UV固化超支化聚合物的合成及其二氧化硅杂化涂层的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超支化聚合物是具有三维立体结构的高度支化的大分子,与线形聚合物相比具有粘度低、溶解性好以及易于修饰的特点,在UV固化树脂领域具有非常广阔的应用前景,然而目前对于光固化超支化聚合物的研究还处于起步阶段。本文在综述前人工作的基础上,通过对商品化超支化聚酯(Boltorn H20)进行端基改性制得了多种具有UV固化性能的超支化聚合物,并对它们的结构与性能进行了系统的研究。此外,还利用超支化聚合物与无机粒子相容性好的特点,将甲基丙烯酸酯化的硅溶胶引入到UV固化超支化聚合物中,制备了具有优良耐磨性能和热稳定性能的UV固化超支化聚合物/SiO_2杂化涂料。论文的研究内容和成果包括如下四点。
     第一:采用含有柔性链段的聚己内酯(2)改性丙烯酸羟乙酯和聚乙二醇(6)单丙烯酸酯与异佛尔酮二异氰酸酯按等摩尔比反应制备了两种含异氰酸酯基团的加成物,然后将其分别与Boltorn H20的端羟基进行加成反应,通过控制其端基的丙烯酸酯化程度制备了两种可UV固化超支化聚氨酯丙烯酸酯(HBUCA和HBUPA)。应用傅立叶红外光谱仪(FT-IR)、核磁共振仪(~1H-NMR)、凝胶渗透色谱仪(GPC)、差示扫描量热仪(DSC)、动态机械热分析仪(DMA)、热重分析仪(TG)和旋转流变仪等手段对其UV固化前后的结构进行表征,研究了端基的结构和丙烯酸酯化程度对超支化聚氨酯丙烯酸酯分子量及其分布、粘度、玻璃化转变温度(T_g)、UV固化行为及对其固化膜的热性能和力学性能的影响。结果表明:端基丙烯酸酯化程度的增加对HBUCA和HBUPA性能的影响具有相似的规律。随着丙烯酸酯化程度的增加,它们的分子量分布变宽,粘度增加,T_g降低,而且它们的粘度均随着剪切速率的增加呈下降趋势,表现出非牛顿流体的特征。HBUCA和HBUPA的最大光聚合速率(R_P~(max))随丙烯酸酯化程度的增加而提高,而当丙烯酸酯化程度相同时,HBUCA的R_P~(max)和最终不饱和官能团转化率(R~f)均要高于HBUPA。HBUCA和HBUPA固化膜具有相似的两个热失重阶段:第一阶段在280~380℃间的热失重是由于氨基甲酸酯链段的分解,第二阶段在380~540℃间的热失重是由于C-C和C-O链段的分解,它们的热稳定性能要好于相应的线形聚合物,并且随着丙烯酸酯化程度的增加而略有提高。随着端基丙烯酸酯化程度的增加,HBUCA和HBUPA固化膜的储能模量(E')和T_g逐渐升高,力学性能(包括铅笔硬度、摆杆硬度、附着力、柔韧性、冲击强度和耐磨性)随丙烯酸酯化程度的增加先增加后减小,具有极大值;当丙烯酸酯化程度为80%时,它们在各自的系列中具有最好的力学性能和耐腐蚀性能。
     第二:以异壬酸、邻苯二甲酸酐和甲基丙烯酸缩水甘油酯按顺序对Boltorn H20的端羟基进行逐步改性制备了UV固化超支化聚酯丙烯酸酯(HBIPA),研究了端基结构及丙烯酸酯化程度对HBIPA分子量及其分布、粘度、T_g、UV固化行为及其对固化膜的热性能和力学性能的影响。结果表明:HBIPA的T_g和粘度均随着丙烯酸酯化程度的增加而上升,而且HBIPA的粘度随剪切速率的增大变化不大,表现出牛顿流体的特征。丙烯酸酯化程度的增加有助于改善HBIPA的光固化性能,当丙烯酸酯化程度由25%增加至50%时,HBIPA的R~f从79.8%提高到85.9%,R_P~(max)从0.0155s-1上升至0.0181s-1。HBIPA的热失重过程分为两个阶段,第一个阶段大约发生在320~400℃,第二个阶段发生在400℃~510℃,其热稳定性能随着丙烯酸酯化程度的增加而提高。随着丙烯酸酯化程度的增加,HBIPA的交联密度和苯环含量增加,HBIPA固化膜的E'和T_g,硬度、附着力、冲击强度、耐磨性能及耐化学腐蚀性能也有所增强。
     第三:通过溶胶-凝胶法用正硅酸乙酯(TEOS)和γ-甲基丙烯酰氧基丙基三甲氧基硅烷(MPTMS)在HCl催化作用下制备了UV固化MPTMS/SiO_2溶胶。研究了影响MPTMS/SiO_2溶胶稳定性能的因素,并利用FT-IR、DLS、TG-DTA等手段对其固化前后的结构与性能进行了表征。结果表明:制备MPTMS/SiO_2溶胶较为合适的组分摩尔比为nMPTMS/nTEOS=0.5~1,nH2O/nSi-O=0.75~1,nEtOH/nSi-O=1~1.25,nHCl/nSi-O=0.006,在此条件下制备的溶胶可稳定存放180d以上,溶胶平均粒径小于30nm且分布较集中。MPTMS在溶胶中用量的增加能提高MPTMS/SiO_2溶胶的R_P~(max),但会降低体系的R~f。增加MPTMS在溶胶中的用量可以提高MPTMS/SiO_2固化膜在第一个失重阶段(140~300℃)的热稳定性,并可以增加MPTMS/SiO_2的成膜性及其固化膜的力学性能。
     第四:以HBUCA、HBUPA和HBIPA为有机组分,MPTMS/SiO_2溶胶为无机组分,按一定配比采用超声分散制备了一系列UV固化超支化聚合物/SiO_2杂化涂料。采用FT-IR、SEM、DMA和TG等手段对杂化涂层进行表征,研究了杂化涂层两相的结构和配比对固化膜形貌、热性能及机械性能的影响。结果表明UV固化超支化聚合物/SiO_2杂化涂料具有很好的储存稳定性。杂化涂层的有机/无机相间具有良好的相容性,HBUCA、HBUPA或HBIPA中即使加入高达25wt.%的MPTMS/SiO_2溶胶(nTEOS:nMPTMS为1:1),纳米粒子仍能均匀的分散于有机相中。MPTMS/SiO_2溶胶可以提高UV固化超支化聚合物的热稳定性能,并对其具有增强作用,随着MPTMS/SiO_2用量的增加,杂化涂膜的E′和T_g均会增加,而且以nTEOS:nMPTMS为1:1的MPTMS/SiO_2溶胶制得的杂化涂层在赋予杂化涂膜更高的硬度和耐磨性能的同时,能兼具HBUCA、HBUPA和HBIPA优良的柔韧性和附着力。
Hyperbranched polymers are a kind of highly branched/dendritic macromolecules withthree-dimensional architecture. Hyperbranched polymers have many attractive features, suchas low viscosity, high solubility and good compatibility. Because of their large number ofsurface functional group, they are also facile for chemical modification. Due to theseadvantages, hyperbranched polymers have attractive application in UV curing fields, but itsstill at the starting stage of the research of UV curable hyperbranched polymer. On the basisof the previous works, different terminal acrylation of hyperbranched polymer weresynthesized by modifying the ending hydroxyl of hyperbranched polyester (Boltorn H20),and applied in UV curing systems. Their sturctures and properties were also comprehensivelystudied. Furthermore, a series of UV curable hyperbranched polymers/SiO_2hybrid coatingswith excellent performance were syntheiszed by adding modified silicane sol into UV curablehyperbranched polymers. The main research contents and achievements are listed asfollowing:
     Firstly, two kinds of UV curable hyperbranched urethane acrylates (HBUCA andHBUPA) were synthesized by by modifying hydroxyl-terminated of hyperbranched polyester(Boltorn H20), with semiadduct urethane monoacrylate prepared from polycaprolactonemodified hydroxyethyl acrylate (PCLA2), polyethylene glycol monoacrylate (PEA6) andisophorone diisocyanate (IPDI). The structure and properties of HBUCA and HBUPA werecharacterized by FT-IR,~1H-NMR, GPC, DSC, DMA, TG and rheometer before and after UVcuring. The effect of ending structure and degree of acrylation on molecular weight andpolydispersity, viscosity and T_gof hyperbranched urethane acrylates were stuedied. UVcuring reaction kinetics of hyperbranched urethane acrylates and properties of their UV curedfilms were also studied. The results showed that the rules of increasing of degree of acrylationon properties of HBUCA and HBUPA are similarly. The polydispersity indexes and viscosityof HBUCA and HBUPA oligomers increased gradually, and T_gdecreased with the increasingof degree of acrylation. HBUCA and HBUPA exhibited the