UV固化超支化聚氨酯丙烯酸酯—聚氨酯双丙烯酸酯/SiO_2杂化涂料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超支化聚合物由于具有独特的球形多分枝结构,与线性聚合物相比有许多优点:如粘度低、溶解性好、活性高、与其它材料有较好的相容性等,可被用于制备高性能的超支化聚合物基有机/无机杂化涂料。但目前关于UV固化超支化聚合物基杂化涂料的研究还较少。本论文采用软硬段比例不同的超支化聚氨酯丙烯酸酯-聚氨酯双丙烯酸酯(HBPUA-PUDA)作为有机组分,以溶胶-凝胶法制备的含乙烯基的偶联剂改性的硅溶胶为无机组分,通过UV固化制备硬度高、柔韧性好、耐磨性优良的HBPUA-PUDA/SiO_2杂化涂料。研究HBPUA-PUDA/SiO_2杂化涂料的组成、结构、性能、UV固化反应动力学及热稳定性与热降解机理。论文的研究内容和成果包括如下四点。
     第一:以异佛尔酮二异氰酸酯(IPDI)和丙烯酸羟乙酯(HEA)的加成物(IPDI/HEA)为改性剂,对超支化聚酯B-H20的端羟基进行改性,制备了一系列分子量不同的UV固化超支化聚氨酯丙烯酸酯(HBPUA);采用GPC、FT-IR、1H-NMR对HBPUA结构进行了表征;探讨了预聚物分子量对粘度、固化膜机械性能及UV固化速率的影响。发现合成HBPUA的最佳反应条件为:采用0.5 wt.%二月桂酸二丁基锡为催化剂,第一步反应温度为35℃,反应时间为150min;第二步的反应温度为70℃,反应时间为180 min。HBPUA的粘度比线性的聚氨酯丙烯酸酯(PUA)低得多;随着B-H20端羟基改性程度的增加,HBPUA分子量的增加,分子量分布变宽。预聚物HBPUA的UV固化速率较快,固化时碳碳双键的最大转化率达81%。随着分子量的增加,固化膜的摆杆硬度增加,但柔韧性和附着力下降。
     第二:以IPDI/HEA为改性剂,对不同摩尔比的超支化聚酯(B-H20)及聚乙二醇(分子量为200和400)的端羟基改性,可制备出一系列软硬段含量不同的超支化聚氨酯丙烯酸酯-聚氨酯双丙烯酸酯(HBPUA-PUDA)预聚物;采用DSC、FTIR等方法探讨了PEG分子量及用量对反应速率、预聚物粘度、UV固化速率、固化膜性能等的影响。发现随着PEG分子量与用量的增加,反应时间逐渐增加,HBPUA-PUDA粘度也逐渐增加。与HBPUA相比,HBPUA-PUDA的固化速率较慢,固化时碳碳双键的转化率下降;其固化膜的摆杆硬度较HBPUA固化膜低,并且随着PUDA含量与分子量的增加,HBPUA-PUDA固化膜的硬度逐渐下降,但其柔韧性、附着力及冲击强度较HBPUA高,并随着PUDA含量与链长的增加,其柔韧性、附着力及冲击强度升高的幅度增大;以HBPUA-PUDA30的综合性能最佳。HBPUA-PUDA的固化膜出现两个玻璃化转变温度,且随着PUDA含量和链长的增加,软段的Tg,s逐渐降低,硬段的Tg,h逐渐升高。
     第三:将HBPUA-PUDA30与用偶联剂γ-甲基丙烯酰氧丙基三甲氧基硅烷(MPTMS)改性的硅溶胶按不同比例混合,制备了一系列可UV固化的HBPUA-PUDA/SiO_2杂化涂料;研究了杂化涂料的配比对杂化漆膜的结构、界面相容性及性能的影响。发现当MPTMS与正硅酸乙酯(TEOS)的摩尔比为1:3时,杂化涂料的胶凝时间高于183d;与HBPUA-PUDA相比,HBPUA-PUDA/SiO_2杂化涂料的UV固化速率较快,C=C双键的转化率增加了5%左右。HBPUA-PUDA/SiO_2杂化漆膜的有机/无机相间具有良好的相容性,纳米SiO_2粒子均匀地分散于有机相中;当SiO_2用量为30%时,HBPUA-PUDA/SiO_2杂化漆膜的Tg较杂化前提高了18.4℃,储能模量也较杂化前增加了。随着SiO_2用量的增加,HBPUA-PUDA/SiO_2杂化漆膜的摆杆硬度增加,冲击强度先增加再减少,附着力和柔韧性有所下降,其中以HBPUA-PUDA/SiO_2-30的综合性能最佳:透光率为93.1%、摆杆硬度为0.74、附着力为0级、柔韧性为2mm、冲击强度为43Kg.cm、300圈的磨耗量仅为14.8mg。
     第四:采用TGA-FTIR联用的方法研究了杂化漆膜的热稳定性,探讨了杂化漆膜的热降解机理。结果表明,固化漆膜的热失重分为两个阶段:在300℃~370℃间的热失重主要对应为HBPUA-PUDA中聚氨酯丙烯酸酯基团的分解,主要分解产物有CO_2、小分子胺及异氰酸酯的化合物;在390℃~460℃间的失重是由于HBPUA的超支化聚酯的核心单元及PUDA链中聚醚软段的分解,分解产物有PUDA软段分解形成的小分子醛及超支化聚酯的核分解的脂类等。纳米SiO_2粒子能有效的提高漆膜的耐热性,并且硅溶胶用量越高,漆膜的热分解温度越高;当SiO_2用量为30%时, HBPUA-PUDA/SiO_2-30杂化漆膜的第一阶段的分解温度较HBPUA-PUDA漆膜的提高了15°C左右。
Due to the unique spherical-multibranched structure,hyperbranched polymer (HBP) has outstanding performance, such as low viscosity, high solubility and reactivity, good compatibility. Therefore, HBP can be applied to prepare high performance UV-curable hyperbranched polymer/inorganic hybrid coatings. However, there are few reports about HBP used as prepolymer in UV-cured hybrid coatings at present. In this work, UV-curable HBPUA-PUDA/SiO_2 hybrid coatings with high hardness, good flexibility and abrasive resistance were prepared by two parts: hyperbranched urethane acrylate-urethane diacrylates (HBPUA-PUDA) with different proportion of hard segment and soft segment was used as organic component, and vinyl-modified silica sol prepared by sol-gel method was used as inorganic component. The composition, structure, properties, photopolymerization kinetics and thermal degradation mechanism of HBPUA-PUDA/SiO_2 hybrid coatings were studied. The main research contents and achievements are listed as follow.
