氧化铜/氟硅低聚物纳米复合多功能传热表面的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科技的飞速发展,化工、食品制造、电子、海水淡化、核工业和能源等各个工业部门对防治换热器表面腐蚀和结垢的问题提出了越来越高的要求,原有的以环氧树脂和酚醛树脂为基础的换热器多功能涂料为实现换热器表面耐腐蚀性能、抑制污垢沉积和高热导率等多功能的耦合,需要多次多层涂覆以满足其多功能性的实现,不仅施工工艺复杂,而且难以修复,无法满足实际使用的要求。本论文以溶胶-凝胶法制备的无机金属氧化物/陶瓷复合材料和自由基溶液聚合含氟硅共聚物为基础,开展了材料合成、形态结构表征和表面功能改性的系统研究。尝试开发出一种可以一次性在换热器表面涂装,功能层自动分层,具有耐腐蚀、抑制污垢和高热导率的多功能复合材料。具体地说,主要在以下几个方面开展了探索性的研究工作。
     (1)通过溶胶一凝胶工艺制备了CuO/SiO_2和NiO/SiO_2纳米复相陶瓷涂层。研究表明,高热导率的弥散相纳米氧化物粒子包埋于氧化硅矩阵中,形成类内晶型结构,可以引起裂纹桥连、钉扎、偏转等纳米复相强韧化效应,从而减轻矩阵界面残余应力,控制陶瓷固有的裂纹,减少陶瓷材料的结构缺陷,显著提高纳米复合陶瓷涂层的耐腐蚀性能和导热性能。对比实验表明,添加的纳米粒子本身的物理化学性质对于纳米复合陶瓷涂层耐腐蚀性能和导热性能的提高同样有着至关重要的影响。
     (2)分别采用Cu(NO_3)_2·3H_2O和Cu(C_5H_7O_2)_2(Cu(acac)_2)为金属醇盐制备了具有不同CuO含量的SCuN和SCuC系列CuO_X/SiO_2纳米复合材料。随着氧化铜加量的增加,SCuN和SCuC系列复合材料中纳米氧化铜分别存在从氧化铜纳米球到纳米棒(SCuN系列)以及从氧化铜纳米球到方形结构(SCuC系列)的晶形转变。同时,随着氧化铜加量的增加,形成的纳米粒子的尺寸增加,导致植入粒子和硅陶瓷矩阵之间的热扩散失配增大,从而扩大了微裂纹的尺寸以及微裂纹的数量,导致复合涂层的缺陷增多。低的弥散相纳米粒子的添加量、低团聚和高度分散是溶胶-凝胶工艺制备结构致密、缺陷更少的纳米复合材料的关键因素,更有利于提高其耐蚀能力。此外,纳米粒子含量以及粒子尺寸大小对纳米复合涂层热导率的提高也有着重要的影响。
     (3)采用自由基溶液聚合与溶胶-凝胶法相结合的方法制备了可以自动分层的含氟高分子/SiO_2杂化疏水材料。疏水的含氟烷基由于其极大的表面活性自动向表面富集,定向于空气形成界面层,具有极低的表面能;柔性的碳氢主链可以有效缓解应力集聚,减少涂层缺陷;底层为硅氧网络结构,与基体材料有极强的结合力。溶剂性质及其加量可以极大地影响氟硅低聚物的结构,以及表面含氟基团的富集程度。采用良溶剂制备的低聚物大分子结构呈现更蓬松舒展的无规线团态,使含氟侧链更容易迁移到溶液/空气界面,疏水性能更好。随着溶剂加量的增加,溶液分散性更好,形成的聚合物分子量降低,从而使含氟侧链向表面的迁移速度更快,氟硅氧烷聚合物表面疏水性能更好。无机组分的增加将促进溶胶的水解和缩聚的程度,提高聚合物的分子量,增加底层硅氧网络的厚度,增强杂化材料与基体材料的结合强度,提高氟硅氧烷杂化材料的耐腐蚀和耐久性能,对氟硅氧烷杂化材料表面疏水性能影响不大。
     (4)通过铜金属盐,TEOS与氟硅低聚物溶液共水解缩聚制备了具有含氟侧基的碳碳主链高分子和硅氧网络的氧化铜/氟硅低聚物纳米复合低表面能材料。结果表明,纳米复合低表面能材料改性处理表面具有优异的耐腐蚀性能;优异的抗介质渗透性能;与基体有良好的附着力;显著的防垢效果;良好的热传导性。引入的氧化铜纳米粒子主要是包埋于底层硅氧网络结构内部,完善底层硅氧网络结构,提高其耐腐蚀性能和热导率,对于纳米复合杂化材料的疏水性能影响不大。含氟侧链的存在使纳米复合杂化材料具有极低的表面能,使污垢附着力降低,在换热表面的沉积也趋于分散,有利提高换热器的换热效果。
The rapidly increasing needs for multi-functionalized heat transfer surfaces with good corrosion resistance,anti-fouling and high thermal conductivity are expected in many industrial fields,such as chemical industry,food fabrication,electric industry,desalination, nuclear,energy and so on,where the traditional coatings based on epoxy and phenolic resins can not satisfy all requirements owing to complex coated technology and the difficulty for repairing.
     In this dissertation,the work is focused on the synthesis and characterization of metal oxide/ceramic nanocomposite material by sol-gel technique and fluorinated organic-inorganic hybrid materials by free-radical random copolymerization.We attempted to fabricate a multi-functionalized nanocomposite material with good corrosion resistance,anti-fouling and high thermal conductivity by combining the useful properties of metal oxide/ceramic nanocomposite material and fluorinated organic-inorganic hybrid material.This composite material could be self-layered on heat transfer surface in one step.
     Homogeneous CuO/SiO_2 and NiO/SiO_2 nanocomposite coatings containing CuO and NiO nanoparticles in silica matrix were successfully synthesized by sol-gel process, respectively.The results indicated that the dispersed second phase in the silica matrix can cause crack bridging,crack pinning,and crack deflection to control the size and density of processing flaws,reduce the residual stress of the silica matrix and produce more compact surface.The thermal conductivity as well as corrosion resistance of nanocomposite coatings was significantly improved by the introduction of metal oxide particles.In comparison with NiO/SiO_2 nanocomposite coatings,CuO/SiO_2 composite coatings displayed lower corrosion protective behavior but higher thermal conductivity.Experimental results revealed that the nature of embedded nanoparticles had a vital rule on the improvement of corrosion resistance and thermal conductivity of the composite coating.
     Two series of CuO_x/SiO_2 samples with various Cu/Si molar ratios,have been synthesized by sol-gel technique from two different copper metal precursors,cupric nitrate hydrate(Cu(NO_3)_2·3H_2O) and cupric acetylacetonate(Cu(acac)_2) respectively.The results indicated that the structures and chemical states of CuO_x nanoparticles in the silica matrix were sensitive to the nature of chemical precursors and Cu content.At low Cu content,the primary copper oxide nanoparticles self-aggregated into normally known spherical aggregates. With the amounts of copper oxide increasing,different structure transitions of CuO_x have been found,i.e.,from nanosphere to uniform nanorod using Cu(NO_3)_2·3H_2O as chemical precursor and,to square-like frames starting from Cu(acac)_2.It has also been found that,with the increase of the CuO content,more and enlarged flaws were formed due to the formation of larger copper oxide aggregates through the Ostwald ripening process,which led to a gradually declining corrosion protection.Consequently,it could be concluded that minimum agglomeration and uniform distribution of the second phase particles in the matrix are preferred for enhancing the corrosion protection ability of CuO/SiO_2 nanocomposite coatings. Moreover,the thermal conductivity of the composite coatings could be significantly improved by adding CuO nanoparticles.But it showed a fluctuant tendency with increasing CuO content.
     Fluorinated silicon oligomers were prepared by free-radical random copolymerization and sol-gel process from dodecafluoroheptyl methyl acrylate(FA),vinyltriethoxy silane (VTES),and tetraethyl orthosilicate(TEOS).FTIR and XPS results indicated that, hydrophobic perfluoroalkyl groups were preferentially enriched to the outermost layer at the coating film-air interface.The fluorinated silicon oligomers had a good water repellency property,governed by hydrophobic fluorocarbon groups of the outermost layer.The nature and concentration of solvent had a significant influence on the structure of molecular assemblies of the oligomers and the mobility of perfluoroalkyl side chain.Compared with ETOH and Butanol,THF was a good solvent for fluorinated silicon oligomers prepared by free-radical random copolymerization.The fluorinated silicon oligomers showed a looser random coil-like shape in THF solution.Hydrophobic perfluoroalkyl groups of the random coil-like shape fluorinated silicon oligomers can move more easily and enrich at the coating film-air interface.With the increase of the concentration of solvent,the structure of molecular assemblies of the oligomers would be rather small and loose,which made the movement of perfluoroalkyl side chain at the coating film-air interface more easily.An important role of TEOS was to increase the density of the reaction sites of the-OH groups and the thickness of the bottom layer composed of mainly silica network originating from hydrolysis and polycondensation of TEOS.The useful properties of hybrid coatings,like better wear resistance and corrosion resistance,could be significantly enhanced by the increase of TEOS, due to the improvement of thickness of the bottom SiO_2 layer and bonding between SiO_2 layer and aluminum substrates,while it had a slight influence on the surface wettability of hybrid coatings.