characteristics of non-Newtonianbehaviour. Their viscosities were dependent of frequency, which indicates the existence of chain entanglements. The R_P~(max)of HBUCA and HBUPA oligomers increased with theincreasing of degree of acrylation and HBUCA oligomers possessed higher R_P~(max)and R~fthanHBUPA. The thermal decomposition of HBUCA and HBUPA films included two stages, andtheir thermal stability were better than that of line polymers. The E' and T_gof UV curedHBUCA and HBUPA films increased gradually, while tan δmaxand Ts/T_gdecreased with theincreasing of degree of acrylation. Mechanical properties of HBUCA and HBUPA, includingpencil hardness, pendulum hardness, adhesion, flexibility, impact strength increase first anddecrease afterwards with the increasing of degree of acrylation. HBUCA-80and HBUPA-80had optimal mechanical and corrosion resistance properties.
     Secondly, a kind of UV curable hyperbranched polyester acrylates (HBIPA) weresynthesized by modifying hydroxyl-terminated of Boltorn H20with isononanoic acid,phthalic anhydride (PA) and glycidyl methacrylate (GMA) through stepwise reaction. Thestructure and properties of HBIPA were characterized by FT-IR、1H-NMR、GPC、Rheometer、DSC、DMA and TG before and after UV curing. The effect of ending structure and degree ofacrylation on molecular weight and polydispersity, viscosity and T_gof hyperbranchedurethane acrylates were stuedied. UV curing reaction kinetics of hyperbranched urethaneacrylates and properties of their UV cured films were also studied. The results showed that thepolydispersity indexes, viscosity and T_gof HBIPA oligomers increased gradually with theincreasing of degree of acrylation. HBIPA exhibited the characteristics of Newtonianbehaviour. Their viscosities were independent of frequency, which indicates a lack of chainentanglements. When the degree of acrylation increase from25%to50%, R~fof HBIPAincrease from79.8%to85.9%, R_P~(max)increase from0.0155s-1to0.0202s-1. The thermaldecomposition of HBIPA included two stages, and their thermal stability increased with theincreasing of of degree of acrylation. The E', T_gand Ts/T_gof UV cured HBIPA filmsincreased gradually, while tan δmaxdecreased with the increasing of degree of acrylation,indicating the increase of hardness and homogeneous. Furthermore, mechanical properties ofHBIPA films including pencil hardness, pendulum hardness, adhesion, fimpact strengthincreasing with the increasing of degree of acrylation, and HBIPA-50had optimal mechanicaland corrosion resistance properties.
     Thirdly, UV curable MPTMS/SiO_2sols were prepared by acid catalytic sol-gel processfrom tetraethylorthosilicate (TEOS) and methacrylate propyl trimethoxysilicate (MPTMS).The stability of sols were studied. The structure and properties of MPTMS/SiO_2sols werecharacterized by FT-IR、DLS and TG-DTA before and after UV curing. The conversion ofC=C bond and the polycondensation degree of silicone were determined, and the properties ofMPTMS/SiO_2hybrid films were also studied. The results showed that the gelation timeexceeded180days and particle diameter were30nm when the mole ratio of components werenMPTMS/nTEOS=1/2~1/1,nH2O/nSi-O=0.75~1,nEtOH/nSi-O=1~1.25,nHCl/nSi-O=0.006. The curedfilm had high hardness and good flexibility because linear Si-O-Si segmers were introducedinto high-density crosslinked SiO_2network. The conversion of double bonds of MPTMS/SiO_2sols was difficult to reach completely. The use of MPTMS can enhanced the thermal stabilityand mechanical properties of MPTMS/SiO_2cured films.
     Finally, different UV curable hyperbranched polymer (HBUCA、HBUPA and HBIPA)were used as organic components, and MPTMS/SiO_2sols were used as inorganic componentsfor preparing a series of UV curable hyperbranched polymer/SiO_2hybrid coatings. Thestructures and properties of cured fims of hybrid coatings were characterized by FT-IR、SEM、DMA and TG. The effects of the ingredient on structure, interfacial compatibility andproperties of hybrid films were studied. The results showed that UV curable hyperbranchedpolymer/SiO_2hybrid coatings had good storage stability. When the mole ratio of TEOS andMPTMS was1:1, the viscosity of UV curable hyperbranched polymer/SiO_2hybrid coatingshave no change after90days. UV curable hyperbranched polymer/SiO_2hybrid coatings hadgood interfacial compatibility and MPTMS/SiO_2were well distributed in organic matrix. Thethermal stability of hybrid coatings were higher than that of pure polymers. E′and T_gincreased with the increasing of MPTMS/SiO_2. UV curable hyperbranched polymer/SiO_2hybrid coatings have good felxibility, high hardness and excellent abrasion resistance.
引文
[1]聂俊,肖鸣.光聚合技术与应用[M].北京:化学工业出版社,2008.