     Firstly, a series of UV-curable hyperbranched polyurethane acrylates (HBPUA) were synthesized from hyperbranched ester (B-H20), isophorone diisocyanate (IPDI) and 2-hydroxyethyl acrylate (HEA). The products were characterized by GPC, FTIR and 1H-NMR. The effect of molecular weight on the viscosity of prepolymer, UV-curing, mechanical properties of the cured films was studied. It was found that the optimal synthesis conditions of HBPUA was that the isocyanate adduct of IPDI/HEA was prepared with 0.5wt.% DBTDL as catalyst at 35℃for 150min, and then the adduct reacted with B-H20 at 70℃for 180min. The results showed that the viscosity of HBPUA was much lower than that of the linear PUA. The results of GPC showed that the molecular weight distribution index increased with the increase of molecular weight of HBPUA. The curing rate of HBPUA was fast and percentage conversion of C=C is 81%. With the increase of molecular weight of HBPUA, the pendulum hardness of the cured films increased, however, the flexibility and adhesion of the cured films decreased.
     Secondly, UV-curable hyperbranched polyurethane acrylates-polyurethane diacrylates (HBPUA-PUDA)was synthesized from the isocyanate adduct of IPDI/HEA and different proportion of B-H20 and PEG. The effect of molecular weight and content of PEG on the viscosity of prepolymer, UV curing and the mechanical properties of the cured films was studied. It was found that the reaction time of the second step and the viscosity of HBPUA-PUDA increased with the increase of content and molecular weight of PEG. The curing rate and conversion percentage of C=C of HBPUA-PUDA was lower than HBPUA’s. With the increase of content of PUDA, the flexibility, adhesion and impact strength of the cured films increased, however, the pendulum hardness of the films decreased, the comprehensive performance of HBPUA-PUDA30 was the best. The results of DSC analysis showed that there were two Tg in the cured films of HBPUA-PUDA, with the increase of the content of PUDA, the Tg,h of hard segment increased, but the Tg,s of soft segment decreased.
     Thirdly, A series of UV-curable HBPUA-PUDA/SiO_2 hybrid coatings were prepared from two parts: HBPUA-PUDA30 was used as organic components and the modified silica sol from TEOS and MPTMS was used as inorganic components. The effects of the ingredient on structure, interfacial compatibility, UV-curing and properties of hybrid films were studied. It was found that the gel time of HBPUA-PUDA/SiO_2 was 183d when the ratio of MPTMS toTEOS was 1/3. The curing rate of HBPUA-PUDA/SiO_2 was faster than HBPUA-PUDA and the conversion percentage of C=C was 5% higher than HBPUA-PUDA’s. HBPUA-PUDA/SiO_2 hybrid films had good interfacial compatibility and SiO_2 were uniformly distributed in organic matrix. Tg of HBPUA-PUDA/SiO_2 hybrid coatings increased by 18.4℃than HBPUA-PUDA, and the energe storage modulus also increased than HBPUA-PUDA. When the content of modified silicane sol was 30wt.%, HBPUA-PUDA/SiO_2 hybrid coatings had optimal properties with transmittance of 93.1%, pendulum hardness of 0.74, adhesion of 0 grade, flexibility of 4mm, impact strength of 43 kg.cm and abrasion resistance of only 14.8mg after 300 wear cycles.
     Finally, The thermal stability thermal degradation mechanism of the HBPUA-PUDA/SiO_2 films was studied by using thermogravimetric analysis coupled with Fourier transform infrared spectroscopy (TGA/FTIR). The results showed that all films exhibited two degradation stages located at about 320 and 440°C corresponding to the degradation for hard segments of urethane-acrylate and the degradation for soft segment and polyester core, decomposition products in the first stage were CO_2, amine with lower molecular weight, isocyanate and so on, in the second stage there were aldehyde, ester with lower molecular weight and some delayed CO_2. The results from the analysis of TGA/FTIR also indicated that decomposition temperature increased with the increase of the content of SiO_2, decomposition temperature of the HBPUA-PUDA/SiO_2-30 film were 15°C higher than that of the pure polymer.
引文
[1]王德海,江棂.紫外光固化材料-理论与应用[M].北京:科学出版社,2001.
    [2] Geddes. In the polysaccharides[M]. London and New York: Academic Press,1985.
    [3] Flory. Principles of polymer chemistry[M]. Ithaca , New York: Cornell University Press,1952.
    [4] Holme I. Advances in the science and technology of paints, inks and related coatings: 2006[J]. Surface Coatings International Part B: coatings Transactions, 2006, 89(4):343-363.
    [5] Johansson A, Glauser T, Jansson A, et al. Design of coating resins by changing the macromolecular architecture: solid and liquid coating systems[J]. Progress in Organic Coatings, 2003, 48(2-4):194-200.
    [6] Dzunuzovic E, Tasic S, Bozic B, et al. Dynamical mechanical analysis of photocrosslinked hyperbranched urethane acrylates[J]. Journal of the Serbian Chemical Society, 2004, 69(6):441-453.
    [7] Voit B. New developments in hyperbranched polymers[J]. Journal of Polymer Science Part A Polymer Chemistry, 2000, 38(14):2505-2525.
    [8] Stowe RW. Aspects of radiometry and UV exposure verification for UV curing of complex surfaces and 3-D objects[J]. JCT Coatingstech, 2007, 4(4):32.
    [9] Namiki Y, Komatsu M, Yoneno M. Non-Destructive Depth Profile Analysis of Conversion in Thick-Layer UV Curable Resin Using Laser Micro-Raman Spectrometer[J]. Bunseki Kagaku, 2007, 56(2):107-110.
    [10] Andrzejewska E, Andrzejewski MA. Role of amine activators on the curing parameters, properties and toxicity of acrylic bone cements[J]. J Polym Sci Pol Chem,1998,30:485-491.
    [11] Dillon RE, Bradford EB, Andrews RD. Plasticizing a Synthetic Latex[J]. Industrial Engineering Chemistry, 1953, 45: 728.