     Copper oxide/fluorinated silicon oligomers nanocomposite hybrid materials,with high corrosion resistance,anti-fouling and high thermal conductivity,have been synthesized by co-hydrolyzed and co-condensed using the as-prepared fluorinated silicon oligomers,TEOS and cupric nitrate hydrate as chemical precursor.The dispersed second phase embedded in the silica matrix have caused particle bridging,crack pinning,crack deflection and stress induced micro-cracking effects to improve corrosion resistance behavior and thermal conductivity, while it had a slight influence on the surface wettability of the hybrid coatings.The characteristics of CaCO_3 crystallization fouling on heat transfer surface were investigated in convective heat transfer test rig.It has been demonstrated that these metal oxide/fluorinated silicon oligomers nanocomposite hybrid coatings with very low surface energy could reduce the formation of deposits on heat transfer surfaces significantly.The heat transfer coefficients remained almost constant during the running,impling that almost no CaCO_3 scale formed on the treated surfaces.Obviously,this is a most promising result which indicates substantial benefits in practice.
引文
[1]林安,周苗银.功能性防腐蚀涂料及应用.北京:化学工业出版社,2004.
    [2]李凤生,杨毅等.纳米/微米复合技术及应用.北京:国防工业出版社,2002.
    [3]杨善让,徐志明.传热设备的污垢与对策.北京:科学出版社,1995.
    [4]管从胜,王威强.氟树脂涂料及应用.北京:化学工业出版社,2004.
    [5]Osborne J H.Observations on chromate conversion coatings from a sol-gel perspective,Prog.Org.Coat.,2001,41:280-286.
    [6]Metroke T L,Parkhill R L,Knobbe E T.Passivation of metal alloys using sol-gel-derived materials—a review,Prog.Org.Coat.,2001,41:233-238.
    [7]Masalski J,Gluszek J,Zabrzeski J.Improvement in corrosion resistance of the 316L stainless steel by means of Al_2O_3 coatings deposited by the sol-gel method,Thin Solid Films,1999,349:186-190.
    [8]Ruhi G,Modi O P,Singh I B.et al.Wear and electrochemical characterization of sol-gel alumina coating on chemically pre-treated mild steel substrate,Surf.Coat.Tech.,2006,201:1866-1872.
    [9]Sanctis O D.Protective Glass Coatings on Metallic Sub-strates,J.Non-Cryst.Solids,1990,338:121-125.
    [10]Thim G P M,Oliveira A S,Oliveira E D A.et al.Sol-gel silica film preparation from aqueous solutions for corrosion protection,J.Non-Cryst.Solids,2000,273:124-128.
    [11]Yang X F,Talman D E.Characterization of Pitting Corrosion in Bare and Sol-gel coated Aluminum 2024-T3 Alloy,Surf.Coat.Tech.,2001,140:11-15.
    [12]Castro Y,Ferrari B,Moreno R.et al.Corrosion behaviour of silica hybrid coatings produced from basic catalysed particulate sols by dipping and EPD,Surf.Coat.Tech.,2005,191:228-235.
    [13]Garcia-Cerda L A,Mendoza-Gonz(?)lez O,P(?)rez-Robles J F.et al.Structural characterization and properties of colloidal silica coatings on copper substrates,Mater.Lett.,2002,56:450-453.
    [14]Brinker C J,Scherer G W(Eds.).Sol-Gel Science:The Physics and Chemistry of Sol-Gel Processing,Academic Press,New York,1990.
    [15]Yang X F,Tallman D E,Gelling V J.et al.Use of a sol-gel conversion coating for aluminum corrosion protection,Surf.Coat.Tech.,2001,140:44-50.
    [16]Atik M,Delima N M.Sol-gel TiO_2-SiO_2 Films as Pro-tective Coatings against Corrosion of 316L Stainless Steel in H_2SO_4 Solutions.J.Appl.Electrochem,1995,25:142-146.
    [17]Voevodin N N.Investigation of corrosion protection performance of sol-gel coating on A12024-T3,Prog.Org.Coat.,2005,52:28-33.
    [18]Song Y S,Lee D Y,Kim B Y.Effect of glass frit addition on corrosion resistance of Ti/TiO_2/IrO_2-RuO_2 films.Prog.Org.Coat.,2001,41:233-238
    [19]Messaddeq S H,Pulcinelli S H,Santilli C V.Microstructure and corrosion resistance of inorganic-organic(ZrO_2-PMMA) hybrid coating on stainless steel,J.Non-Cryst.Solids,1999,247:164-170.
    [20]Voevodin N N,Balbyshev V N,Khobaib M.Nanostructured coatings approach for corrosion protection,Prog.Org.Coat.,2003,47:416-423.
    [21]Schottner G.Hybrid Sol-Gel-Derived Polymers:Applications of Multifunctional Materials,Chem.Mater.2001,13:3422-3435.
    [22]Plueddemann E P.Silane Coupling Agents[M],New York:Plenum Press,1991.
    [23]Vignesh Palanivel,Danqing Zhu,Van Ooij W J.Nanoparticle-filled silane films as chromate replacements for aluminum alloys.Prog.Org.Coat.,2003,47:384-392.
    [24]Zhu D,Van Ooij W J,Structural character- rization of bis-[triethoxysilylpropyl]tetrasulfide and bis-[trimethoxysilyl-propyl]amine silanes by Fourier-transform infrared spectroscopy and electrochemical impedance spectroscopy.Journal of Adhesion Science and Technology,2002,16:1235-1260.
    [25]Zhu D,Van Ooij W J.Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl) propyl]tetrasulfide in sodium chloride solution.Part 2:Mechanism for corrosion protection.Corrosion Science,2003,45:2177-2197.
    [26]Zhu D,Van Ooij W J.Enhanced corrosion resistance of AA 2024-T3 and hot-dip galvanized steel using a mixture of bis-[triethoxysilylpropyl]tetrasul-fide and bis-[trimethoxysilylpropyl]amine.Electrochimica Acta,2004,49:1113-1125.
    [27]Van Ooij W J,Zhu D.Electrochemical impedance spectroscopy of bis-[tri ethoxysilypropyl]tetrasulfide on Al 2024-T3 substrates.Corrosion,2001,57:413-427.
    [28]Subramanian V,Van Ooij W J.Effect of the amine functional group on corrosion rate of iron coated with films of organofunc- tional silanes.Corrosion,1998,54:204-215.
    [29]Sheffer M,Groysman A,Mandler D.Electro- deposition of sol-gel films on Al for corrosion protection.Corrosion science,2003,45:2893-2904.
    [30]Underhill P R,Goring G,DuQuesnay D L.A study of the curing of 3-glycidoxyprop-yltrimethoxy silane films on aluminum.International Journal of Adhesion and Adhesives,1998,18:313-317.
    [31]Gandhi J S,Metroke T L,Eastman.M A.Effect of the degree of hydrolysis and condensation of bis-[triethoxysilylpro-pyl]tetrasulfide on the corrosion prote- ction of coated aluminum Alloy 2024-T3.Corrosion,2006,62:612-623.
    [32]Conde A,Dur(?)n A,Damborenea J J.Polymeric sol-gel coatings as protective layers of aluminium alloys,Prog.Org.Coat.,2003,46:288-296.
    [33]Pepe A,Galliano P,Aparicio M.et al.Sol-gel coatings on carbon steel:Electrochemical evaluation,Surf.Coat.Tech.,2006,200:3486-3491.
    [34]Reg(?) M V,Salinas A J,Julio Castellanos R.et al.Nanostructure of Bioactive Sol-Gel Glasses and Organic-Inorganic Hybrids,Chem.Mater.,2005,17:1874-1879.
    [35]Amato L E,L(?)pez D A,Galliano P G.et al.Electrochemical characterization of sol-gel hybrid coatings in cobalt-based alloys for orthopaedic implants,Mater.Lett.2005,59:2026-2031.
    [36]Schmidt H.Multifunctional inorganic-organic composite sol-gel coatings for glass surfaces,J.Non-Cryst.Solids,1994,178:302-312.
    [37]Zheludkevich M L,Serra R,Montemor M F.et al.Corrosion protective properties of nanostructured sol-gel hybrid coatings to AA2024-T3,Surf.Coat.Tech.,2006,200:3084-3094.
