ordinary iron since it is more active when used as antichlor. However, nano-iron is such an ultra fine particle and has enormous surface area, which makes it easy to oxidize, so that nano-iron is hard to preserve. When nano-iron agglomerates, it usually reduces the efficiency of this antichlor. All these factors restrict its further use.
     By the ion-exchange process, nano-iron/clay hybrid materials have been prepared.Transmission electronic microscopies (TEM), X-ray diffraction (XRD) are used to observe the microstructure and properties of the products are tested by O-chlorophenol degradation experiments.
     The results show that most of the nano-iron in the products is between 40-60nm and in ball shape, homodisperse in the clay and rarely aggregation. The products can stable without oxidation when preserved in ordinary conditions. And 30 minutes later after being added to O-chlorophenol solution, the degradation rate can reach as high as 98.4%, which shows advanced dechlorination properties.
引文
[1]U.S.Environmental Protection Agency,National Pollutant Discharge Elimi-nation System,Code of Federal Regulations[R].Washington,D.C.:1988.
    [2]程荣,王建龙,张伟贤.纳米金属铁降解有机卤化物的研究进展[J].化学进展,2006,18(1):17-19.
    [3]鲁军,马师白,高晋生,等.含氯有机废料资源化处理基础研究[J].华东理工大学学报,2002,28(1):63-65.
    [4]王永华,袁伟,舒宏新,等.饮用水中的挥发性卤代烃研究[J].环境科学学报,1994,14(2):224.
    [5]吴德礼,马鲁铭,周荣丰.水溶液中氯代烷烃的催化还原脱氯研究术[J].环境化学,2004,23(6):631-635.
    [6]周红艺,何志桥,潘志彦,黄新文.金属铁及其化合物还原脱氯有机氯化物的研究[J].浙江工业大学学报,2002,30(1):63-68.
    [7]Chen J L,Al-Abed S R,Ryan J A,et al.Effects of pH on dechlorination of trichloroethylene by zero-valent iron[J].Journal of Hazardous Materials,2001,83(3):243-254.
    [8]Karel Verschuere.Handbook of Environmental Data on Organic Chemicals[M].New York:Vannoatrand Reinhold,1983.
    [9]Bruce L D,Desmond F.Selecting Among Physical/Chemical Processes for Removing Synthetic Organics from Water[J].Water Environment Research,1993,65:827-838.
    [10]段长强,孟庆苏,张泰,等.现代化学试剂手册[M].北京:化学工业出版社,1993.
    [11]程能林,胡闻.溶剂手册[M].北京:化学工业出版社,1990.
    [12]国家环保局有害化学品管理办公室,化工部北京化工研究院环保所.化学品毒性法规环境数据手册[M].北京:中国环境科学出版社,1992.
    [13]沈德中.污染环境的生物修复[M].北京:化学工业出版社,2002:4.
    [14]Tutem E,Apak R U.Adsorptive Removal of Chlorophenols from Water by BituminousShale[J].Water Res,1998,32:2315-2324.
    [15]杨凤林,全燮等.水中氯代有机化合物处理方法及研究进展[J].环境科学进展,1996,4(6):36-44.
    [16]Ken Hosoya.Photodecomposition of 1,2,3,4-and2,3,7,8-tetra-chlorodibezo-pdioxin (TCDD)in Water Alcohol Media on A Solid Support[J].Chemosphere,1995,31:3687-3698.
    [17]O'Hannesin S F,Gillham R W.Long-term performance of an situ "iron wall" for remonclick ediation of VOCs[J].Ground Water,1998,36(1):164-170.
    [18]程荣,王建龙,Zhang W X.纳米Fe~0颗粒对三种单氯酚的降解[J].中国环境科学,2006,26(6):698-702.
    [19]黄斌,冯流,张莉.零价铁降解邻氯苯酚的动力学研究[J].北京化工大学学报:自然科学版,2007,34(1):89-91.
    [20]Janda V,Vasek P,Bizova J,et al.Kinetic models for volatile chlorinated hydrocarbons removal by zero-valent iron[J].Chemosphere,2004,54(7):917-925.
    [21]Liu C C,Tseng D H,Wang C Y.Effects of ferrous ions on the reductive dechlorination of trichloroethylene by zero-valent iron[J].Journal of Hazardous Materials,2006,13(6):706-713.
    [22]Lookman R,Bastiaens L,Borremans,et al.Batch-test study on the dechlorination of 1,1,1-trichloroethane in contaminated aquifer material by zero-valent iron[J].Journal of Contaminant Hydrology,2004:133-144.
    [23]Lim T T,Feng J,Zhu B W.Kinetic and mechanistic examinations of reductive transformation pathways of brominated methanes with nano-scale Fe and Ni/Fe particles[J].Water Research,2007,41:875-883.
    [24]Chen J L,Al-Abed S R,Ryan J A,et al.Effects of pH on dechlorination of trichloroethylene by zero-valent iron[J].Journal of Hazardous Materials,2001,83(3):243-254.
    [25]张天胜,姚培正,张军杰.铁屑法处理含合成洗涤剂废水的研究[J].环境科学研究,1993,6(3):56-59.
    [26]程荣,王建龙,Zhang W X.纳米Fe~0颗粒对三种单氯酚的降解[J].中国环境科学,2006,26(6):698-702.
    [27]Roy R K,Roy D M.Cation-Exchange Properties of Hydrated Cements[J].Mater Res Soc Symp Proc,1984,32:347-349.
    [28]樊冠球.利用废铁屑的微电池原理处理电镀含铬废水[J].环境工程,1984(4):1-7.
    [29]Varanasi P,Fullana A,Sidhu S.Remediation of PCB contaminated soils using iron nano-partieles[J].Chemosphere,2007,66:1031-1038.