    [12] VoyUtskii SS. Amendment to the papers by bradford, brown, and co-workers:“Concerning mechanism of film formation from high polymer dispersions”[J]. J Polym Sci, 1958, 32(125): 528-530.
    [13] Bradford EB, Vanderhoff JW. Morphological changes in latex films[J]. J Macromol Chem, 1966, 1(2): 335-360.
    [14] Vonderhoff JW, Brasford EB, Carrington WK. The transport of water through latex films[J]. J Polym Sci Symp,1973, 41: 155.
    [15] Croll SG J. Drying of latex paint[J]. J. Coat Technol,1986, 58(734):41-49.
    [16] Eckersley ST, Rudln A. Drying behaviour of acrylic latexes[J]. J Org Coat, 1994, 23(4):387.
    [17] Hwa JCH. Mechanism of film formation from latices. Phenomenon of flocculation[J]. J Polym SCi, 1964, 2(2): 785-796.
    [18]Okubo M, Takeya T, Tsutsurni Y. Asymmetric porous emusion film[J]. Journal of Polymer Science: Polymer chemistry edition, 1981, 19(1): 1-8.
    [19] Chevalier Y, Pichot C, Graillat C. Film formation with latex particles[J]. Colloid Polym Sci, 1992, 270: 806-821.
    [20] Denkov ND, Velev OD, Kralchevsky PA. Two-Dimentional Crystallization[J]. Nature, 1993, 361: 26.
    [21] Vissehers M, Laven J, Vanderlinde R. Forces Operative. During Film Formation from Latex Dispersions[J]. Prog Org Coat,1997, 31: 311.
    [22] Visschers M, Laven J, German AL. Current understanding of the deformation of latex film formation [J]. Prog Org Coat, 1997, 30(1-2): 39.
    [23] Brown GL. Formation of films from polymer dispersions[J]. J Polym Sci, 1956, 22:423
    [24] Vanderhoff JW. Mechanism of film formation of lattices[J]. British Polymer Journal, 1970, 2(3): 161-173.
    [25] Lamprecht L. Ein neues filmbidungskriterium fur waβrige polymerdispersion[J]. Colloid Poly Sci, 1980, 258: 960-967.
    [26] De Gennes PG. Reptation of a Polymer Chain in a Presence of Fixed Obstacles[J]. J Chem Phys,1971, 55: 572-579.
    [27] De Gennes PG. Dynamics of Entangled Polymer Solutions. I. The Rouse Model[J]. Macromolecules,1976, 9(4): 587-593.
    [28] Prager S,Tirrel M, The Healing Process at Polymer-Polymer Interfaces[J]. J Chem Phys, 1981, 75: 5194-5198.
    [29] Kauseh HH, Jud K, William JG, Fracture mechanics studies of crack healing and welding of polymers[J]. J Mater Sci, 1981, 16: 204.
    [30] Kim YH, Wool RP, A Theory of Healing at a Polymer-Polymer Interface[J]. Macromolecules, 1983, 16: 1115-1120.
    [31] Mikos AG, Peppas NA. Polymer Chain Entanglements and Brittle Fracture[J]. J Chem Phys,1988, 88: 1337-1342.
    [32] Summerfield GC, Ullman R. Analysis of diffusive processes in bulk polymer by small-angel neutron scattering[J].Macromolecules, 1987, 20(2): 401-404.
    [33] Kim HB, Wang Y, Winnik MA, Synthesis, structure and film-forming properties of poly(butyl methacrylate)-poly(methacrylic acid) core-shell latex[J]. Polymer, 1994,35(8):1779-1796.
    [34] Boczear EM, Dionne BC, Fu ZW. Spectroscopic Studies of Polymer Interdiffusion During Film Formation[J]. Macromolecules, 1993, 26: 5772.
    [35] Kothandaraman H, Thangavel R, Angewand Makromol Chem, 1993, 207: 93.
    [36] Kodomenos PI, Dervan AH, Kxesta J. Kinetics of themal dissociation of blocked isocyanate crosslinkers[J]. J Coat Technol, 1982, 54(687): 43-51.
    [37] Engbert T, Konig E, Jurgens E, Farbe Lack. Einsatz einkomponentiger einbrennurethanbeschichtungen: Einüberblicküber systeme mit geringer thermovergilbung und niedriger einbrenntemperatur[J].1996, 102(7): 51.
    [38] Wieks DA, Wieks Jr ZW. The uses and applications of blocked isocyanates in coatings and non-coatings fields are reviewed. Part A: Mechanisms and Chemistry[J].Prog Org Coat, 1999, 36: 148.
    [39]许戈文,水性聚氨酯材料[M].北京,化学工业出版社,2007.
    [40] Kim Y H, Webster O W. Hyperbranched polyphenylenes[J]. Polymer Preparation, 1988, 29(2):310-311.
    [41] Kim Y H, Webster O W. Hyperbranched polyphenylenes[J]. Macromolecules, 1992, 25(21): 5561-5572.
    [42] Voit B. Hyperbranched polymers - All problems solved after 15 years of research[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43(13):2679-2699.
    [43] FréchetJMJ. Dendrimers and other dendritic macromolecules: From building blocks to functional assemblies in nanoscience and nanotechnology[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2003, 41(23):3713-3725.
    [44] Hecht S. Functionalizing the interior of dendrimers: Synthetic challenges and applications[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2003, 41 (8): 1047-1058.
    [45] Kubisa P. Hyperbranched polyethers by ring-opening polymerization: Contribution of activated monomer mechanism[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2003, 41(4): 457-468.
    [46] Johansson M, Glauser T, Jansson A, et al. Design of coating resins by changing the macromolecular architecture: solid and liquid coating systems[J]. Progress in Organic Coatings, 2003, 48(2-4):194-200.
    [47] Johansson M, Malmstom E, Jansson A, et al. Novel concept for low temperature curing powder coatings based on hyperbranched polyesters[J]. Journal of Coatings Technology, 2000,72(6):49-54.
    [48] Monteiro M J. Design strategies for controlling the molecular weight and rate using reversible addition-fragmentation chain transfer mediated living radical polymerization[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43(15):3189-3204.
    [49] Froehling P. Development of DSM's hybrane hyperbranched polyesteramides[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42(13):3110-3115.