    [2]陈永烈,曾兆华,杨建文.辐射固化材料及其应用[M].北京:化学工业出版社,2003.
    [3]王德海,江棂.紫外光固化材料——理论与应用[M].北京:科学出版社,2001.
    [4]郝才成,肖新颜,万彩霞.新型紫外光固化涂料的研究进展[J].化工新型材料,2008,36(1):4-6.
    [5]刘海波.紫外光固化涂料的现状和发展方向[J].材料导报,2007,84(6):23-25.
    [6] Bongiovanni R., Montefusco F., Priola A. High performance UV-cured coatings forwood protection [J]. Progress in Organic Coatings,2002,45:359-363.
    [7] Harbourne D. Review of Global Packaging Market2002-2012Potential Implicationfor UV/EB Curing [C].杭州:第九届中国辐射固化年会论文集,2008
    [8] Elias P. Growth and use of UV/EB technology in the American markets [C].Proceeding Radtech Asia,2003
    [9] Xu J.W., Shi W.F. Progress in radiation curing-Marketing and technology [J]. Journalof Coatings Technology,2002,74(9):67-72.
    [10]魏杰,金养智.光固化涂料[M].北京:化学工业出版社,2005.
    [11] Ravve A. Light-associated reactions of synthetic polymers [M]. Berlin: Springer,2006.
    [12] Decker C., Nguyen T.V.T, Decker D., et al. UV-radiation curing of acrylate/epoxidesystems [J]. Polymer,2001,42(13):5531-5541.
    [13] Bajpai M., Shukla V., Kumar A. Film performance and UV curing of epoxy acrylateresins [J]. Progress in Organic Coatings,2002,44(4):271-278.
    [14]肖文清,涂伟萍.光固化超支化聚氨酯丙烯酸酯的合成及其固化膜性能[J].高校化学工程学报,2009,23(02):240-245.
    [15]夏宇正,龙登莲,石淑先.双键单封端聚氨酯丙烯酸酯大分子单体的合成及表征[J].现代化工,2009,29(05):46-49.
    [16]罗雪方,赵秀丽,杜亮, et al.多官能度水性光敏聚氨酯丙烯酸酯的合成与表征[J].涂料工业,2009,39(08):8-11.
    [17] Fink J.K. Unsaturated Polyester Resins [M]. Norwich: William Andrew Publishing,2005.
    [18] Katoh E., Sugisawa H., Oshima A., et al. Evidence for radiation induced crosslinkingin polytetrafluoroethylene by means of high-resolution solid-state19F high-speedMAS NMR [J]. Radiation Physics and Chemistry,1999,54(2):165-171.
    [19] Parnell S., Min K., Cakmak M. Kinetic studies of polyurethane polymerization withRaman spectroscopy [J]. Polymer,2003,44(18):5137-5144.
    [20] Scherzer T. Photopolymerization of acrylates without photoinitiators withshort-wavelength UV radiation: A study with rea-time fourier transform infraredspectroscopy [J]. Journal of Polymer Science Part A: Polymer Chemistry,2004,42(4):894-901.
    [21] Falk B., Vallinas S.M., Crivello J.V. Monitoring photopolymerization reactions withoptical pyrometry [J]. Journal of Polymer Science Part A: Polymer Chemistry,2003,41(4):579-596.
    [22] Bentivoglio Ruiz C.S., Machado L.D.B., Volponi J., et al. Oxygen inhibition andcoating thickness effects on UV radiation curing of weatherfast clearcoats studied byphoto-DSC [J]. Journal of Thermal Analysis and Calorimetry,2004,75(2):507-512.
    [23] Lee T.Y., Roper T.M., J nsson E.S., et al. Influence of hydrogen bonding onphotopolymerization rate of hydroxyalkyl acrylates [J]. Macromolecules,2004,37(10):3659-3665.
    [24] Esposito Corcione C., Malucelli G., Frigione M., et al. UV-curable epoxy systemscontaining hyperbranched polymers: Kinetics investigation by photo-DSC andreal-time FT-IR experiments [J]. Polymer Testing,2009,28(2):157-164.
    [25] Yang D.B. Kinetic studies of photopolymerization using real time FT-IR spectroscopy[J]. Journal of Polymer Science Part A: Polymer Chemistry,1993,31(1):199-208.
    [26] Scherzer T. Depth profiling of the degree of cure during the photopolymerization ofacrylates studied by real-time FT-IR attenuated total reflection spectroscopy [J].Applied spectroscopy,2002,56(11):1403-1412.
    [27] Flory P.J. Molecular size distribution in three dimensional polymers: VI. branchedpolymers containing A-R-Bf-1type units [J]. Journal of the American Chemical Society,1952,74(11):2718-2723.
    [28] Kim Y.H., Webster O.W. Hyperbranched polyphenylenes [J]. Polymeric Preprints,1988,29(2):310-311.
    [29] Kim Y.H., Webster O.W. Water soluble hyperbranched polyphenylene:" aunimolecular micelle?"[J]. Journal of the American Chemical Society,1990,112(11):4592-4593.
    [30] Voit B. Hyperbranched polymers-All problems solved after15years of research?[J].Journal of Polymer Science Part A: Polymer Chemistry,2005,43(13):2679-2699.
    [31] Voit B., Lederer A. Hyperbranched and highly branched polymerarchitectures-synthetic strategies and major characterization aspects [J]. ChemicalReviews,2009,109(11):5924-5973.
    [32] Konkolewicz D., Gilbert R.G., Gray-Weale A. Randomly hyperbranched polymers [J].Physical Review Letters,2007,98(23):238-301.
    [33] Yates C.R., Hayes W. Synthesis and applications of hyperbranched polymers [J].European Polymer Journal,2004,40(7):1257-1281.
    [34] Seiler M. Hyperbranched polymers: Phase behavior and new applications in the fieldof chemical engineering [J]. Fluid Phase Equilibria,2006,241(1-2):155-174.
    [35] Gao C., Yan D. Hyperbranched polymers: from synthesis to applications [J]. Progressin Polymer Science,2004,29(3):183-275.
    [36] Kim Y.H., Webster O.W. Hyperbranched polyphenylenes [J]. Macromolecules,1992,25(21):5561-5572.
    [37] Kim Y.H., Beckerbauer R. Role of end groups on the glass transition of hyperbranchedpolyphenylene and triphenylbenzene derivatives [J]. Macromolecules,1994,27(7):1968-1971.
    [38] Sunder A., Bauer T., Mulhaupt R., et al. Synthesis and thermal behavior of esterifiedaliphatic hyperbranched polyether polyols [J]. Macromolecules,2000,33(4):1330-1337.
    [39] Hahn S.W., Yun Y.K., Jin J.I., et al. Thermotropic hyperbranched polyesters preparedfrom2-[(10-(4-Hydroxyphenoxy) decyl) oxy] terephthalic acid and2-[(10-((4-Hydroxy-1,1-biphenyl-4-yl) oxy) decyl) oxy] terephthalic acid [J].Macromolecules,1998,31(19):6417-6425.