    [38]Daoud W A,Xin J H,Tao X.Synthesis and characterization of hydrophobic silica nanocomposites,Appl.Surf.Sci.,2006,252:5368-5371.
    [39]Donley M S,Balbyshev V N,Voevodin N N.Self-assembled NAnophase Particle(SNAP)surface treatments for corrosion protection of AA2024-T3,Prog.Org.Coat.,2005,52:34-38.
    [40]Zandi-zand R,Ershad-langroudi A,Rahimi A.Organic-inorganic hybrid coatings for corrosion protection of 1050 aluminum alloy,J.Non-Cryst.Solids,2005,35 l:1307-1311.
    [41]Zandi-zand R,Ershad-langroudi A,Rahimi A.Silica based organic-inorganic hybrid nanocomposite coatings for corrosion protection,Prog.Org.Coat.,2005,53:286-291.
    [42]Wu K H,Chang T C,Yang C C.et al.Dynamics and corrosion resistance of amine-cured organically modified silicate coatings on aluminum alloys,Thin Solid Films,2006,513:84-89.
    [43]Wu K H,Chao C M,Yang C J.et al.Synthesis and characterization of polydimethylsiloxane-cured organically modified silicate hybrid coatings,Polym.Degrad.Stabil.,2006,91:2917-2923.
    [44]Voevodin N N,Kurdziel J W,Mantz R.Corrosion protection for aerospace aluminum alloys by Modified Self-assembled NAnophase Particle(MSNAP) sol-gel,Surf.Coat.Te1h.,2006,201:1080-1084.
    [45]Yan Y,Hoshino Y,Duan Z.et al.Design and Characterization of Interconnected,Microporous Hybrid Thin Films by a Sol-Gel Process,Chem.Mater.1997,9:2583-2587.
    [46]Wu L Y L,Soutar A M,Zeng X T.Increasing hydrophobicity of sol-gel hard coatings by chemical and morphological modifications,Surf.Coat.Tech.,2005,198:420-424.
    [47]Nocu(?) M,Siwulski S,Leja E.et al.Structural studies of TEOS-tetraethoxytitanate based hybrids,Opt.Mater.,2005,27:1523-1528.
    [48]Metroke T L,Kachurina O,Knobbe E T.Spectroscopic and corrosion resistance characterization of GLYMO-TEOS Ormosil coatings for aluminum alloy corrosion inhibition,Prog.Org.Coat.,2002,44:295-305.
    [49]Chou T P,Chandrasekaran C,Limmer S J.et al.Organic-inorganic hybrid coatings for corrosion protection,J.Non-Cryst.Solids,2001,290:153-162.
    [50]Ivanova Y,Gerganova T S,Dimitriev Y.et al.Nanostructured hybrid materials as precursors for synthesis of nanocoposites in Si-O-C-N-Zr system,Thin Solid Films,2006,515:271-278.
    [51]Li Y S,Wang Y,Tran T.et al.Vibrational spectroscopic studies of(3-mercaptopropyl)trimethoxylsilane sol-gel and its coating,Spectrochim.Acta:A,2005,61:3032-3037.
    [52]Chang C C,Chen W C.Synthesis and Optical Properties of Polyimide-Silica Hybrid Thin Films,Chem.Mater.2002,14:4242-4248.
    [53]Hintze P E,Calle L M.Electrochemical properties and corrosion protection of organosilane self-assembled monolayers on aluminum 2024-T3,Electrochim.Acta,2006,51:1761-1766.
    [54]Jeong S,Jang W,Moon J.Fabrication of photo-patternable inorganic-organic hybrid film by spin-coating,Thin Solid Films,2004,466:204-208.
    [55]Gu G,Zhang Z,Dang H.Hydrophobic inorganic-organic thin films with a low coefficient of friction,Mater.Res.Bull.,2004,39:1037-1044.
    [56]Shang X,Zhu Z,Yin J.et al.Compatibility of Soluble Polyimide/Silica Hybrids Induced by a Coupling Agent,Chem.Mater.,2002,14:71-77.
    [57]Zhang C H,Zhang Z Q,Li Q Y.et al.Synthesis,characterization and properties of SiO_2-polyimide hybrid film,Polym.Polym.Composites,2005,2:-199-207.
    [58]Tan A L K,Soutar A M,Annergren I F.et al.Multilayer sol-gel coatings for corrosion protection of magnesium,Surf.Coat.Tech.,2005,198:478-482.
    [59]Garcia-Heras M,Jimenez-Morales A,Casal B.et al.Preparation and electrochemical study of cerium-silica sol-gel thin films,J.Alloy.Comp.,2004,380:219-224.
    [60]Khramov A N,Balbyshev V N,Voevodin N N.et al.Nanostructured sol-gel derived conversion coatings based on epoxy- and amino-silanes,Prog.Org.Coat.,2003,47:207-213.
    [61]Wu K H,Yang F C.Synthesis and characterization of organically modified silicate/NiZn ferrite hybrid coatings,Acta Mater.,2006,7:189-195.
    [62]Kasten L S,Granth J T,Grebaschc N.et al.An XPS study of cerium dopants in sol_gel coatings for aluminum 2024-T3,Surf.Coat.Tech.,2001,140:11-15.
    [63]Wang Q,Liu N,Wang X.et al.Conductive Hybrids from Water-Borne Conduct/re Polyaniline and(3-Glycidoxypropyl)trimethoxysilane,Macromolecules,2003,36:5760-5764.
    [64]Balbyshev V N,Anderson K L,Sinsawat A.et al.Modeling of nano-sized macromolecules in silane-based self-assembled nano-phase particle coatings,Prog.Org.Coat.,2003,47:337-341.
    [65]Uricanu V,Donescu D,Banu A G.et al.Organic-inorganic hybrids made from polymerizable precursors,Mater.Chem.Phy.,2004,85:120-130.
    [66]Chong A S M,Zhao X S.Design of large-pore mesoporous materials for immobilization of penicillin Gacylase biocatalyst,Catalysis Today,2004,93:293-299.
    [67]Qian G,Yang Y,Wang Z.et al.Photostability of perylene orange,perylene red and pyrromethene 567 laser dyes in various precursors derived gel glasses,Chem.Phy.Lett.,2003,368:555-560.
    [68]Mascia L,Prezzi L,Wilcox G D.et al.Molybdate doping of networks in epoxy-silica hybrids:Domain structuring and corrosion inhibition,Prog.Org.Coat.,2006,56:13-22.
    [69]Suratwala T I,Hanna M L,Miller E L.et al.Surface chemistry and trimethylsilyl functionalization of Stober silica sols,J.Non-Cryst.Solid.,2003,316:349-363.
    [70]Mayo E I.,Lochner E J,Stiegman A E.Use of Photoreactive Sol-Gel Interfaces To Form Robust Low-Surface-Energy Fluoropolymer-Silica Nanocomposite Coatings,J.Phys.Chem.B,1999,44:9383-9386.
    [71]Han J T,Lee D H,Ryu C Y.et al.Fabrication of Superhydrophobic Surface from a Supramolecular Organosilane with Quadruple Hydrogen Bonding,J.Am.Chem.Soc.,2004,126:4796-4797.
    [72]Salou M,Yamazaki S,Nishimiya N.et al.Wettability characteristics of treated aluminum surfaces,Colloids and Surfaces A,1998,139:299-310.
    [73]Dvomic P R,Li J,de Leuze-Jallouli A M.et al.Nanostructured Dendrimer-Based Networks with Hydrophilic Polyamidoamine and Hydrophobic Organosilicon Domains,Macromolecules,2002,35:9323-9333.
    [74]Giessler S,Just E,St(?)rger R.Easy-to-clean properties-Just a temporary appearance? Thin Solid Films,2006,502:252-256.
    [75]Franzka S,Dahlhaus D,Hartmann N.Preparation of stacked organosiloxane bilayers on hydrophilic and hydrophobic silicon substrates by spin coating,Thin Solid Films,2005,488:124-131.
    [76]Chung Y S,Song S A,Park S B.Hydrophobic modification of silica nanoparticle by using aerosol spray reactor,Colloids and Surfaces A,2004,236:73-79.
    [77]Lee J N,Jiang X,Ryan D.et al.Compatibility of Mammalian Cells on Surfaces of Poly(dimethylsiloxane),Langmuir,2004,20:11684-11691.
    [78]Yeh J M,Weng C J,Liao W J.et al.Anticorrosively enhanced PMMA-SiO_2 hybrid coatings prepared from the sol-gel approach with MSMA as the coupling agent,Surf.Coat.Tech.,2006,201:1788-1795.