    [50] Donaldatomaliajeanmjfr. Discovery of dendrimers and dendritic polymers: A brief historical perspective[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2002, 40(16): 2719-2728.
    [51] Baskaran D. Hyperbranched polymers from divinylbenzene and 1,3-diisopropenylbenzene through anionic self-condensing vinyl polymerization[J]. Polymer, 2003, 44(8): 2213-2220.
    [52] Philipp C W, Oskar N, Manfred S, et al. Amphiphilic Graft Copolymers and Hyperbranched Polymers Based on (3-Vinylphenyl)azomethyl-malonodinitrile[J]. Macromolecular Rapid Communications, 2001, 22(15):1255-1260.
    [53] Muthukrishnan S, Jutzg, Andr X, et al. Synthesis of Hyperbranched Glycopolymers via Self-Condensing Atom Transfer Radical Copolymerization of a Sugar-Carrying Acrylate[J]. Macromolecules, 2005, 38(1):9-18.
    [54] Imai T, Satoh T, Kaga H, et al. Synthesis of Hyperbranched Carbohydrate Polymer by Ring-Opening Multibranching Polymerization of 1,4-Anhydroerythritol and 1,4-Anhydro-L-threitol [J]. Macromolecules, 2004, 37(9):3113-3119.
    [55] Sunder A, Hanselmann R, Frey H, et al. Controlled Synthesis of Hyperbranched Polyglycerols by Ring-Opening Multibranching Polymerization[J]. Macromolecules, 1999, 32(13):4240-4246.
    [56] Lin D, Shi W F, Nie K M, et al. Photopolymerization of hyperbranched aliphatic acrylated poly(amide ester). I. Synthesis and properties[J]. Journal of Applied Polymer Science, 2001, 82(7):1630-1636.
    [57] Kaneko R, Jikei M, Kakimoto M A. Preparation and properties of photosensitive polymers based on hyperbranched aromatic polyamides[J]. High Performance Polymers, 2002,14(1):53-62.
    [58] Zou J H, Lin D, Shi W F. Influences of multifunctional Co-monomers on UV-cure kinetics of hyperbranched acrylated polyamidester and the thermal properties of the cured films[J]. Acta Chemical Sinica, 2002, 60(5):926-930.
    [59] Froehling P. Development of DSM's hybrane hyperbranched polyesteramides[J]. Journalof Polymer Science Part A: Polymer Chemistry, 2004, 42(13):3110-3115.
    [60] MalmstrêmE, Johansson M, Hult A. Hyperbranched aliphatic polyesters[J]. Macromolecules, 1995, 28:1698-1703.
    [61] MalmstrêmE, Hult A. Kinetics of formation of hyperbranched polyesters based on 2,2-bis(methylol)propionic acid[J]. Macromolecules, 1996, 29(4):1222-1228.
    [62] Frechet J M J , Henmi M G I. Self - condensing vinyl polymerization : An approach to dendritic materials[J]. Science, 1995, 269(5227):1080-1083.
    [63] Kevin Sill T E. Bis-dendritic polyethylene prepared by ring-opening metathesis polymerization in the presence of bis-dendritic chain transfer agents[J]. Journal of Polymer Science Part A Polymer Chemistry, 2005, 43(22):5429-5439.
    [64] Emrick T, Hayes W, Fr J M. A TEMPO-mediated living free-radical approach to ABA triblock dendritic linear hybrid copolymers[J]. Journal of Polymer Science Part A Polymer Chemistry, 1999, 37(20):3748-.
    [65] Voit B. Hyperbranched polymers - All problems solved after 15 years of research?[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43(13):2679-2699.
    [66] Ge Z, Luo S, Liu S. Syntheses and self-assembly of poly(benzyl ether)-b-poly(N-isopropylacrylamide) dendritic-linear diblock copolymers[J]. Journal of Polymer Science Part A Polymer Chemistry, 2006, 44(4):1357-1371.
    [67] Voit B. New developments in hyperbranched polymers[J]. Journal of Polymer Science Part A Polymer Chemistry, 2000, 38(14):2505-2525.
    [68] Kubisa P. Hyperbranched polyethers by ring-opening polymerization: Contribution of activated monomer mechanism[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2003, 41(4):457-468.
    [69] Chen Y, Zhou S, Gu G, et al. Microstructure and properties of polyester-based polyurethane/titania hybrid films prepared by sol-gel process[J]. Polymer, 2006, 47(5):1640-1648.
    [70] Liaw D J, Huang C C, Hong S M, et al. Molecular architecture effect on reactivity of polynorbornenes with pendant [alpha],[beta]-unsaturated amide or ester bridged chains via ring-opening metathesis polymerization[J]. Polymer, 2006, 47(13):4613-4621.
    [71] Lowenhielm P, Nystrom D, Johansson M, et al. Aliphatic polycarbonate resins for radiation curable powder coatings[J]. Progress in Organic Coatings, 2005, 54(4):269-275.
    [72] Cheng C X, Tang R P, Zhao Y L, et al. Synthesis of dendronized poly(methacrylates) and their diblock copolymers by atom transfer radical polymerization[J]. Journal of AppliedPolymer Science, 2004, 91(4):2733-2737.
    [73] Sunder A, MülhauptR, Frey H. Hyperbranched polyether-polyols based on polyglycerol: polarity design by block copolyerization with propylene oxide[J]. Macromolecules, 2000, 33(2):309-314.
    [74] Chang H, FrechétJmj. Proton transfer polymerization: a new approach to hyperbranched polymers[J]. Journal of the American Chemistry Society, 1999, 121(10) :2313-2314.
    [75] Jikei M, Kakimoto M. Dendritic aromatic polyamides and polyimides[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42(6):1293-1309.
    [76] Jikei M, Chon S -, Kakimoto M, et al. Synthesis of Hyperbranched Aromatic Polyamide from Aromatic Diamines and Trimesic Acid[J]. Macromolecules, 1999, 32(6):2061-2064.
    [77] Emrick T, Chang H -, Frechet J M J. An A2 + B3 Approach to Hyperbranched Aliphatic Polyethers Containing Chain End Epoxy Substituents[J]. Macromolecules, 1999, 32(19):6380-6382.