    [40] Yang G., Jikei M., Kakimoto M. Synthesis and properties of hyperbranched aromaticpolyamide [J]. Macromolecules,1999,32(7):2215-2220.
    [41] Morikawa A., Ono K. Preparation of poly (ether ketone) dendrons with gradedstructures [J]. Macromolecules,1999,32(4):1062-1068.
    [42] Bolton D., Wooley K. Synthesis and characterization of hyperbranched polycarbonates[J]. Macromolecules,1997,30(7):1890-1896.
    [43] Hawker C., Frechet J., Grubbs R., et al. Preparation of hyperbranched and starpolymers by a" living", self-condensing free radical polymerization [J]. Journal of theAmerican Chemical Society,1995,117(43):10763-10764.
    [44] Zhang H., Ruckenstein E. Dendritic polymers from vinyl ether [J]. Polymer Bulletin,1997,39(4):399-406.
    [45] Baskaran D. Hyperbranched polymers from divinylbenzene and1,3-diisopropenylbenzene through anionic self-condensing vinyl polymerization [J].Polymer,2003,44(8):2213-2220.
    [46] Gaynor S., Edelman S., Matyjaszewski K. Synthesis of branched and hyperbranchedpolystyrenes [J]. Macromolecules,1996,29(3):1079-1081.
    [47] Suzuki M., Ii A., Saegusa T. Multibranching polymerization: palladium-catalyzedring-opening polymerization of cyclic carbamate to produce hyperbranched dendriticpolyamine [J]. Macromolecules,1992,25(25):7071-7072.
    [48] Simon P.F.W., Radke W., Müller A.H.E. Hyperbranched methacrylates byself-condensing group transfer polymerization [J]. Macromolecular RapidCommunications,1997,18(9):865-873.
    [49] Magnusson H., Malmstrm E., Hult A. Influence of reaction conditions on degree ofbranching in hyperbranched aliphatic polyethers from3-ethyl-3-(hydroxymethyl)oxetane [J]. Macromolecules,2001,34(17):5786-5791.
    [50] Sunder A., Hanselmann R., Frey H., et al. Controlled synthesis of hyperbranchedpolyglycerols by ring-opening multibranching polymerization [J]. Macromolecules,1999,32(13):4240-4246.
    [51] Chang H., Frechet J. Proton-transfer polymerization: a new approach tohyperbranched polymers [J]. Journal of the American Chemical Society,1999,121(10):2313-2314.
    [52] Paulasaari J., Weber W. Synthesis of hyperbranched polysiloxanes by base-catalyzedproton-transfer polymerization. Comparison of hyperbranched polymer microstructureand properties to those of linear analogues prepared by cationic or anionicring-opening polymerization [J]. Macromolecules,2000,33(6):2005-2010.
    [53] Jikei M., Chon S.H., Kakimoto M., et al. Synthesis of hyperbranched aromaticpolyamide from aromatic diamines and trimesic acid [J]. Macromolecules,1999,32(6):2061-2064.
    [54] Emrick T., Chang H.T., Frechet J.M.J. An A2+B3approach to hyperbranched aliphaticpolyethers containing chain end epoxy substituents [J]. Macromolecules,1999,32(19):6380-6382.
    [55] Huan C., Jie Y. Synthesis and characterization of hyperbranched polyimides with goodorganosolubility and thermal properties based on a new triamine and conventionaldianhydrides [J]. Journal of Polymer Science Part A: Polymer Chemistry,2002,40(21):3804-3814.
    [56] Hao J., Jikei M., Kakimoto M. Preparation of hyperbranched aromatic polyimides viaA2+B3approach [J]. Macromolecules,2002,35(14):5372-5381.
    [57] Gao C., Tang W., Yan D.Y., et al. Hyperbranched polymers made from A2, B2and BB'2type monomers,2. Preparation of hyperbranched copoly(sulfone-amine)s bypolyaddition of N-ethylethylenediamine and piperazine to divinylsulfone [J]. Polymer,2001,42(8):3437-3443.
    [58] Gao C., Yan D.Y. Hyperbranched polymers made from commercially available A2andBB2type monomers [J]. Chemical Communications,2001,22(1):107-108.
    [59] Peter F., Josephine B. Properties and applications of poly(propylene imine) dendrimersand poly(esteramide) hyperbranched polymers [J]. Macromolecular Symposia,2000,151(1):581-589.
    [60] Benthem R., Meijerink N., Gelade E., et al. Synthesis and characterization of bis(2-hydroxypropyl) amide-based hyperbranched polyesteramides [J]. Macromolecules,2001,34(11):3559-3566.
    [61] David J. Hyperbranched polymers for hardcoat with superior performances [J].RadTech Asia,2000,21(2):4-8.
    [62] Dzunuzovic E., Tasic S., Bozic B., et al. Dynamical mechanical analysis ofphotocrosslinked hyperbranched urethane acrylates [J]. Journal of the SerbianChemical Society,2004,69(6):441-453.
    [63] Dzunuzovic E., Tasic S., Bozic B., et al. UV-curable hyperbranched urethane acrylateoligomers containing soybean fatty acids [J]. Progress in Organic Coatings,2005,52(2):136-143.
    [64] Dzunuzovic E., Tasic S., Bozic B., et al. Photoreactive hyperbranched urethaneacrylates modified with a branched saturated fatty acid [J]. Reactive and FunctionalPolymers,2006,66(10):1097-1105.
    [65] Tasic S., Bozic B., Dunjic B. Synthesis of new hyperbranched urethane-acrylates andtheir evaluation in UV-curable coatings [J]. Progress in Organic Coatings,2004,51(4):320-327.
    [66] Srba T., Branislav B., Branko D. Hyperbranched urethane-acrylates [J]. HemijskaIndustrija,2004,58(11):505-513.
    [67] Lin J.N., Zeng X.R., Hou Y.J., et al. Synthesis and characterization of UV-curablehyperbranched urethane acrylate [J]. Polymer-Plastics Technology and Engineering,2008,47(3):237-241.
    [68] Gao Q.Z., Li H.Q., Zeng X.R. Preparation and characterization of UV-curablehyperbranched polyurethane acrylate [J]. Journal of Coatings Technology andResearch,2011,8(1):61-66.
    [69] Johansson M., Glauser T., Rospo G., et al. Radiation curing of hyperbranchedpolyester resins [J]. Journal of Applied Polymer Science,2000,75(5):612-618.
    [70] Lange J., Stenroos E., Johansson M., et al. Barrier coatings for flexible packagingbased on hyperbranched resins [J]. Polymer,2001,42(17):7403-7410.