    [79]Yano S,Iwata K,Kurita K.Physical properties and structure of organic-inorganic hybrid materials produced by sol-gel process,Mater.Sci.Eng.C,1998,6:75-90.
    [80]Shirtcliffe N J,McHale G,Newton M I.Intrinsically Superhydrophobic Organosilica Sol-Gel Foams,Langmuir,2003,19:5626-5631.
    [81]Rao A V,Kulkami M M,Amalnerker D P.et al.Superhydrophobic silica aerogels based on methyltrimethoxysilane precursor,J.Non-Cryst.Solids,2003,330:187-195.
    [82]Helalizadeh A,Steinhagen H M,Jamialahrnadi M.Mixed salt crystallisation fouling.Chem.Eng.Process.,2000,39:29-43.
    [83]Augustin W,Bohnet M.Influence of the ratio of free hydrogen ions on crystallization fouling.Chem.Eng.Process.,1995,34:79-85.
    [84]Brahim F,Augustin W,Bohnet M.Numerical simulation of the fouling process,Inter.J.Therm.Sci.,2003,42:323-334.
    [85]Yebra D M,Kiil S,Johansen K D.Antifouling technology--past,present and future steps towards efficient and environmentally friendly antifouling coatings,Prog.Org.Coat.,2004,50:75-104.
    [86]Zhao Q,Liu Y,M(u|¨)ller-Steinhagen H.et al.Graded Ni-P-PTFE coatings and their potential applications,Surf.Coat.Tech.,2002,155:279-284.
    [87]Zhao Q,Wang S,M(u|¨)ller-Steinhagen H.Tailored surface free energy of membrane diffusers to minimize microbial adhesion,Appl.Surf.Sci.,2004,230:371-378.
    [88]Zhao Q,Wang X.Heat transfer surfaces coated with fluorinated diamond-like carbon films to minimize scale formation,Surf.Coat.Tech.,2005,192:77-80.
    [89]Zhao Q,Liu Y,Abel E W.Effect of temperature on the surface flee energy of amorphous carbon films,J.Colloid Interface Sci.,2004,280:174-183.
    [90]M(u|¨)ller-Steinhagen H,Zhao Q,Zadeh A H.et ai.The Effect of Surface Properties on CaSO_4Scale Formation during Convective Heat Transfer and Subcooled Flow Boiling,Canadian J.Chem.Eng.,2000,78:12-20.
    [91]M(u|¨)ller-Steinhagen H,Zhao Q.Investigationg of low fouling surface alloys made by ion implantation technology,Chem.Eng.Sci.,1997,52:3321-3332.
    [92]M(u|¨)ller-Steinhagen H,Zhao Q.Reduction of scale formation under pool boiling conditions by ion implantation and magnetron sputtering on heat transfer surfaces,Heat Transfer Eng.,1999,20:6-14.
    [93]Rosmaninho R,Rocha F.Rizzo G.et al.Calcium phosphate fouling on TiN-coated stainless steel surfaces:Role of ions and particles,Chemical Engineering Science,2007,14:3821-3831.
    [94]Rosmaninho R,Rizzo G,Steinhagen M H.et al.Deposition from a milk mineral solution on novel heat transfer surfaces under turbulent flow conditions,J.Food Eng.,2008,1:29-41.
    [95]Yang Q,Liu Y,Gu A.Investigation of induction period and morphology of CaCO_3 fouling on heated surface,Chem.Eng.Sci.,2002,57:921-93 I.
    [96]Yang Q,Ding J,Shen Z.Investigation on fouling behaviors of low-energy surface and fouling fractal characteristics,Chem.Eng.Sci.,2000,55:797-805.
    [97]F(o|¨)rster M,Bob.net M.Modification of molecular interactions at the interface crystal/heat transfer surface to minimize heat exchanger fouling,Int.J.Therm.Sci.,2000,39:697-708.
    [98]F(o|¨)rster M,Bohnet M.Influence of the inteffacial free energy crystal/heat transfer surface on the induction period during fouling,Int.J.Therm.Sci.,1999,38:944-954.
    [99]F(o|¨)rster M,Augustin W,Bohnet M.Influence of the adhesion force crystal/heat exchanger surface on fouling mitigation,Chem.Eng.Process.,1999,38:449-461.
    [100]Santos O,Nylander T,Rosmaninho R.et al.Modified stainless steel surfaces targeted to reduce fouling-surface characterization,J.Food Eng.,2004,64:63-79.
    [101]Rosmaninho R,Santos O,Nylander T.et al.Modified stainless steel surfaces targeted to reduce fouling-Evaluation of fouling by milk components,J.Food Eng.,2006,8:486-495.
    [102]Tsibouklis J,Graham P,Eaton P J.et al.Poly(perfluoroalkyl methacrylate)Film Structures:Surface Organization Phenomena,Macromolecules,2000,33:8460-8465.
    [103]Abe M,Morikawa K,Ogino K.Reduction of Surface Tension of Pure m-Xylene by Novel Fluorinated Surfactants,Langmuir,1992,8:763-764.
    [104]Kobayashi H,Owen M J.Surface tension of poly[(3,3,4,4,5,5,6,6,6-nonafluorohexyi)-methylsiloxane],Macromolecules,1990,23:4929-4933.
    [105]Lira H,Lee Y,Park I J.et al.Synthesis and Surface Property of Aqueous Fluorine Containing Polyurethane,J.Colloid Interface Sci.,2001,241:269-274.
    [106]Van de Grampei R D,Ming W,Gildenpfennig A.et al.Surface studies of partially fluorinated polymethacrylates:a combined XPS and LEIS analysis,Prog.Org.Coat.,2002,45:273-279.
    [107]Stone M,Nevell T G,Tsibouidis J.Surface energy characteristics of poly(perfluoroacrylate) film structures,Mater.Lett.,1998,37:102-105.
    [108]Krupers M,Slangen P J,M(o|¨)ller M.Synthesis and Properties of Polymers Based on Oligo(hexafluoropropene oxide) Containing Methacrylates and Copolymers with Methyl Methacrylate,Macromolecules,1998,31:2552-2558.
    [109]Imae T.Fluorinated polymers,Current Opinion Colloid Interf.Sci.,2003,8:307-314.
    [110]Park I J,Lee S B,Choi C K.Surface Properties of the Fluorine-Containing Graft Copolymer of Poly((perfluoroalkyl)ethylmethacrylate)-g-poly(methylmethacrylate),Macromolecules,1998,31:7555-7558.
    [111]Kassis C M,Steehler J K,Betts D E.XPS studies of fluorinated acrylate polymers and block copolymers with polystyrene,Macromolecules,1996,29:3247-3254.
    [112]Park I J,Lee S B,Choi C K.Surface properties for poly(perfluoroalkylethyl methacrylate)/poly (n-alkyl methacrylate)s mixtures,Appl.Polym.Sci.,1994,54:1449-1454.
    [113]Park I J,Lee S B,Choi C K.Synthesis of fluorine-containing graft copolymers of poly(perfluoroalkylethyl met hacrylate)-g-poly(methyl methacrylate)by the macromonomer technique and emulsion copolymerization method,Polymer,1997,38:2523-2527.
    [114]Thomas R R,Anton D R,Graham W F.Preparation and Surface Properties of Acrylic Polymers Containing Fluorinated Monomers,Macromolecules,1997,30:2883-2890.
    [115]Coulson S R,Woodward I,Badyal J P S.Super-repellent composite fluoropolymer surfaces.J.Phys.Chem.B,2000,104:8836-8840.
    [116]Katano Y,Tomono H,Nakajima T.Surface Property of Polymer Films with Fluoroalkyl Side Chains,Macromolecules,1994,27:2342-2344.
    [117]Chen W,Fadeev A Y,Hsieh M C.Ultrahydrophobic and ultralyophobic surfaces:some comments and examples,Langmuir,1999,15:3395-3399.
    [118]Veeramasuneni S,Drelich J,Miller J D.Hydrophobicity of ion-plated PTFE coatings,Prog.Org.Coat,1997,31:265-270.
    [119]Nishino T,Meguro M,Nakamae K.The Lowest Surface Free Energy Based on-CF_3 Alignment,Langmuir,1999,15:4321-4323.
    [120]Shibuichi S,Onda T,Satoh N.et al.Super Water-Repellent Surfaces Resulting from Fractal Structure,Phys.Chem.,1996,50:19512-19517.
    [121]Schmidt D L,DeKoven B M,Coburn C E.Characterization of a New Family of Nonwettable,Nonstick Surfaces,Langmuir,1996,12:518-529.
    [122]Tsibouklis J,Stone M,Thorpe A A.et al.Inhibiting bacterial adhesion onto surfaces:the non-stick coating approach,Int.J.Adhes.Adhes.,2000,20:91-96.