    [78] Komber H, Voit B, Monticelli O, et al. 1H and 13C NMR Spectra of a Hyperbranched Aromatic Polyamide from p-Phenylenediamine and Trimesic Acid[J]. Macromolecules, 2001, 34(16):5487-5493.
    [79]魏焕郁,施文芳.超支化聚合物的结构特征、合成及其应用[J].高等学校化学学报,2001,22(02):338-344.
    [80] Ge Z, Luo S, Liu S. Syntheses and self-assembly of poly(benzyl ether)-b-poly(N-isopropylacrylamide) dendritic-linear diblock copolymers[J]. Journal of Polymer Science Part A Polymer Chemistry, 2006, 44(4):1357-1371.
    [81] Sangermano M, Malucelli G, Bongiovanni R, et al. Investigation on the effect of the presence of hyperbranched polymers on thermal and mechanical properties of an epoxy UV-cured system[J]. Polymer International, 2005, 54(6):917-921.
    [82] Tang L M, Fang Y, Yan L, et al. Influence of reactive diluent on UV-curing of acrylate terminated hyperbranched polymers[J]. Chemical Research in Chinese Universities, 2004, 20(2): 248-252.
    [83]唐黎明,由虎,李易.端丙烯酸酯基超支化聚酯的合成及固化反应性能[J].清华大学学报(自然科学版),2003,43(12):1613-1615.
    [84] Kou H G, Asif A, Shi W F. Hyperbranched acrylated aromatic polyester used as a modifier in UV-curable epoxy acrylate resins[J]. Chinese Journal of Chemistry, 2003, 21(1):91-95.
    [85] Kou H G, Asif A, Shi W F. Photopolymerization kinetics of hyperbranched acrylatedaromatic polyester[J]. Journal of Applied Polymer Science, 2003, 89(6):1500-1504.
    [86] Hjmse M, Kadowakj F . The structure and properties of core-she11 type acrylic-polyurethane hybrid aqueous emu1sions[J].Progress in Organic Coatings,1997,3l(1):157-169
    [87] Narayan R, Raju K V S N. Properties of acetoacetylated hydroxylated polyesters based polyurethane coatings[J]. Progress in Organic Coatings, 2002, 45 (1) : 59-67
    [88]杨建军,吴庆云,张建安等.丙烯酸酯改性聚氨酯无皂乳液聚合的研究.纺织学报,2006,27(1):38-41
    [89]王浩,唐黎明,陈久军等.水性端丙烯酸酯基聚氨酯的合成与紫外光固化.清华大学学报,2007,47(6):867-869,884
    [90] Song C M, Yuan Q L, Wang D N. Effect of the content of urea groups on the particle size in water-borne or polyurethane/polyacrylated dispersions[J]. Colloid and Polymer Science, 2003, (2): 18-21
    [91] Bearda F, Mailhot B, Malle J et al. Photoageing of an electron beam cured polyurethane acrylate resin[J]. Polymer Degradation and Stability, 2008, 93(6): 1122-1130
    [92] Bai C Y, Zhang X Y, Dai J B, et al. A new UV curable waterborne polyurethane: Effect of C=C content on the film properties[J]. Progress in Organic Coatings, 2006, 55(3): 291-295
    [93] Zhu X L, Jiang X B, Zhang Z G, et al. Influence of ingredients in water-based polyurethane–acrylic hybrid latexes on latex properties[J]. Progress in Organic Coatings, 2008, 62(3): 251-257
    [94] Dzunuzovic E, Tasic S, Bozic B, et al. UV-curable hyperbranched urethane acrylate oligomers containing soybean fatty acids[J]. Progress in Organic Coatings, 2005, 52(2):136-143.
    [95] Tasic S D, Bozic B, Dunjic B. Synthesis of new hyperbranched urethane-acrylates and their evaluation in UV-curable coatings[J]. Progress in Organic Coatings, 2004, 51(4):321-328.
    [96] Xu G, Shi W. Synthesis and characterization of hyperbranched polyurethane acrylates used as UV curable oligomers for coatings[J]. Progress in Organic Coatings, 2005, 52(2):110-117.
    [97]魏焕郁,施文芳,聂康明等.树枝状醚酰胺多官能团(甲基)丙烯酸酯低聚物的合成及其紫外光固化性能的研究[J].高等学校化学学报,2001,22(09):1605-1609.
    [98] Si Q F, Wang X, Fan X D, et al. Synthesis and characterization of ultraviolet-curable hyperbranched poly(siloxysilane)s[J]. Journal of Polymer Science Part A-Polymer Chemistry,2005, 43(9):1883-1894.
    [99]刘宏文.树枝状聚酯多元醇的烯丙基末端改性[J].南昌大学学报(理科版),2001,25(2):168-170.
    [100] Tang L M, Zhang X L, Li W, et al. Studies on modification of end groups of aliphatic hyperbranched polyester[J]. Chemical Journal of Chinese Universities, 2000, 21(12):1950-1952.
    [101] Asif A, Huang C Y, Shi W F. UV curing behaviors and hydrophilic characteristics of UV curable waterborne hyperbranched aliphatic polyesters[J]. Polymers for Advanced Technologies, 2003, 14(9):609-615.
    [102] Asif A, Shi W F. Synthesis and properties of UV curable waterborne hyperbranched aliphatic polyester[J]. European Polymer Journal, 2003, 39(5):933-938.
    [103] Asif A, Huang C Y, Shi W F. Structure-Coproperty study of waterborne, polyurethane acrylate dispersions based on hyperbranched aliphatic polyester for UV-curable coatings[J]. Colloid and Polymer Science, 2004, 283(2):200-208.
    [104] Asif A, Shi W F. UV curable waterborne polyurethane acrylate dispersions based on hyperbranched aliphatic polyester: effect of molecular structure on physical and thermal properties[J]. Polymers for Advanced Technologies, 2004, 15(11):669-675.
    [105] Asif A, Huang C Y, Shi W F. Photopolymerization of waterborne polyurethane acrylate dispersions based on hyperbranched aliphatic polyester and properties of the cured films[J]. Colloid and Polymer Science, 2005, 283(7):721-730.
    [106]陈梦茹,龙宇,金养智.含光敏基团的光固化水性超支化聚酯的合成与性能研究[J].影像技术,2003(02):18-21.
    [107] Kou H G, Zhu S W, Shi W F. Crystalline characters of modified hyperbranched polyester[J]. Chemical Journal of Chinese Universities, 2001, 22(8):1410-1413.