    [71] Samuelsson J., Sundell P.E., Johansson M. Synthesis and polymerization of a radiationcurable hyperbranched resin based on epoxy functional fatty acids [J]. Progress inOrganic Coatings,2004,50(3):193-198.
    [72] Corcione C.E., Malucelli G., Frigione M., et al. UV-curable epoxy systems containinghyperbranched polymers: Kinetics investigation by photo-DSC and real-time FT-IRexperiments [J]. Polymer Testing,2009,28(2):157-164.
    [73] Fu Q., Liu J.H., Shi W.F. Preparation and photopolymerization behavior ofmultifunctional thiol-ene systems based on hyperbranched aliphatic polyesters [J].Progress in Organic Coatings,2008,63(1):100-109.
    [74] Trey S.M., Nilsson C., Malmstr m E., et al. Thiol-ene networks and reactive surfacesvia photoinduced polymerization of allyl ether functional hyperbranched polymers [J].Progress in Organic Coatings,2010,67(3):348-355.
    [75] Huang Z.G., Shi W.F. Synthesis and properties of a novel hyperbranchedpolyphosphate acrylate applied to UV curable flame retardant coatings [J]. EuropeanPolymer Journal,2007,43(4):1302-1312.
    [76] Wang H.L., Xu S.P., Shi W.F. Photopolymerization behaviors of hyperbranchedpolyphosphonate acrylate and properties of the UV cured film [J]. Progress in OrganicCoatings,2009,65(4):417-424.
    [77] Miao H., Cheng L.L., Shi W.F. Fluorinated hyperbranched polyester acrylate used asan additive for UV curing coatings [J]. Progress in Organic Coatings,2009,65(1):71-76.
    [78] Asif A., Huang C.Y., Shi W.F. UV curing behaviors and hydrophilic characteristics ofUV curable waterborne hyperbranched aliphatic polyesters [J]. Polymers forAdvanced Technologies,2003,14(9):609-615.
    [79] Asif A., Shi W.F. Synthesis and properties of UV curable waterborne hyperbranchedaliphatic polyester [J]. European Polymer Journal,2003,39(5):933-938.
    [80] Asif A., Shi W.F. UV curable waterborne polyurethane acrylate dispersions based onhyperbranched aliphatic polyester: effect of molecular structure on physical andthermal properties [J]. Polymers for Advanced Technologies,2004,15(11):669-675.
    [81] Asif A., Huang C.Y., Shi W.F. Structure-property study of waterborne, polyurethaneacrylate dispersions based on hyperbranched aliphatic polyester for UV-curablecoatings [J]. Colloid and Polymer Science,2004,283(2):200-208.
    [82] Asif A., Huang C.Y., Shi W.F. Photopolymerization of waterborne polyurethaneacrylate dispersions based on hyperbranched aliphatic polyester and properties of thecured films [J]. Colloid and Polymer Science,2005,283(7):721-730.
    [83] Asif A., Shi W.F., Shen X.F, et al. Physical and thermal properties of UV curablewaterborne polyurethane dispersions incorporating hyperbranched aliphatic polyesterof varying generation number [J]. Polymer,2005,46(24):11066-11078.
    [84] Asif A., Hu L.H., Shi W.F. Synthesis, rheological, and thermal properties ofwaterborne hyperbranched polyurethane acrylate dispersions for UV curable coatings[J]. Colloid and Polymer Science,2009,287(9):1041-1049.
    [85]王孝科,田敉.光固化水性超支化聚酯的合成及性能研究[J].涂料工业,2008,38(11):12-16.
    [86]陈梦茹,龙宇,金养智.含光敏基团的光固化水性超支化聚酯的合成与性能研究[J].影像技术,2003,(2):18-21.
    [87] Johansson M., Malmstr m E., Jansson A., et al. Novel concept for low temperaturecuring powder coatings based on hyperbranched polyesters [J]. Journal of CoatingsTechnology,2000,72(906):49-54.
    [88] Claesson H., Malmstr m E., Johansson M., et al. Rheological behaviour duringUV-curing of a star-branched polyester [J]. Progress in Organic Coatings,2002,44(1):63-67.
    [89] Claesson H., Malmstr m E., Johansson M., et al. Synthesis and characterisation of starbranched polyesters with dendritic cores and the effect of structural variations on zeroshear rate viscosity [J]. Polymer,2002,43(12):3511-3518.
    [90]魏伟,张艳,魏杰.可UV固化粉末状超支化树脂的研究[J].辐射研究与辐射工艺学报,2008,26(3):161-165.
    [91]武利民,周树学,游波, et al.有机-无机纳米复合涂料的制备、结构和性能[J].涂料工业,2006,36(8):4751.
    [92]刘诗鑫,杨保平,催锦峰.各类无机/有机杂化涂料的研究进展[J].表面工程资讯,2010,(1):5-6.
    [93] Han Y.H., Taylor A., Mantle M., et al. UV curing of organic-inorganic hybrid coatingmaterials [J]. Journal of Sol-Gel Science and Technology,2007,43(1):111-123.
    [94] Wouters M.E.L., Wolfs D.P., Van M.C., et al. Transparent UV curable antistatic hybridcoatings on polycarbonate prepared by the sol-gel method [J]. Progress in OrganicCoatings,2004,51(4):312-319.
    [95] Yu Y.Y., Chien W.C., Chen S.Y. Preparation and optical properties of organic/inorganicnanocomposite materials by UV curing process [J]. Materials&Design,2010,31(4):2061-2070.
    [96] Zhang X., Yang J., Zeng Z., et al. Stabilized dispersions of titania nanoparticles via asol–gel process and applications in UV-curable hybrid systems [J]. PolymerInternational,2006,55(4):466-472.
    [97]贾秀丽,刘敬成,王成志, et al.溶胶-凝胶法制备有机/无机杂化材料及其在光固化涂料中的应用[J].江南大学学报(自然科学版),2011,10(2):206-211.
    [98] Wan T., Lin J., Li X., et al. Preparation of epoxy-silica-acrylate hybrid coatings [J].Polymer Bulletin,2008,59(6):749-758.
    [99]刘辉,罗英武,李宝芳.溶胶-凝胶法制备紫外光固化纳米复合涂料[J].高校化学工程学报,2004,18(3):329-333.
    [100] Xiao X., Hao C. Preparation of waterborne epoxy acrylate/silica sol hybrid materialsand study of their UV curing behavior [J]. Colloids and Surfaces A: Physicochemicaland Engineering Aspects,2010,359(1-3):82-87.
    [101]艾晓莉,胡小玲.有机-无机杂化膜的研究进展[J].化学进展,2004,16(4):654-659.
    [102]宋东升,杜启云,王薇.有机-无机杂化膜的研究进展[J].高分子通报,2010,(3):12-15.
    [103] Li F., Zhou S., Gu G., et al. UV-curable coatings with nano-TiO2[J]. PolymerEngineering&Science,2006,46(10):1402-1410.