    [123]Tsibouklis J,Stone M,Thorpe A A.et al.Preventing bacterial adhesion onto surfaces:the low-surface-energy approach,Biomaterials,1999,20:1229-1235.
    [124]Graham P,Stone M,Thorpe A.et al.Fluoropolymers with very low surface energy characteristics,J.Fluorine Chem.,2000,104:29-36.
    [125]Thorpe A A,Nevell T G,Young S A.et al.Surface energy characteristics of,Poly(methylpropenoxyfluoroalkylsiloxane)film structures,Appl.Surf.Sci.,1998,136:99-104.
    [126]Thorpe A A,Peters V,Smith J R.et al.Poly(methylpropenoxy fluoroalkylsiloxane)s:a class of fluoropolymers capable of inhibiting bacterial adhesion onto surfaces,J.Fluorine Chem.,2000,104:37-45.
    [127]Monde T,Nakayama N,Yano K.et al.Adsorption Characteristics of Silica Gels Treated with Fluorinated Silylation Agents,J.Colloid Interface Sci.,1997,185:111-118.
    [128]Qian B,Shen Z.Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum,Copper,and Zinc Substrates,Langmuir,2005,21:9007-9009.
    [129]Choi D G,Jeong J,Sim Y.et al.Fluorinated Organic-Inorganic Hybrid Mold as a New Stamp for Nanoimprint and Soft Lithography,Langmuir,2005,21:9390-9392.
    [130]Schmidt H,Naumann M,Mtiller T S.et al.Application of spray techniques for new photocatalytic gradient coatings on plastics,Thin Solid Films,2006,502:132-137.
    [131]Tadanaga K,Morinaga J,Matsuda A.et al.Superhydrophobic-Superhydrophilic Micropatterning on Flowerlike Alumina Coating Film by the Sol-Gel Method,Chem.Mater.,2000,12:590-592.
    [132]Miwa M,Nakajima A,Fujishima A.et al.Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces,Langmuir,2000,16:5754-5760.
    [133]Shibuichi S,Yamamoto T,Onda T.et al.Super Water-and Oil-Repellent Surfaces Resulting from Fractal Structure,J.Colloid Interface Sci.,1998,208:287-294.
    [134]Suzuki S,Nakajima A,Sakai M.et al.Sliding acceleration of water droplets on a surface coated with fluoroalkylsilane and octadecyltrimethoxysilane,Surf.Sci.,2006,600:2214-2219.
    [135]Li X,Li J,Eleftheriou M.et al.Hydration and Dewetting near Fluorinated Superhydrophobic Plates,J.Am.Chem.Soc.,2006,128:12439-12447.
    [136]Liu F P,Gardner D J,Wolcottg M P.A model for the description of polymer surface dynamic behavior.1.Contact angle vs polymer surface properties,Langmuir,1995,11:2674-2681.
    [137]Uragami T,Doi T,Miyata T.Control of permselectivity with surface modifications of poly[1-(trimethylsilyl)-1-propyne]membranes,J.Adhes.Adhes.,1999,19:405-409.
    [138]Kim D K,Lee S B,Doh K S.Surface Properties of Fluorosilicone Copolymers and Their Surface Modification Effects on PVC Film,J.Colloid Interface Sci.,1998,05:417-422.
    [139]Kim D K,Lee S B.Comparison of Surface Properties of Random,Block,and Graft Copolymers Having Perfluoroalkyl and Silicone-Containing Side Chains,J.Colloid Interface Sci.,2002,247:490-493.
    [140]Sawada H,Itoh N,Kawase T.Synthesis and Surfactant Properties of Novel Amphiphilic Fluorinated Silicon Oligomers Containing Carboxy Groups,Langmuir,1994,10:994-995.
    [141]Nakagawa J,Kamogawa K,Momozawa N.Molecular Assemblies of Fluorinated Silicon Oligomers with Carboxylic Acid Groups:Effects of Chemical Oligomer Structure on Assembly Shape.Langmuir,1998,14:2061-2067.
    [142]Nakagawa J,Kamogawa K,Sakai H.Surface Chemical and Solution Properties of Fluorinated Silicon Oligomers with Carboxylic Acid Groups,Langmuir,1998,14:2055-2060.
    [143]Sawada H,Ohashi A,Oue M.Synthesis and surfactant properties of fluoroalkylated acrylic acid co-oligomers containing dimethylsilicone segments as potential inhibitors of HIV-1.J.Fluorine Chem.,1995,75:121-129.
    [144]Fabbri P,Messori M,Montecchi M.Perfluoropolyether-based organic-inorganic hybrid coatings,Polymer,2006,47:1055-1062.
    [145]Reddy V S,Lunceford B D,Cassidyt P E.Synthesis and characterization of new silicon containing fluoroacrylate monomers and polymers,Polymer,1997,38:703-706.
    [146]Tsibouklis J,Stone M,Thorpe A A.et al.Surface Energy Characteristics of Polymer Film Structures:a Further Insight into the Molecular Design Requirements,Langmuir,1999,15:7076-7079.
    [147]Furukawa Y,Yoneda T.Synthesis and properties of fluorosilicone with perfluorooctylundecyl side chains,Polym.Chem.,2003,41:2704-2714.
    [148]Fujiwara H,Narita T,Hamana H.Novel fluorinated hybrid polymer preparation from silsesquioxanes by radical polyaddition,J Fluorine Chem.,2004,125:1279-1285.
    [149]Robert F,Brady J.Properties which Influence Marine Fouling Resistance in Polymers Coating Silicon and Fluorine.Prog.Org.Coat.,1999,35:31-35.
    [150]Robert F,Brady J.A fracture mechanical analysis of fouling release from nontoxic antifouling coatings,Prog.Org.Coat.,2001,43:188-192.
    [151]Jeong H J,Kim D K,Lee S B.Preparation of Water-Repellent Glass by Sol-Gel Process Using Perfluoroalkylsilane and Tetraethoxysilane.J.Colloid Interface Sci.,2001,235:130-134.
    [152]Zhu L Q,Jin Y.A novel method to fabricate water-soluble hydrophobic agent and super-hydrophobic film on pretreated metals,Appl,Surf,Sci.,2006,7:3432-3439.
    [153]Yang J F,Ohji T,Sekino T.et al.Phase transformation,microstructure and mechanical properties of Si_3N_4/SiC composite,J.Eur.Ceram.Soc,2001,21:2179-2183.
    [154]Oh S T,Sando M,Sekino T.et al.Processing and properties of copper dispersed alumina maxtrix nanocomposites,NanoStnrcturct Mater.,1998,2:267-212.
    [155]Oh S T,Sekino T,Niihara K.Fabrication and 5 Vol% Copper Nanocomposite Mechanical Properties of Dispersed Alumina Nanocomposites,J.Eur.Ceram.Soc,1998,18:31-37.
    [156]Yang J,Hirano T,Sekino T.et al.The effects of oxide additions on the microstructure and r-curve behavior of in-situ reinforced silicon nitride,Scripta Mater.,1997,37:1135-1141.
    [157]Oh S T,Lee J S,Sekino T.et al.Fabrication of Cu dispersed Al_2O_3 nanocomposites using Al_2O_3/CuO and Al_2O_3/Cu-nitrate mixtures,Scripta Mater.,2001,44:2117-2120.
    [158]Oku T,Nakayama T,Kuno M.et al.Formation and photoluminescence of Ge and Si nanoparticles encapsulated in oxide layers,Mater.Sci.Eng.B,2000,74:242-247.
    [159]Yanga W J,Sekino T,Shim K B.et al.Deposition and microstructure of Ti-containing diamond-like carbon nanocomposite films,Thin Solid Films,2005,473:252-258.
    [160]Suzuki Y,Morgan P E D,Niihara K.The improvement in mechanical properties of MoSi_2 through in situ crystallization of grain boundary silica glass by the additions of refractory oxides,Mater.Sci.Eng.A,1999,261:188-195.
    [161]Gao L,Li J,Kusunose T,Niihara K.Preparation and properties of TiN-Si_3N_4 composites,J.Eur.Ceram.Soc,2004,24:381-386.
    [162]Yoshimura M,Ohji T,Sando M.et al.Oxidation-induced strengthening and toughening behavior in micro-and nano-composites of YO/SiC system,Mater.Lett.,1998,35:139-143.
    [163]Bamba N,Choa Y H,Sekino T.et al.Effects of nano-sized silicon carbide particulate on microstructure and ionic conductivity for 8 mol % yttria stabilized zirconia based nanocomposites,Solid State Ionics,1998,111:171-179.
    [164]Bamba N,Choa Y H,Sekino T.et al.Mechanical properties and microstructure for 3 mol% yttria doped zirconia/silicon carbide nanocomposites,J.Eur.Ceram.Soc,2003,23:773-780.