    [108] Zhu S W, Kou H G, Wei H Y, et al. Study on uv curable powder coatings based on hyperbranched polymers[J]. Chinese Journal of Polymer Science, 2001, 19(2):155-160.
    [109]寇会光,朱胜武,施文芳.超支化聚酯的改性及其结晶性能的研究[J].高等学校化学学报,2001,22(08):1410-1413.
    [110] Zhu S W, Shi W F. Synthesis and photopolymerization of hyperbranched polyurethane acrylates applied to UV curable flame retardant coatings[J]. Polymer International, 2002, 51(3): 223-227.
    [111] Zhu S W, Shi W F. Flame retardant mechanism of hyperbranched polyurethane acrylates used for UV curable flame retardant coatings[J]. Polymer Degradation and Stability,2002, 75(3): 543-547.
    [112] Zhu S W, Shi W F. Hyperbranched polyurethane acrylate applied to UV curable flame retardant coatings[J]. Chemical Research in Chinese Universities, 2001, 17(3): 331-333.
    [113] Kou H G, Asif A, Shi W F. Photopolymerizable acrylated hyperbranched polyisophthalesters used for photorefractive materials I. Synthesis and characterization[J]. European Polymer Journal, 2002, 38(10):1931-1936.
    [114] Hong L Y, Cho Y S, Kim D P. Effect of component ratios on the performance of UV curing organic/inorganic coating[J]. Journal of Industrial and Engineering Chemistry, 2005, 11(2): 275-279.
    [115] Huang H H, Orler B, Wilkes G L. Structure-Property Behavior of New Hybrid Materials Incorporating Oligomeric Species into Sol-Gel Glasses[J]. Macromolecules, 1987, 20: 1322-1330.
    [116] Blanc D, Zhang W P, Massard C, et al. Synthesis and characterisation of tantalum-incorporating silica hybrid sol-gel thin films for optical applications[J]. Optical Materials, 2006, 28(4): 331-335.
    [117] Wouters M E, Wolfs D P, Van L M, et al. Transparent UV curable antistatic hybrid coatings on polycarbonate prepared by the sol-gel method[J]. Progress in Organic Coatings, 2004, 51(4): 312-319.
    [118] Kim S G, Nam S W, Yoon S P, et al. Sol-gel processing of yttria-stabilized zirconia films derived from the zirconium n-butoxide-acetic acid-nitric acid-water-isopropanol system[J]. Journal of Materials Science, 2004, 39(8): 2683-2688.
    [119]张玲.光固化有机/无机杂化体系的研究[D].广州:中山大学,2001.
    [120]林德.超支化聚(酰胺-酯)的合成、表征与紫外固化[D].中国科学技术大学,2001.
    [121]刘辉.溶胶-凝胶法制备紫外光固化纳米复合涂料[J].高校化学工程学报,2004,18(3):329-333.
    [122] Zhang X H, Yang J W, Zeng Z H, et al. Stabilized dispersions of titania nanoparticles via a sol-gel process and applications in UV-curable hybrid systems[J]. Polymer International, 2006, 55(4): 466-472.
    [123]沈钟,赵振国,王果庭等.胶体与表面化学[M].北京:化学工业出版社,2004.
    [124]左藤T,鲁赫Rj.聚合物吸附对胶态分散体稳定性的影响[M].北京:科学出版社,1988.
    [125]侯万国,孙德军,张春光.应用胶体化学[M].北京:科学出版社,1998.
    [126]张开.高分子界面科学[M].北京:中国石化出版社,1997.
    [127]李光亮.有机硅高分子科学[M].北京:科学出版社,1998.
    [128]喻志刚.水性(聚氨酯-聚丙烯酸酯)PUA/SiO2杂化材料的研究[D].上海:华东理工大学,2001.
    [129]张继德.水性紫外光固化树脂的合成及其性能与应用研究[D].湖南大学,2002.
    [130] Ni H. Polyurethane/polysiloxane ceramer coatings: Corrosion resistant unicoat system for aircraft application.[D]. North Dakota State University, 2001.
    [131]王秀华,翁履谦,王玲等.硅烷偶联剂在有机-无机杂化纳米复合材料中的应用[J].有机硅材料,2004,18(03):30-33.
    [132] Arkhireeva A, Hay J N, Lane J M, et al. Synthesis of Organic-Inorganic Hybrid Particles by Sol-Gel Chemistry[J]. Journal of Sol-Gel Science and Technology, 2004, 31(1-3): 31-36.
    [133] Soucek M D, Zong Z, Johnson A J. Inorganic/organic nanocomposite coatings: The next step in coating performance[J]. JCT RESEARCH,2006,3(2):133-140.
    [134] Tamami B, Betrabet C, Wilkes G L. New Ceramer High Optical Abrasion Resistant Transparent Coating Materials Based on Functionalized Melamine and Tris(M-Aminophenyl)phosphine Oxide Compound[J]. Polymer Bulletin, 1993, 30: 39-45.
    [135]张超灿,廖海军,童晓梅.γ-甲基丙烯酰氧丙基三(三甲基硅氧基)硅烷的制备及其乳液聚合研究[J].胶体与聚合物, 2004, 22(2): 1-3.
    [136]董松.硅溶胶-丙烯酸酯乳液外墙涂料的配制[J].现代涂料与涂装,2001,(6):15-18.
    [137] Daniels M W, Francis L F. Silane adsorption behavior, microstructure and properties of glyci doxypropyltrimethoxysilane modified colloidal silica coatings[J]. Colloid and Interface Science, 1998, 205(2):191-195.
    [138]刘郁杨. PVA/SiO2杂化材料的制备及表征[J].高分子材料科学与工程,2002,18(1):41-44.
    [139]李元庆,张以河,李明等. PI/T-SiO2杂化薄膜的制备及偶联剂的影响[J].合成树脂及塑料,2004,21(5):61-64.
    [140]侯孟华,刘伟区,陈精华.氨基硅烷偶联剂改性水性聚氨酯木器涂料的研制[J].新型建筑材料,2004(9):29-31.
    [141] Blizzard J D, Al E. Silicon-acrylic Sol-Gel modified automotive clear topcoats for etch and scratch resistance[J]. Surface Coatings Journal, 2001, 84(B3):205-212.