    [104]马营营,高俊刚,林浩杰. UV-固化GMA-PUA-纳米SiO2杂化涂料固化动力学[J].涂料工业,2011,41(8):39-42.
    [105]李文军,陈范才,陈良木.光固化纳米二氧化硅/环氧丙烯酸酯杂化涂料的制备与表征[J].电镀与涂饰,2010,2(7):54-58.
    [106] Peila R., Malucelli G., Priola A. Preparation and characterization of UV-cured acrylicnanocomposites based on modified organophilic montmorillonites [J]. Journal ofThermal Analysis and Calorimetry,2009,97(3):839-844.
    [107] Maji P.K., Guchhait P.K., Bhowmick A.K. Effect of the microstructure of ahyperbranched polymer and nanoclay loading on the morphology and properties ofnovel polyurethane nanocomposites [J]. ACS Applied Materials&Interfaces,2009,1(2):289-300.
    [108] Dean K.M., Bateman S.A., Simons R. A comparative study of UV activesilane-grafted and ion-exchanged organo-clay for application in photocurable urethaneacrylate nano-and micro-composites [J]. Polymer,2007,48(8):2231-2240.
    [109] Uhl F.M., Webster D.C., Davuluri S.P., et al. UV curable epoxy acrylate–claynanocomposites [J]. European Polymer Journal,2006,42(10):2596-2605.
    [110] Zou J.H., Zhao Y.B., Shi W.F., et al. Preparation and characters of hyperbranchedpolyester-based organic-inorganic hybrid material compared with linear polyester [J].Polymers for Advanced Technologies,2005,16(1):55-60.
    [111] Geiser V., Leterrier Y., Manson J.A.E. Conversion and shrinkage analysis of acrylatedhyperbranched polymer nanocomposites [J]. Journal of Applied Polymer Science,2009,114(3):1954-1963.
    [112] Fogelstr m L., Antoni P., Malmstr m E., et al. UV-curable hyperbranchednanocomposite coatings [J]. Progress in Organic Coatings,2006,55(3):284-290.
    [113] Mishra R.S., Mishra A.K., Raju K.V.S.N. Synthesis and property study of UV-curablehyperbranched polyurethane acrylate/ZnO hybrid coatings [J]. European PolymerJournal,2009,45(3):960-966.
    [114] Amerio E., Sangermano M., Malucelli G., et al. Preparation and characterization ofhyperbranched polymer/silica hybrid nanocoatings by dual-curing process [J].Macromolecular Materials and Engineering,2006,291(10):1287-1292.
    [115]郝名扬,梁红波,管静, et al.超支化聚氨酯阻尼涂层的制备及性能[J].高等学校化学学报,2009,30(1):215-220.
    [116]付锴,周集义.紫外光固化聚氨酯丙烯酸酯研究进展[J].化学推进剂与高分子材料,2009,7(02):6-14.
    [117]刘志娟,孙向民,齐贵亮.聚氨酯丙烯酸酯预聚体的合成及应用[J].化学与粘合,2009,31(01):62-65.
    [118]范燃,曾光明,单文伟, et al.六官能UV固化聚氨酯丙烯酸酯的合成[J].热固性树脂,2008,23(02):19-22.
    [119]赵泽琳,杨茂,高峻, et al.聚氨酯丙烯酸酯型大分子单体的制备及其光固化性能的研究[J].四川化工,2008,11(05):11-14.
    [120]张高文,熊臻力.紫外光固化聚氨酯丙烯酸酯涂料的研究进展[J].中国涂料,2008,23(04):29-33.
    [121] Bao F., Shi W. Synthesis and properties of hyperbranched polyurethane acrylate usedfor UV curing coatings [J]. Progress in Organic Coatings,2010,68(4):334-339.
    [122] Lu W.H., Xu W.J., Wu Y.M., et al. Synthesis of dendritic poly(urethane acrylate) usedfor UV-curable coatings [J]. Progress in Organic Coatings,2006,56(2-3):252-255.
    [123]林金娜,曾幸荣,侯有军.可UV固化的超支化聚酯改性聚氨酯丙烯酸酯的合成[J].聚氨酯工业,2009,24(06):29-32.
    [124] Sun F., Shi J., Du H.G., et al. Synthesis and characterization of hyperbranchedphotosensitive polysiloxane urethane acrylate [J]. Progress in Organic Coatings,2009,66(4):412-419.
    [125] Lin D., Kou H.G., Shi W.F., et al. Photopolymerizaton of hyperbranched aliphaticacrylated poly(amide ester). II. Photopolymerization kinetics [J]. Journal of AppliedPolymer Science,2001,82(7):1637-1641.
    [126] Yang Z.L., Wicks D.A., Yuan J.J., et al. Newly UV-curable polyurethane coatingsprepared by multifunctional thiol-and ene-terminated polyurethane aqueousdispersions: Photopolymerization properties [J]. Polymer,2010,51(7):1572-1577.
    [127]朱胜武.紫外光可固化有机磷阻燃化合物的合成及其阻燃机理研究[D].长沙:中国科学技术大学,2003.
    [128]郑少瑜,孟庆华.一种可功能化的Boltorn型超支化聚酯的合成研究[J].涂料工业,2010,40(04):4-7.
    [129]赵颜凤,傅英娟.超支化星形聚合物的合成方法及其在造纸中的应用[J].纸和造纸,2010,29(03):56-59.
    [130] Kim C.S., Kim B.H., Kim K. Synthesis and characterization of polyether urethaneacrylate-LiCF3SO3-based polymer electrolytes by UV-curing in lithium batteries [J].Journal of Power Sources,1999,84(1):12-23.
    [131] Iguerb O., Bertrand P. Graft photopolymerization of polyethylene glycol monoacrylate(PEGA) on poly (methyl methacrylate)(PMMA) films to prevent BSA adsorption [J].Surface and Interface Analysis,2008,40(3-4):386-390.
    [132] Takahashi T., Watanabe H., Miyagawa N., et al. Application of photopolymer tocore-hair type microgels with various hair length [J]. Polymers for AdvancedTechnologies,2002,13(1):33-39.
    [133] Lom lder R., Plogmann F., Speier P. Selectivity of isophorone diisocyanate in theurethane reaction influence of temperature, catalysis, and reaction partners [J]. Journalof Coatings Technology,1997,69(868):51-57.
    [134] Black M., Rawlins J.W. Thiol-ene UV-curable coatings using vegetable oilmacromonomers [J]. European Polymer Journal,2009,45(5):1433-1441.
    [135]陈志明,尹辉军. UV固化脂族聚氨酯丙烯酸酯合成动力学研究[J].涂料工业,2004,34(04):15-17.
    [136]刘剑洪,李伦军.聚氨酯预聚物合成反应动力学研究[J].深圳大学学报(理工版),2003,10(4):20-26.