    [165]Sternitzke M.Review Structural Ceramic Nanocomposites,J.Eur.Ceram.Soc,1997,17:1061-1082.
    [166]Faber K T,Evans A G.Crack deflection process,Acta.Met.,1983,31:565-584.
    [167]Warrier K G K,Anilkumar G M.Densification of mullite-SiC nanocomposite sol-gel precursors by pressureless sintering,Mater.Chem.Phys.,2001,67:263-266.
    [168]张国军,金宗哲.颗粒增韧陶瓷的增韧机理,硅酸盐学报,1994,22:259-268.
    [169]Krstic V V,Nicholson P S,Hoagland R G.Toughenging of glass by metallic particles,J.Am.Ceram.Soc,1981,64:499-504.
    [170]Marshall D B,Morris W L,Cox B N.et al.Toughening mechanisms in comented carbides,J Am.Ceram.Soe.,1990,73:2938-2943.
    [171]Tuan W H,Brook R J.The toughening of alumina with nickel inclusion.J.Eur.Ceram.Soe.,1990,6:31-37.
    [172]Zhao Q.Effect of surface free energy of graded NI-P-PTFE coatings on bacterial adhesion,Surf.Coat.Tech.,2004,185:199-204.
    [173]Medeliene V.The influence of B_4C and SiC additions on the morphological,physical,chemical and corrosion properties of Ni coatings,Surf.Coat.Tech.,2002,154:104-109.
    [174]Xu H,Z Y,Li M.Synthesis and properties of electroless Ni-P-Nanometer Diamond composite coatings.Surf.Coat.Tech.,2005,191:161-165.
    [175]Li J,Sun Y,Sun X.et al.Mechanical and corrosion-resistance performance of electrodeposited titania-nickel nanocomposite coatings,Surf.Coat.Tech.,2005,192:331-335.
    [176]Huang Y S,Zeng X T,Hu X F.et al.Corrosion resistance properties of electroless nickel composite coatings,Electroehim.Aeta,2004,49:4313-4319.
    [177]Huang Y S,Zeng X T,Annergren I.et al.Development of electroless NiP-PTFE-SiC composite coating,Surf.Coat.Tech.,2003,167:207-211.
    [178]Chen G.Phonon heat conduction in nanostruetures,Int.J.Therm.Sci.,2000,39:471-480.
    [179]Seiferta S,Litovskyb E,Jacob T.Thermal resistance and apparent thermal conductivity of thin plasma-sprayed mullite coatings,Surf.Coat.Tech.,2006,200:3404-3410.
    [180]Griffin A J Jr,Brotzen F R.Effect of thickness on the transverse thermal conductivity of thin dielectric films.J.Appl.Phys.,1994,8:3761-6737.
    [18l]过增元.国际传热研究前沿—微细尺度传热,力学进展,2000,1:1-6.
    [182]Tsuruta T,Hiroaki T,Shigenori T.Experimental verification of constriction resistance theory in dropwise condensation heat transfer,Int.J.Heat Mass Transfer,1991,34:2787-2796.
    [183]Hirano T,Izaki K,Nijhara K.Microstrueture and thermal conductivity of SiC/Si_3N_4nanoeomposites fabricated from amorphous Si-C-N precursor powders.J.Nanostructured Mater.,1995,15:809-818.
    [184]Mamunya Y P,Muzychenko Y V,Lebedev E V.et al.PTC effect and structure of polymer composites based on polyethylene/polyoxymethylene blend filled with dispersed iron,Polym.Eng.Sci.,2007,1:34-42.
    [185]Tavman I H.Thermal and mechanical properties of aluminum powder-filled high-density polyethylene composites,J.Appl.Polym.Sci.,1996,12:2161-2167.
    [186]Tavman I H,Akinci H.Transverse thermal conductivity of fiber reinforced polymer composites,Int.Comm.Heat Mass Transfer,2000,2:253-261.
    [187]Hirvonen A,Nowaka R,Yamamoto Y.et ai.Fabrication,structure,mechanical and thermal properties of zirconia-based ceramic nanoeomposites,J.Eur.Ceram.Soc.,2006,26:1497-1505.
    [188]Ruys A J,Mai Y W.The nanoparticle-coating process a potential solgel route to homogeneous nanocomposites,Mater.Sci.Eng.A,1999,265:202-207.
    [189]Kotecha M,Veeman W,Rohe B.et al.NMR investigations of silane-coated nano-sized ZnO particles,Micropor.Mesopor.Mater.,2006,95:66-75.
    [190]Chakrabarti S,Das D,Ganguli D.et al.Tailoring of room temperature excitonic luminescence in sol-gel zinc oxide-silica nanocomposite films,Thin Solid Films,2003,441:228-237.
    [191]Park O K,Kang Y S.Preparation and characterization of silica-coated TiO_2 nanoparticle,Colloid.Surface A,2005,257:261-265.
    [192]Hsiung T L,Wang H P,Wang H C.XANES studies of photocatalytic active species in nano TiO_2-SiO_2,Radiat.Phys.Chem.2006,75:2042-2045.
    [193]Xu H,Cui L,Tong N.et al.Development of High Magnetization Fe_3O_4-Polystyrene-Silica Nanospheres via Combined Miniemulsion-Emulsion Polymerization,J.Am.Chem.Soc,2006,128:15582-15583.
    [194]Ermakova M A,Ermakov D Y,Cherepanova S V.et al.Synthesis of Ultradispersed Nickel Particles by Reduction of High-Loaded NiO-SiO_2 Systems Prepared by Heterophase Sol-Gel Method,J.Phys.Chem.B,2002,106:11922-11928.
    [195]Corrias A,Mountjoy G,Piccaluga G.et al.An X-ray Absorption Spectroscopy Study of the Ni K Edge in NiO-SiO_2 Nanocomposite Materials Prepared by the Sol-Gel Method,J.Phys.Chem.B,1999,103:10081-10086.
    [196]D(?)az G,Hernandez R P,Cort(?)s A G.et al.CuO-SiO_2 Sol-Gel Catalysts:Characterization and Catalytic Properties for NO Reduction,J.Catal.,1999,187:1-14.
    [197]Armelao L,Barreca D,Bottaro G.Copper-Silica Nanocomposites Tailored by the Sol-Gel Route,Chem.Mater.,2005,17:1450-1456.
    [198]Cordoba G,Arroyo R,Fierro J L G.et al.Study of Xerogel-Glass Transition of CuO/SiO_2,J.Solid State Chem.,1996,123:93-99.
    [199]Wang Z L,Liu Q S,Yu J F.et al.Surface structure and catalytic behavior of silica-supported copper catalysts prepared by impregnation and sol-gel methods,Appl.Catal.A,2003,239:87-94.
    [200]Bennici S,Gervasini A,Ravasio N.et al.Optimization of Tailoring of CuOx Species of Silica Alumina Supported Catalysts for the Selective Catalytic Reduction of NOx,J.Phys.Chem.B,2003,107:5168-5176.
    [201]Braga V S,Garcia F A C,Dias J A.et al.Copper oxide and niobium pentoxide supported on silica-alumina:Synthesis,characterization,and application on diesel soot oxidation,J.Catal.,2007,247:68-77.
    [202]Ozer N,Cronin J P,Yao Y J.et al.Optical properties of sol-gel deposited Al_2O_3 flms,Sol.Energ.Mat.Sol.C,1999,59:355-366.
    [203]El-Shobaky G A,Radwan N R E,El-Shall M S.et al.The role of method of preparation of CuO-NiO system on its physicochemical surface and catalytic properties,Colloid Surface A,2007,311:161-169.
    [204]Gu Z,Hohn K L.Catalytic Oxidation of Methanol on Nanoscale Copper Oxide and Nickel Oxide,Ind.Eng.Chem.Res.,2004,43:30-35.
    [205]Vasconcelos D C L,Carvalho JAN,Mantel M.et al.Corrosion resistance of stainless steel coated with sol-gel silica,J.Non-Cryst.Solids,2000,273:135-139.
    [206]Martinez J R,Zarzosa G O,Espin(?)s O D.et al.low temperature devitrification of Ag/SiO_2 and Ag(CuO)/SiO_2 composites,J.Non-Cryst.Solids,2001,282:317-320.
    [207]Toupance T,Kermarec M,Louis C.Metal Particle Size in Silica-Supported Copper Catalysts.Influence of the Conditions of Preparation and of Thermal Pretreatments,J.Phys.Chem.B,2000,104:965-972.
    [208]Hwang K T,Kim C S,Auh K H.et al.Influence of SiC particle size and drying method on mechanical properties and microstructure of Si3N4/SiC nanocomposite,Mater,lett.,1997,32:251-257.