    [142] Masamoto U, Tsukasa M, Al E. Silica-containing siloxane-coate d shaped articles and their manufacture: EP, 604677[P].
    [143] Wouters M, Wolfs D, Van Der Linde M. Transparent UV curable antistatic hybrid coatings on polycarbonate prepared by the sol-gel method[J]. Progress in Organic Coatings, 2004, 51(4):312-320.
    [144] Bosch P, Mateo J L, Mateo J L. Photopolymerization of hydroxyethylmethacrylate in the formation of organic-inorganic hybrid sol-gel matrices[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1996, 34(16):3289-3296.
    [145] Ni H. Polyurea/polyailoxane creamer coatings[J]. Progress in organic coatings, 2000, 38(2):97-105.
    [146] Bierwagen G. Nest generation of aircraft coatings systems[J]. Journal of Coatings Technology, 2001, 73(915):45-52.
    [147] Wouters M E L, Wolfs D, Linde M C, et al. Transparent UV curable antistatic hybrid coatings on polycarbonate prepared by the sol gel method[J]. Progress in Organic Coatings, 2004, 51(4): 312-320.
    [148] Zong Z G, He J Y, Soucek M D. UV-curable organic-inorganic hybrid films based on epoxynorbornene linseed oils[J]. Progress in Organic Coatings, 2005, 53(2):83-90.
    [149] Vreugdenhil A J, Balbyshev V N, Donley M S. Nanostructured silicon Sol-Gel surface treatments for AI2024-T3 protection[J]. Journal of Coatings Technology, 2001, 73(915): 35-43.
    [150] Hong L Y, Chob Y S, Kim D P. Effect of Component Ratios on the Performance of UV Curing Organic/Inorganic Coating[J]. Journal of Industrial and Engineering Chemistry, 2005, 11(2): 275-279.
    [151] Zou J H, Zhao Y B, Shi W F, et al. Preparation and characters of hyperbranched polyester-based organic-inorganic hybrid material compared with linear polyester[J]. Polymers for Advanced Technologies, 2005, 16(1):55-60.
    [152] Amerio E, Sangermano M, Malucelli G, et al. Preparation and characterization of hyperbranched polymer/silica hybrid nanocoatings by dual-curing process[J]. Macromolecular Materials and Engineering, 2006, 291(10):1287-1292.
    [153] Kim Y H. Hyperbranched polymers 10 years after[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1998, 36(11):1685-1698.
    [154] Tang L M, Fang Y, You H, et al. Structural analysis and UV curing of poly(ester-amine)s with terminal acrylate groups[J]. Acta Polymerica Sinica, 2005, (2): 301-304.
    [155] Asha S K, Thirumal M, Kavitha A, et al. Synthesis and curing studies of PPG based telechelic urethane methacrylic macromonomers[J]. European Polymer Journal, 2005, 41(1):23-33.
    [156] Schwalm R, Hau L, Reich W, et al. Tuning the mechanical properties of UV coatings towards hard and flexible systems[J]. Progress in Organic Coatings, 1997, 32(1-4):191-196.
    [157] Asif A, Shi W F, Shen X F, et al. Physical and thermal properties of UV curable waterborne polyurethane dispersions incorporating hyperbranched aliphatic polyester of varying generation number[J]. Polymer, 2005, 46(24):11066-11078.
    [158] Prabhakar A, Chattopadhyay D K, Jagadeesh B, et al. Structural investigations of polypropylene glycol (PPG) and isophorone diisocyanate (IPDI)-based polyurethane prepolyrner by 1D and 2D NMR spectroscopy[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43(6):1196-1209.
    [159]李绍雄.聚氨酯树脂及其应用[M].北京:化学工业出版社,2002.
    [160] Lin D, Kou H G, Shi W F, et al. Photopolymerizaton of hyperbranched aliphatic acrylated poly(amide ester). II. Photopolymerization kinetics[J]. Journal of Applied Polymer Science, 2001, 82(7):1637-1641.
    [161] Benthem R, Hofland A, Peerlings H W, et al. Ideally selective diisocyanate building blocks New perspectives for dendrimers and coating binders[J]. Progress in Organic Coatings, 2003, 48(2-4):164-176.
    [162]林道昌.聚氨酯中异氰酸酯基测定方法述评[J].聚氨酯工业,1999,14(02):47-49.
    [163]刘剑洪,李伦军.聚氨酯预聚物合成反应动力学研究(Ⅰ)[J].深圳大学学报(理工版),2003,10(4):20-26.
    [164]陈伟林,单国荣,黄志明等.聚氨酯丙烯酸酯齐聚物的合成及其反应动力学[J].化学反应工程与工艺,2005,21(6):487-491.
    [165]李宁,于德梅,商勃.聚氨酯无溶剂涂料MDI/聚醚半预聚体的合成[J].应用化工,2003, 32(3):27-29.
    [166]周立明.聚氨酯丙烯酸酯大分子单体及其聚合物的研究[D].郑州大学,2005.
    [167] Huang J, Zhang L. Effect of NCO/OH molar ratio on structure and properties of graft-interpenetrating polymer networks from polyurethane and nitrolignin[J]. Polymer, 2002, 43:2287-2294.
    [168] Dzunuzovic E, Tasic S, Bozic B, et al. Photoreactive hyperbranched urethane acrylates modified with a branched saturated fatty acid[J]. Reactive and Functional Polymers, 2006, 66(10):1097-1105.
    [169] Bai C Y, Zhang X Y, Dai J B, et al. A new UV curable waterborne polyurethane: Effect of CC content on the film properties[J]. Progress in Organic Coatings, 2006, 55(3):291-295.
    [170] Mezzenga, R, Pettersson, B, M?nson, J E. Thermodynamic evolution of unsaturated polyester-styrene-hyperbranched polymers[J]. Polymer Bulletin, 2001, 46: 419-426.
    [171]张玲,曾兆华,杨建文等.光固化环氧丙烯酸酯/SiO2杂化材料的研究[J].功能高分子学报,2003,16(4):479-482.
    [172]何曼君,陈维孝,董西侠.高分子物理:高分子溶液性质[M].上海:复旦大学出版社,1988.
    [173] Yeh J M, Hsieh C F, Yeh C W, et al. Organic base-catalyzed sol-gel route to prepare PMMA-silica hybrid materials[J]. Polymer International, 2007, 56(3):343-349.