    [137]陈伟林,单国荣,黄志明.聚氨酯丙烯酸酯齐聚物的合成及其反应动力学[J].化学反应工程与工艺,2005,21(6):487-491.
    [138] Chan C.L.H., Solis C.R., Vargas C.R.F., et al. Degradation studies on segmentedpolyurethanes prepared with HMDI, PCL and different chain extenders [J]. ActaBiomaterialia,2010,6(6):2035-2044.
    [139] Khudyakov I.V., Swiderski K.W., Greer R.W. Structure-property relations inUV-curable urethane acrylate oligomers [J]. Journal of Applied Polymer Science,2006,99(2):489-494.
    [140]罗运军,夏敏,王兴元.超支化聚酯[M].北京:化学工业出版社,2009.
    [141] Barbeau P., Gerard J., Magny B., et al. Effect of the diisocyanate on the structure andproperties of polyurethane acrylate prepolymers [J]. Journal of Polymer Science PartB: Polymer Physics,2000,38(21):2750-2768.
    [142]潘玉红,陈月珍.低极性聚氨酯丙烯酸防腐面漆[J].涂料技术与文摘,2009,30(08):15-17.
    [143]潘东营,曾光明,单文伟, et al.紫外光固化脂肪族聚氨酯丙烯酸酯的合成研究[J].热固性树脂,2008,23(03):7-9.
    [144] Zhang Y., Asif A., Shi W.F. Highly branched polyurethane acrylates and theirwaterborne UV curing coating [J]. Progress in Organic Coatings,2011,71(3):295-301.
    [145] Xu G., Shi W.F. Synthesis and characterization of hyperbranched polyurethaneacrylates used as UV curable oligomers for coatings [J]. Progress in Organic Coatings,2005,52(2):110-117.
    [146] Chen X.L., Hu Y., Song L., et al. Preparation and thermal properties of a novelUV-cured star polyurethane acrylate coating [J]. Polymers for Advanced Technologies,2008,19(4):322-327.
    [147] Yoo H.J., Lee Y.H., Kwon J.Y., et al. Comparision of the properties of UV-curedpolyurethane acrylates containing different diisocyanates and low molecular weightdiols [J]. Fibers and Polymers,2001,2(3):122-128.
    [148] Athawale V.D., Kulkarni M.A. Polyester polyols for waterborne polyurethanes andhybrid dispersions [J]. Progress in Organic Coatings,2010,67(1):44-54.
    [149] Tey J., Soutar A., Mhaisalkar S., et al. Mechanical properties of UV-curablepolyurethane acrylate used in packaging of MEMS devices [J]. Thin Solid Films,2006,504(1):384-390.
    [150] Kim B., Lee K., Jo N. Basic structure-property behavior of UV curable polyurethaneacrylates [J]. Journal of Polymer Science Part A: Polymer Chemistry,2000,34(11):2095-2102.
    [151] Gite V.V., Mahulikar P.P., Hundiwale D.G. Preparation and properties of polyurethanecoatings based on acrylic polyols and trimer of isophorone diisocyanate [J]. Progressin Organic Coatings,2010,68(4):307-312.
    [152] Lu M., Lee J., Shim M., et al. Thermal degradation of film cast from aqueouspolyurethane dispersions [J]. Journal of Applied Polymer Science,2002,85(12):2552-2558.
    [153] Seo J., Jang E., Song J., et al. Preparation and properties of poly(urethane acrylate)films for ultraviolet-curable coatings [J]. Journal of Applied Polymer Science,2010,118(4):2454-2460.
    [154]苏立志,李志章.耐温聚合物基复合材料的摩擦学机理与磨损机理研究进展[J].材料科学与工程学报,2000,18(2):125-128.
    [155] Masson F., Decker C., Andre S., et al. UV-curable formulations for UV-transparentoptical fiber coatings: I. Acrylic resins [J]. Progress in Organic Coatings,2004,49(1):1-12.
    [156] Awokola M., Lenhard W., L ffler H., et al. UV crosslinking of acryloyl functionalpolymers in the presence of oxygen [J]. Progress in Organic Coatings,2002,44(3):211-216.
    [157] Zhang X. Modifications and applications of hyperbranched aliphatic polyesters basedon dimethylolpropionic acid [J]. Polymer International,2011,60(2):153-166.
    [158] Schmidt L.E., Leterrier Y., Schmah D., et al. Conversion analysis of acrylatedhyperbranched polymers UV-cured below their ultimate glass transition temperature[J]. Journal of Applied Polymer Science,2007,104(4):2366-2376.
    [159] Simic S., Dunjic B., Tasic S., et al. Synthesis and characterization of interpenetratingpolymer networks with hyperbranched polymers through thermal-UV dual curing [J].Progress in Organic Coatings,2008,63(1):43-48.
    [160] Marinovic S., Popovic I., Dunjic B., et al. The influence of different components oninterpenetrating polymer network's (IPN's) characteristics as automotive top coats [J].Progress in Organic Coatings,2010,68(4):293-298.
    [161] Johansson M., Glauser T., Jansson A., et al. Design of coating resins by changing themacromolecular architecture: solid and liquid coating systems [J]. Progress in OrganicCoatings,2003,48(2-4):194-200.
    [162] Wei H., Lu Y., Shi W., et al. UV curing behavior of methacrylated hyperbranchedpoly(amine-ester)s [J]. Journal of Applied Polymer Science,2001,80(1):51-57.
    [163] Manczyk K., Szewczyk P. Highly branched high solids alkyd resins [J]. Progress inOrganic Coatings,2002,44(2):99-109.
    [164] Bat E., Gunduz G., Kisakurek D., et al. Synthesis and characterization ofhyperbranched and air drying fatty acid based resins [J]. Progress in Organic Coatings,2006,55(4):330-336.
    [165] Karakaya C., Gündüz G., Aras L., et al. Synthesis of oil based hyperbranched resinsand their modification with melamine-formaldehyde resin [J]. Progress in OrganicCoatings,2007,59(4):265-273.
    [166] Deka H., Karak N. Bio-based hyperbranched polyurethanes for surface coatingapplications [J]. Progress in Organic Coatings,2009,66(3):192-198.
    [167] Aydin S., Ak ay H., zkan E., et al. The effects of anhydride type and amount onviscosity and film properties of alkyd resin [J]. Progress in Organic Coatings,2004,51(4):273-279.
    [168]谷文祥,王奎堂.有机化学[M].北京:科学出版社,2003.
    [169] Nabloussi A., Marquez-Lema A., Fernandez-Martinez J.M., et al. Novel seed oil typesof Ethiopian mustard with high levels of polyunsaturated fatty acids [J]. IndustrialCrops and Products,2008,27(3):359-363.
    [170] Jiang L., Lam Y.C., Tam K.C., et al. The influence of fatty acid coating on therheological and mechanical properties of thermoplastic polyurethane(TPU)/nano-sized precipitated calcium carbonate (NPCC) composites [J]. PolymerBulletin,2006,57(4):575-586.