    [209]Espinos J P,Morales J,Barranco A.et al.XPS Determination of the Valence State of Copper in Cu-SiO_2 and Cu-ZrO_2 Catalysts,J.Phys.Chem.B,2002,106:6921-6929.
    [210]Indovina V,Occhiuzzi M,Pietrogiacomi D.et al.The Surface Composition of CuOx/ZrO_2 Catalysts as Determined by FTIR,XPS,ESR Spectroscopies and Volumetric CO Adsorption,J.Phys.Chem.B,1999,103:9967-9977.
    [211]Liu Z,Amiridis M D,Chen Y.Characterization of CuO Supported on Tetragonal ZrO_2 Catalysts for N_2O Decomposition to N_2,J.Phys.Chem.B,2005,109:1251-1255.
    [212]Skarman B,Nakayama T,Grandjean D.et al.Morphology and Structure of CuOx/CeO_2 Nanocomposite Catalysts Produced by Inert Gas Condensation:An HREM,EFTEM,XPS,and High-Energy Diffraction Study,Chem.Mater.,2002,14:3686-3699.
    [213]Bennici S,Auroux A,Guimon C.et al.Supported Binary Oxide Catalysts Containing CuO Coupled with Ga_2O_3 and SnO_2,Chem.Mater.,2006,18:3641-3650.
    [214]Gervasini A,Manzoli M,Martra G.et al.Dependence of Copper Species on the Nature of the Support for Dispersed CuO Catalysts,J.Phys.Chem.B,2006,110:7851-7861.
    [215]Gervasini A,Camiti P,Bennici S.et al.Influence of the Chemical Nature of the Support(Niobic Acid and Niobium Phosphate) on the Surface and Catalytic Properties of Supported CuO,Chem.Mater.,2007,19:1319-1328.
    [216]Luo M F,Song Y P,Lu J Q.et al.Identification of CuO Species in High Surface Area CuO-CeO_2 Catalysts and Their Catalytic Activities for CO Oxidation,J.Phys.Chem.C,2007,111:12686-12692.
    [217]Jin A Z,Wang Y G,Zhang Z.Synthesis and characterization of Cu/SiO_2 composite nanowires,J.Cryst.Growth,2003,252:167-173.
    [218]Morales J,Espinos J P,Caballero A.et al.XPS Study of Interface and Ligand Effects in Supported Cu_2O and CuO Nanometric Particles,J.Phys.Chem.B,2005,109:7758-7765.
    [219]Mei Y F,Siu G G,Yang Y.et al.Cu oxide nanowire array grown on Si-based SiO_2 nanoscale islands via nanochannels,Acta Mater.,2004,52:5051-5055.
    [220]Chusuei C C,Brookshier M A,Goodman D W.Correlation of Relative X-ray Photoelectron Spectroscopy Shake-up Intensity with CuO Particle Size,Langmuir,1999,15:2806-2808.
    [221]Brookshier M A,Chusuei C C,Goodman D W.Control of CuO Particle Size on SiO_2 by Spin Coating,Langmuir,1999,15:2043-2046.
    [222]Liu J,Gong G,Yan C.Enhancement of the erosion-corrosion resistance of Dacromet with hybrid SiO_2 sol-gel,Surf.Coat.Tech.2006,200:4967-4975.
    [223]Park J,Joo J,Kwon S G.et al.Synthesis of Monodisperse Spherical Nanocrystals Angew.Chem.Int.Ed.2007,46:4630-4660.
    [224]陈云霞,刘维民,张平余.纳米Au-TiO_2复合薄膜的溶胶-凝胶法制备、表征和性能,高等学校化学学报,2002,23:1574-1578.
    [225]Burda C,Chen X,Narayanan R.et al.Chemistry and Properties of Nanocrystals of Different Shapes,Chem.Rev.2005,105:1025-1102.
    [226]Narayanaswarny A,Xu H,Pradhan N.et al.Formation of Nearly Monodisperse In_2O_3 Nanodots and Oriented-Attached Nanoflowers:Hydrolysis and Alcoholysis vs Pyrolysis,J.Am.Chem.See.,2006,128:10310-10319.
    [227]Pradhan N,Xu H,Peng X.Colloidal CdSo Quantum Wires by Oriented Attachment,Nano Lett.,2006,6:720-724.
    [228]Tang Z,Kotov N A,Giersig M.Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires,Science,2002,297:237-240.
    [229]Penn R L,Banfield J F.Imperfect Oriented Attachment:Dislocation Generation in Defect-Free Nanoerystals,Science,1998,281:969-971.
    [230]Caswell K K,Wilson J N,Bunz U H F.et al.Preferential End-to-End Assembly of Gold Nanorods by Biotin-Streptavidin Connectors,J.Am.Chem.Soc.,2003,125:13914-13915.
    [231]Thomas K G,Barazzouk S,Ipe B I.et al.Uniaxial Plasmon Coupling through Longitudinal Self-Assembly of Gold Nanorods,J.Phys.Chem.B,2004,108:13066-13068.
    [232]Peng X.Mechanisms for the Shape-Control and Shape-Evolution of Colloidal Semiconductor Nanoerystals,Adv.Mater.,2003,15:459-463.
    [233]Peng Z A,Peng X.Formation of High-Quality CdTe,CdSe,and CdS Nanocrystals Using CdO as Precursor,J.Am.Chem.See.,2001,123:183-184.
    [234]Chen Y,Kim M,Lian G.et al.Side Reactions in Controlling the Quality,Yield,and Stability of High Quality Colloidal Nanocrystals,J.Am.Chem.See.,2005,127:13331-13337.
    [235]Peng Z A,Peng X.Mechanisms of the Shape Evolution of CdSe Nanocrystals,J.Am.Chem.Soc.,2001,123:1389-1395.
    [236]Peng Z A,Peng X.Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Routes:Nucleation and Growth,J.Am.Chem.See.,2002,124:3343-3353.
    [237]Yu W W,Wang Y A,Peng X.Formation and Stability of Size-,Shape-,and Structure-Controlled CdTe Nanoerystals:Ligand Effects on Monomers and Nanocrystals,Chem.Mater.2003,15:4300-4308.
    [238]Koo H J,Whangbo M H.Magnetic Superstructures of Cupric Oxide Cue as Ordered Arrangements of One-Dimensional Antiferromagnetic Chains,Inorg.Chem.2003,42:1187-1192.
    [239]Wu C K,Yin M,O'Brien S.et al.Quantitative Analysis of Copper Oxide Nanoparticle Composition and Structure by X-ray Photoelectron Spectroscopy,Chem.Mater.2006,18:6054-6058.
    [240]Liu B,Zeng H C.Mesoscale Organization of Cue Nanoribbons Formation of "Dandelions",J.Am.Chem.Soc.,2004,126:8124-8125.
    [241]Zhang J,Liu J,Peng Q.et al.Nearly Monodisperse Cu_2O and Cue Nanospheres:Preparation and Applications for Sensitive Gas Sensors,Chem.Mater.,2006,18:867-871.
    [242]Yu H,Yu J,Liu S.et al.Template-free Hydrothermal Synthesis of CuO/Cu_2O Composite Hollow Microspheres,Chem.Mater.,2007,19:4327-4334.
    [243]Chang Y,Teo J J,Zeng H C.Formation of Colloidal CuO Nanocrystallites and Their Spherical Aggregation and Reductive Transformation to Hollow Cu_2O Nanospheres,Langmuir,2005,21:1074-1079.
    [244]Yin M,Wu C K,Lou Y.et al.Copper Oxide Nanocrystals,J.Am.Chem.Soc.,2005,127:9506-9511.
    [245]Liu Y L,Liao L,Li J C.et al.From Copper Nanocrystalline to CuO Nanoneedle Array Synthesis,Growth Mechanism,and Properties,J.Phys.Chem.C,2007,111:5050-5056.
    [246]Jiang X,Herricks T,Xia Y N.CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air,Nano Lett.,2002,2:1333-1338.
    [247]Lu C,Qi L,Yang J.et al.Simple Template-Free Solution Route for the Controlled Synthesis of Cu(OH)_2 and CuO Nanostructures,J.Phys.Chem.B,2004,108:17825-17831.
    [248]Liu X,Genga B,Dua Q.et al.Temperature-controlled self-assembled synthesis of CuO,Cu_2O and Cu nanoparticles through a single-precursor route,Mater.Sci.Eng.A,2007,448:7-14.
    [249]Hu W,Matsumura M,Furukawa K.et al.Oxygen Plasma Generated Copper/Copper Oxides Nanoparticles J.Phys.Chem.B,2004,108:13116-13118.
    [250]Yang Z,Xu J,Zhang W,Liu A.et al.Controlled synthesis of CuO nanostructures by a simple solution route,J.Solid State Chem.2007,180:1390-1396.