    [30]Liao C J,Chung T L,Chen W L,et al.Treatment of pentachlorophenol-contaminated soil using nano-scale zero-valent iron with hydrogen peroxide[J].Journal of Molecular Catalysis A:Chemical,2007,265:189-194.
    [31]郎印海,聂新华,贾永刚.零价铁渗透反应格栅原位修复地下水中氯代烃的应用及研究进展[J].土壤,2006,38(1):23-28.
    [32]Kouznetsova I,Bayer P,Ebert M,et al.Modelling the long-term performance of zero-valent iron using a spatio-temporal approach for iron aging[J].Journal of Contaminant Hydrology,2007,90:58-80.
    [33]David W Blowes,Garol J Ptacek,John L gamber.In-Situ reme-diation of Cr(Ⅵ)-contaminated groundwater using permeablereactive walls:Laboratory Studies[J].Environ Sci Technol,1997(31):3348-3357.
    [34]Li Z H,Jones H K,Zhang P F.Chromate transport through columns packed with surfactant-modified zeolite/zero valent iron pellets[J].Chemosphere,2007,90:58-80.
    [35]Deng B,Burris D R,Campbell T J.Reductive of vinyle chloride in metallic iron-water system[J].Environ Sci Technol,1999,33(15):2651-2656.
    [36]牟季美,张立德.纳米复合材料发展趋势[J].物理,1996,25(1):31-36.
    [37]刘洁,滕翠青,余木火.纳米复合材料研究进展[J].合成技术及应用,2000,15(4):31-34.
    [38]赵晓兵,陈志刚.纳米复合材料及其制备技术综述[J].江苏大学学报,2002,23(4):52-56.
    [39]孙红梅,罗驹华,张少明.液相法制备纳米铁颗粒研究进展[J].科技通报,2006,22(6):817-820.
    [40]罗驹华,张振忠,张少明.气相法制备纳米铁颗粒新进展[J].材料导报,2007,21:130-133.
    [41]曹茂盛,邓启刚,鞠刚,等.α—Fe纳米粉末制备及其表征[J].化学通报,2000,63(2):30-33.
    [42]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001:112-121.
    [43]Cho H H,Lee T,Hwang S J,et al.Iron and organo-bentonite for the reduction and sorption of trichloroethylene[J].Chemosphere,2005,58(1):103-108.
    [44]Li F,Vipulanandan C,Mohanty K K.Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene[J].Colloids and Surfaces,A:Physicochemical and Engineering Aspects,2003,223:103-112.
    [45]郑化桂,曾京辉,梁家和.Fe、Co、Ni纳米粉化学还原制备机理的光谱研究[J].金属学报,1999,35(8):837-840.
    [46]Devinder Mahajan,Amruta Desai,Miriam Rafailovich,Min-Hui Cui,Nan-Loh Yang.Synthesis and characterization of nanosized metals embedded in polystyrene matrix[J].Composites,Part B,2006,37:74-80.
    [47]王翠英,陈祖耀,程彬等.金属铁纳米粒子的液相制备、表面修饰及其结构表征[J].化学物理学报,1999,12(6):670-674.
    [48]戴清清,宋绵新.粘土矿物在水污染治理中的应用发展概述[J].矿业快报,2005,2:10-12.
    [49]戴劲草,萧子敬,叶玲,黄继泰.多孔粘土材料研究与进展[J].硅酸盐通报,1999,4:64-70.
    [50]方秀苇,李小红,徐翔民,等.聚酞胺纳米杂化材料的研究进展[J].工程塑料应用,2007,35(3):67-69.
    [51]卢晓英,王秀红,屈树新,等.纳米羟基磷灰石/壳聚糖杂化材料的制备[J].无机材料学报,2008,23(2):332-336.
    [52]刘文霞,张宝述,宋海明,等.熔融插层法制备聚合物/粘土纳米复合材料的研究进展[J].无机材料学报,2008,36(9):6-15.
    [53]Gilman J W,Awed W H,Davis R D,et al.Polymer/layered silicate nanocomposites from thermally stable trialkylimidazolium-treated montmorillonite[J].Chem Mate,2002,14:3776-3785.
    [54]宗能,马永梅,王博松,等.一种液晶态聚苯乙烯/粘土纳米复合材料的制备方法[P].中国,CN1242393A,2001-01-26.
    [55]余晴春,黄海燕,朱沁伟,等.聚合物/粘土纳米复合材料制备机理及研究进展[J].材料工程,200l(3):42-46.
    [56]VanderHart D L,Asano A,Gilman J W,et al.Solid-state NMR investigation of paramagnetic nylon-6 clay nanocomposites.1.Crystallinity,morphology,and the direct influence of Fe~(3+) on nuclear spins[J].Chem Mate,2001,13:3781-3795.
    [57]Nese A,Sen S,Tasdelen M A,et al.Clay-PMMA nanocomposites by photoinitiated radical polymerization using intercalated phenacyl pyridinium salt initiators[J].Macromolecular Chemistry and Physics,2006,207(9):820-826.
    [58]余丽秀,李鹏洲,王秋霞,等.蒙脱石/尼龙66纳米复合材料制备及性能表征[J].矿产保护与利用,2004,(5):14-17.
    [59]曾清华,王栋芝,王淀佐.聚合物-粘土矿物纳米复合材料[J].化工进展,1998,17(2):13-16.
    [60]Doil Kong,Chart Eon Park.Real time exfoliation behavior of clay layers in epoxy-claynanocomposites[J].Chem Mater,2003,151:419-424.
    [61]吴涛,韩书华,张春光等.电导法测定粘土矿物的阳离子交换容量[J].油田化学,2002,19(3):205-207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700