    [171] OkudeY, Ishikura S. New resin systems for high performance top coats [J]. Progress inOrganic Coatings,1995,26:197-205.
    [172] Spivey A.C., Arseniyadis S. Nucleophilic Catalysis by4-(Dialkylamino) pyridinesRevisited—The Search for Optimal Reactivity and Selectivity [J]. AngewandteChemie International Edition,2004,43(41):5436-5441.
    [173] Kurahashi T., Mizutani T., Yoshida J. Effect of intramolecular hydrogen-bondingnetwork on the relative reactivities of carbohydrate OH groups [J]. J. Chem. Soc.,Perkin Trans.1,1999,(4):465-474.
    [174]姜其斌,吴壁耀.热固性树脂[J].环氧丙烯酸双酯树脂的合成与表征,2001,16(4):6-11.
    [175]梁永升,梁亮.合成光敏性环氧丙烯酸酯的催化剂研究[J].精细化工,2006,23(3):278-281.
    [176] Barthlott W., Neinhuis C. Purity of the sacred lotus, or escape from contamination inbiological surfaces [J]. Planta,1997,202(1):1-8.
    [177] Neinhuis C., Barthlott W. Characterization and distribution of water-repellent,self-cleaning plant surfaces [J]. Annals of Botany,1997,79(6):667.
    [178]徐国财,李爱元.纳米SiO2对紫外光固化体系性质的影响[J].安徽理工大学学报(自然科学版),2003,23(2):53-56.
    [179] Eo Y.J., Kim D.J., Bae B.S., et al. Coating of Tetraethylorthosilicate(TEOS)/Vinyltriethoxysilane (VTES) Hybrid Solution on Polymer Films [J]. Journalof Sol-Gel Science and Technology,1998,13(1):409-413.
    [180] Hu L., Zhang X., Sun Y., et al. Hardness and elastic modulus profiles of hybridcoatings [J]. Journal of Sol-Gel Science and Technology,2005,34(1):41-46.
    [181] Li F., Zhou S., Wu L. Preparation and characterization of UV-curable MPS-modifiedsilica nanocomposite coats [J]. Journal of Applied Polymer Science,2005,98(5):2274-2281.
    [182] Gvishi R. Fast sol–gel technology: from fabrication to applications [J]. Journal ofSol-Gel Science and Technology,2009,50(2):241-253.
    [183] Soppera O., Croutxé B.C. Real-time Fourier transform infrared study of free-radicalUV-induced polymerization of hybrid sol-gel. I. Effect of silicate backbone onphotopolymerization kinetics [J]. Journal of Polymer Science Part A: PolymerChemistry,2003,41(5):716-724.
    [184] Soppera O., Croutxé B.C. Real-time Fourier transform infrared study of thefree-radical ultraviolet-induced polymerization of a hybrid sol-gel. II. The effect ofphysicochemical parameters on the photopolymerization kinetics [J]. Journal ofPolymer Science Part A: Polymer Chemistry,2003,41(6):831-840.
    [185] Wouters M.E.L., Wolfs D.P., D.L.M.C V., et al. Transparent UV curable antistatichybrid coatings on polycarbonate prepared by the sol–gel method [J]. Progress inOrganic Coatings,2004,51(4):312-319.
    [186]沈钟,赵振国,王果庭.胶体与表面化学[M].北京:化学工业出版社,2004.
    [187]左藤,鲁赫.聚合物吸附对胶态分散体稳定性的影响[M].北京:科学出版社,1988.
    [188] Sanchez J., McCormick A. Kinetic and thermodynamic study of the hydrolysis ofsilicon alkoxides in acidic alcohol solutions [J]. The Journal of Physical Chemistry,1992,96(22):8973-8979.
    [189]侯万国,孙德军,张春光.应用胶体化学[M].北京:科学出版社,1998.
    [190] Bauer F., Flyunt R., Czihal K., et al. UV curing and matting of acrylate coatingsreinforced by nano-silica and micro-corundum particles [J]. Progress in OrganicCoatings,2007,60(2):121-126.
    [191] Sangermano M., Lak N., Malucelli G., et al. UV-curing and characterization ofpolymer-clay nanocoatings by dispersion of acrylate-funtionalized organoclays [J].Progress in Organic Coatings,2008,61(1):89-94.
    [192]陈国栋.丙烯酸酯聚氨酯/纳米二氧化硅复合涂层的研究[D].上海,2005.
    [193] Pantoja M., Díaz-Benito B., Velasco F., et al. Analysis of hydrolysis process ofγ-methacryloxypropyltrimethoxysilane and its influence on the formation of silanecoatings on6063aluminum alloy [J]. Applied Surface Science,2009,255(12):6386-6390.
    [194] Zhang H., Tang L.C., Zhang Z., et al. Wear-resistant and transparent acrylate-basedcoating with highly filled nanosilica particles [J]. Tribology International,2010,43(1-2):83-91.
    [195] Xu J., Pang W., Shi W. Synthesis of UV-curable organic-inorganic hybrid urethaneacrylates and properties of cured films [J]. Thin Solid Films,2006,514(1-2):69-75.
    [196] Xie T., Zhou C., Feng S., et al. Study of poly (methyl methacrylate–maleicanhydride)/silica hybrid materials [J]. Journal of Applied Polymer Science,2000,75(3):379-383.
    [197]曾幸荣,吴振耀,侯有军, et al.高分子近代测试分析技术[M].广州:华南理工出版社,2007.
    [198] Hsiue G.H., Liu Y.L., Liao H.H. Flame-retardant epoxy resins: An approach fromorganic-inorganic hybrid nanocomposites [J]. Journal of Polymer Science Part A:Polymer Chemistry,2001,39(7):986-996.
    [199] Sassi Z., Bureau J.C., Bakkali A. Structural characterization of the organic/inorganicnetworks in the hybrid material (TMOS-TMSM-MMA)[J]. Vibrational spectroscopy,2002,28(2):251-262.
    [200] Wang H., Xu P., Meng S., et al. Poly (methyl methacrylate)/silica/titania ternarynanocomposites with greatly improved thermal and ultraviolet-shielding properties [J].Polymer Degradation and Stability,2006,91(7):1455-1461.
    [201] Bayramo lu G., Kahraman M.V., Kayaman-Apohan N., et al. Synthesis andcharacterization of UV-curable dual hybrid oligomers based on epoxy acrylatecontaining pendant alkoxysilane groups [J]. Progress in Organic Coatings,2006,57(1):50-55.
    [202] Chattopadhyay D.K., Panda S.S., Raju K. Thermal and mechanical properties ofepoxy acrylate/methacrylates UV cured coatings [J]. Progress in Organic Coatings,2005,54(1):10-19.
    [203]郑树亮.应用胶体化学[M].上海:华东理工大学出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700