    [174] Atanacio A J, Latella B A, Barbe C J, et al. Mechanical properties and adhesion characteristics of hybrid sol-gel thin films[J]. Surface and Coatings Technology, 2005, 192(2-3):354-364.
    [175] Nikolic L, Radonjic L. Effect of the silica sol-gel coatings on the properties of glass substrate[J]. Ceramics International, 1998, 24(7):547-552.
    [176] Movchan T G, Urev N B, Khamova T V, et al. Kinetics of structuring in the sol-gel systems based on tetraethoxysilane with organic additives: I. sols[J]. Glass Physics and Chemistry, 2005, 31(2):219-228.
    [177] Gillham J K. Formation and properties of thermosetting and high Tg polymeric materials[J]. Polymer Engineering and Science, 1986, 26(20):1429-1433.
    [178] Romo L A. Stability of non-aqueous dispersions[J]. Journal of Physical Chemistry, 1963, 67: 386-389.
    [179] Ash S G, Findenegg G H. Calculation of the interaction energy between two parallel adsorbing planes immersed in a solution composed of molecules of different size[J]. Transactions of the Faraday Society, 1971, 67: 2122-2128.
    [180] Chiou B, Schoen P E. Effects of crosslinking on thermal and mechanical properties of polyurethanes[J]. Journal of Applied Polymer Science, 2002, 83(1): 212-223.
    [181] Wei H Y, Kou H U, Shi W F, et al. Thermal and mechanical properties of UV-cured acrylated hyperbranched polyester and its blends with linear polyurethane acrylate[J]. Journal of Coatings Technology, 2003, 75(939):37-42.
    [182] Xie T X, Zhou C G, Feng S Y, et al. Study of poly (methyl methacrylate-maleic anhydride)/silica hybrid materials[J]. Journal of Applied Polymer Science, 2000, 75(3): 379-383.
    [183]蒋秋娜,林明涛,储富祥,等.紫外光固化聚合物基SiO2纳米复合材料的研究进展[J].生物质化学工程, 2008, 42 (4): 51-56.
    [184] DECKER C, KELLER L, ZAHOUILY K, et al. Synthesis of nanocomposite polymers by UV-radiation curing [J]. Polymer, 2005, 46 (17): 6640-6648.
    [185]廖峰,曾幸荣,黄国创. UV固化环氧丙烯酸酯/SiO2杂化涂料的制备与性能研究[J].涂料工业, 2009, 39 (4): 15-17, 21.
    [186] UHL F M, WEBSTER D C, DAVULURI S P, et al. UV curable epoxy acrylate–clay nanocomposites [J]. European Polymer Journal, 2006, 42 (10): 2596-2605.
    [187] BAUER F, FLYUNT R, CZIHAL K, et al. UV curing of nanoparticle reinforced acrylates [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 265 (1): 87-91.
    [188] KOU Hui-guang, ASIF A, SHI Wen-fang. Photopolymerizable acrylated hyperbranched polyisophthalesters used for photorefractive materials I. Synthesis and characterization[J]. European Polymer Journal, 2002, 38(10): 1931–1936.
    [189] WANG Sheng-jie, FAN Xiao-dong, KONG Jie, et al. Synthesis, characterization and UV curing kinetics of hyperbranched polysiloxysilanes from A2 and CB2 type monomers[J]. Polymer, 2009, 50(15): 3587-3594.
    [190] MISHRA S, MISHRA A K, RAJU K V S N. Synthesis and property study of UV-curable hyperbranched polyurethane acrylate/ZnO hybrid coatings[J]. European Polymer Journal, 2009, 45(3): 960-966.
    [191] KUMARI S, MISHRA A K, CHATTOPADHYAY D K. Synthesis and characterization of hyperbranched polyesters and polyurethane coatings[J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2007, 45(13): 2673-2688.
    [192] ORZESKO A, KOLBRECKI A. Thermal degradation of polyurethanes. Model compounds[J]. Journal of Applied Polymer Science, 1980, 25: 2969-2973.
    [193] Lin, D, Kou, HG, Shi WF, et al,“Photopolymerizaton of hyperbranched aliphatic acrylated poly(amide ester) II. Photopolymerization kinetics.”J. Appl. Polym. Sci., 2001, 82 (7): 1637-1641
    [194] COUTINHO F, DELPECN M, ALVES T, et al. Degradation profiles of cast films of polyurethane and poly (urethane-urea) aqueous dispersions based on hydroxyl-terminated polibutadien and different diisocyanate[J]. Polymer Degradation and Stability, 2003, 81(1): 19-27.
    [195] BERTA M, LINDSAY C, PANS G, et al. Effect of chemical structure on combustion and thermal behavior of polyurethane elastomer layered silicate nanocomposites[J]. Polymer Degradation and Stability, 2006, 91(5): 1179-1191.
    [196] MOON S Y, KIM J K, NAH C, et al. Polyurethane/montmorillonite nanoorganoclay hybrid as chain extenders[J]. European Polymer Journal, 2004, 40(8): 1615-1621.
    [197] KUMARI S, MISHRA A, CHATTOPADHYAY D K, et al. Synthesis and characterization of hyperbranched polyesters and polyurethane coatings[J]. Journal of Polymer Science, Part A: Polymer Chemistry, 2007, 45(13): 2673-2688.
    [198] BALLISTRERI A, FOTI S, MARAVIGNA P, et al. Thermal degradation of polyurethanes investigated by direct pyrolysis in the mass spectrometer[J]. Macromolecule Chemistry, 1980, 181: 2161-2173.
    [199] ORZESKO A, KOLBRECKI A. Thermal degradation of polyurethanes. Model compounds[J]. Journal of Applied Polymer Science, 1980, 25: 2969-2973.
    [200] GRASSIE N, ZULFIQAR M. Thermal degradation of the polyurethane from 1,4-butanediol and methylene bis (4-phenyl isocyanate)[J]. Journal of Polymer Science, Polymer Chemistry. Ed., 1978, 16: 1563-1574.
    [201] HERRERA M, MATUSCHEK G, KETTRUP A. Thermal degradation of thermoplastic polyurethanes elastomers (TPU) based on MDI[J]. Polymer Degradation and Stability, 2002, 78(2): 323-331.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700