    [251]Zarate R A,Hevia F,Fuentes S.et al.Novel route to synthesize CuO nanoplatelets,J.Solid State Chem.2007,180:1464-1469.
    [252]Zou G,Li H,Zhang D.et al.Well-Aligned Arrays of CuO Nanoplatelets,J.Phys.Chem.B,2006,110:1632-1637.
    [253]Xu H,Wang W,Zhu W.et al.Hierarchical-Oriented Attachment:From One-Dimensional Cu(OH)_2 Nanowires to Two-Dimensional CuO Nanoleaves,Cryst.Growth Des.,2007,12:2720-2724.
    [254]Liu J,Huang X,Li Y.et al.Self-Assembled CuO Monocrystalline Nanoarchitectures with Controlled Dimensionality and Morphology,Cryst.Growth Des.,2006,7:1690-1696.
    [255]Pike J,Chan S W,Zhang F.et al.Formation of stable Cu_2O from reduction of CuO nanoparticles,Appl.Catal.A,2006,303:273-277.
    [256]Chang Y,Zeng H C.Controlled Synthesis and Self-Assembly of Single-Crystalline CuO Nanorods and Nanoribbons,Cryst.Growth Des.,2004,4:397-402.
    [257]Gao X P,Bao J L,Pan G L.et al.Preparation and Electrochemical Performance of Polycrystalline and Single Crystalline CuO Nanorods as Anode Materials for Li Ion Battery,J.Phys.Chem.B,2004,108:5547-5551.
    [258]Liu Q,Liang Y Y,Liu H J.et al.Solution phase synthesis of CuO nanorods,Mater.Chem.Phys.,2006,98:519-522.
    [259]Yao W T,Yu S H,Zhou Y.et al.Formation of Uniform CuO Nanorods by Spontaneous Aggregation:Selective Synthesis of CuO,Cu_2O,and Cu Nanoparticles by a Solid-Liquid Phase Arc Discharge Process,J.Phys.Chem.B,2005,109:14011-14016.
    [260]Hou H,Xie Y,Li Q.Large-Scale Synthesis of Single-Crystalline Quasi-Aligned Submicrometer CuO Ribbons,Cryst.Growth Des.,2005,5:201-207.
    [261]Wen X,Zhang W,Yang S.Synthesis of Cu(OH)2 and CuO Nanoribbon Arrays on a Copper Surface,Langmuir,2003,19:5898-5903.
    [262]Malandrino G,Finocchiaro S T,Nigro R L.et al.Free-Standing Copper(Ⅱ) Oxide Nanotube Arrays through an MOCVD Template Process,Chem.Mater.,2004,16:5559-5561.
    [263]Wu H Q,Wei X W,Shao M W.et al.Synthesis of copper oxide nanoparticles using carbon nanotubes as templates,Chem.Phy.Lett.,2002,364:152-156.
    [264]Wang X,Xi G,Xiong S.et al.Solution-Phase Synthesis of Single-Crystal CuO Nanoribbons and Nanorings,Cryst.Growth Des.,2007,7:930-934.
    [265]Zhu J,Bi H,Wang Y.et al.Solution-phase synthesis of Cu_2O cubes using CuO as a precursor,Mater Lett.,2008,62:2081-2083.
    [266]Teo J J,Chang Y,Zeng H C.Fabrications of Hollow Nanocubes of Cu_2O and Cu via Reductive Self-Assembly of CuO Nanocrystals,Langmuir,2006,22:7369-7377.
    [267]Zhang H,Ren X,Cui ZL.Shape-controlled synthesis of Cu_2O nanocrystals assisted by PVP and application as catalyst for synthesis of carbon nanofibers,J.Cryst.Growth,2007,304:206-210.
    [268]Wang Z H,Chen X Y,Liu J W.et al.Room temperature synthesis of Cu_2O nanocubes and nanoboxes,Solid State Commun,2004,130:585-589.
    [269]Chang Y,Zeng H C.Manipulative Synthesis of Multipod Frameworks for Self-Organization and Self-Amplification of Cu_2O Microcrystals,Cryst.Growth Des.,2004,4:273-278.
    [270]Gou L,Murphy C J.Solution-Phase Synthesis of Cu_2O Nanocubes,Nano Lett.,2003,3:231-234.
    [271]Gou L,Murphy C J.Controlling the size of Cu_2O nanocubes from 200 to 25 nm,J.Mater Chem.,2004,14:735-738.
    [272]Li X,Gao H,Murphy C J.et al.Nanoindentation of Cu_2O Nanocubes,Nano Lett.,2004,10:1903-1907.
    [273]Luo C,Xue D F.Mild,Quasireverse Emulsion Route to Submicrometer Lithium Niobate Hollow Spheres,Langmuir,2006,22:9914-9918.
    [274]Fujimori A,Sugita Y,Nakahara H.et al.Change of molecular packing and orientation from monolayer to multilayers of hydrogenated and fluorinated carboxylates studied by in-plane X-ray diffraction together with NEXAFS spectroscopy at C K-edge,Chem.Phys.Lett.,2004,387:345-351.
    [275]Fujimori A,Araki T,Nakahara H.Langmuir Monolayers and the Transferred Films of Fluorinated Amphiphiles Containing Vinyl Groups,J.Colloid Interface Sci.,2002,247:351-360.
    [276]Fujimori A,Araki T,Nakahara H.et al.Polarized Near Edge X-ray Absorption Fine Structure Spectroscopic Study on Organized Molecular Films of Fluorinated Comb Polymers with Various Chain Lengths,Langmuir,2002,18:1437-1440.
    [277]Genzer J,Sivaniah E,Kramer E J.et al.Molecular Orientation of Single and Two-Armed Monodendron Semifluorinated Chains on“Soft”and“Hard”Surfaces Studied Using NEXAFS,Macromolecules,2000,33:6068-6077.
    [278]Genzer J,Sivaniah E,Kramer E J.et al.Temperature Dependence of Molecular Orientation on the Surfaces of Semifluorinated Polymer Thin Films,Langmuir,2000,16:1993-1997.
    [279]Genzer J,Sivaniah E,Kramer E J.et al.The Orientation of Semifluorinated Alkanes Attached to Polymers at the Surface of Polymer Films,Macromolecules,2000,33:1882-1887.
    [280]Krishnan S,Wang N,Ober C K.et al.Comparison of the Fouling Release Properties of Hydrophobic Fluorinated and Hydrophilic PEGylated Block Copolymer Surfaces:Attachment Strength of the Diatom Navicula and the Green Alga Ulva,Biomacromolecules,2006,7:1449-1462.
    [281]Hayakawa T,Wang J,Xiang M.et al.Effect of Changing Molecular End Groups on Surface Properties:Synthesis and Characterization of Poly(styrene-b-semifluorinated isoprene) Block Copolymers with-CF_2H End Groups,Macromolecules,2000,33:8012-8019.
    [282]Borkar S,Jankova K,Siesler H W.et al.New Highly Fluorinated Styrene-Based Materials with Low Surface Energy Prepared by ATRP,Macromolecules,2004,37:788-794.
    [283]McHugh M A,Domech A G,Park I H.et al.Impact of Fluorination and Side-Chain Length on Poly(methylpropenoxyalkylsiloxane) and Poly(alkyl methacrylate) Solubility in Supercritical Carbon Dioxide,Macromolecules,2002,35:6479-6482.
    [284]Perutz S,Wang J,Kramer E J.et al.Synthesis and Surface Energy Measurement of Semi-Fluorinated,Low-Energy Surfaces,Macromolecules,1998,31:4272-4276.
    [285]Sawada H,Ikeno K,Kawase T.Synthesis of Amphiphilic Fluoroalkoxyl End-Capped Cooligomers Containing Oxime-Blocked Isocyanato Segments:Architecture and Applications of New Self-Assembled Fluorinated Molecular Aggregates,Macromolecules,2002,35:4306-4313.
    [286]Sawada H,Tamada D,Kawase T.et al.Synthesis of Novel Fluoroalkylated Oligomers Containing Phosphinico Segments:A New Approach to Functional Materials Possessing Anti-HIV 1 Activity,Macromolecules,1997,30:6706-6708.
    [287]Ito H,T Imae,Nakamura T,Sugiura M.et al.Self-association of water-soluble fluorinated diblock copolymers in solutions,J.Colloid Interface Sci.,2004,276:290-298.
    [288]Imae T,Tabuchi H,Funayama K.et al.Self-assemblies of block copolymer of 2-perfluorooctylethyl methacrylate and methyl methacrylate,Colloid Surface.A,2000,167:73-81.
    [289]Urushihara Y,Nishino T.Effects of Film-Forming Conditions on Surface Properties and Structures of Diblock Copolymer with Perfluoroalkyl Side Chains,Langmuir,2005,21:2614-2618.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700