多种拓扑结构聚合物的可控合成及对介孔硅纳米粒子的修饰
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物的结构与其性能是密切相关的。阐明聚合物结构与性能的关系对于高分子化学的意义在于:根据对性能的要求,设计不同结构的分子,使其具有预定的性能。因此,运用已知的可控活性聚合反应原理,合成出各种新型结构聚合物,对于探索聚合物的链结构与性能的关系,设计具有预定性能的分子结构,有着非常重要的意义。
     超支化聚合物是一类具有高度支化三维结构的大分子,与线形聚合物相比,它们有很多独特的物理和化学性质,如低粘度,高流动性,良好的溶解性和大量的端基等。超支化聚合物的合成方法主要可分为两种:(一)多官能团单体的缩聚反应, (二)自缩合乙烯基聚合反应。利用这些聚合方法,研究者们成功制备了包括超支化聚酯,聚酰胺,聚碳酸酯和聚氨酯等一系列的超支化聚合物。超支化聚合物已在医药载体、非线性光学、能量存储和传递、纳米材料和催化剂等诸多领域获得广泛应用。
     嵌段共聚物具有特殊的物理化学性质,作为热塑性弹性体、表面活性剂、表面修饰剂、分散剂和聚合物共混的增溶剂等有着广泛的用途,受到了学术界和工业界的广泛关注。活性自由基聚合技术的发展,为嵌段聚合物的合成提供了更多的手段,很多新型的结构规整、分子量可控和分子量分布窄的嵌段聚合物不断被合成出来。
     由于具有高度有序的结构,比表面积大,孔道内部容积高,孔径分布窄,介孔硅纳米粒子(MSNs)被认为是一种理想的无机纳米载体。大量的文献报道了介孔硅材料广泛地应用于生物催化,骨组织工程和药物控制释放等生物医学领域。通过介孔硅纳米粒子与聚合物的复合,研究者可以控制有机无机纳米杂化体系的结构和性质。利用表面引发的可控自由基聚合(SI-CRP)可以方便地制备聚合物接枝介孔硅纳米粒子。
     在前人工作的基础上,本论文在高分子可控合成和材料改性方向上进行了有意义的探索:结合Sonogashira反应和自缩合原子转移自由基乙烯基聚合(SCATRVP)反应,合成了带有超支化侧链的共轭聚合物;应用活性自由基聚合和自缩合乙烯基聚合反应等,制备了不同拓扑结构聚合物修饰的介孔硅纳米粒子,赋予介孔硅纳米粒子以良好的分散性能和特定的功能;以叔丁基过氧化氢-抗坏血酸为引发剂,在室温水相中合成了多种嵌段聚合物并对其性能进行研究。具体研究结果简述如下:
     1)为了提高聚对苯撑乙炔(PPE)的溶解性,同时降低聚对苯撑乙炔分子链间的相互作用,我们通过SCATRVP反应制备了一种新型的具有超支化聚合物侧链的共轭聚合物PPE-g-HPBBEA。PPE-g-HPBBEA的分子量随着BBEA与PPE-Br投料比的增加而增加。聚合物主链上接枝有超支化聚合物,由于超支化侧链降低了PPE主链的π-π相互作用和PPE主链的堆积,因此PPE-g-HPBBEA在有机溶剂中有着良好的溶解性。相较于PPE-OH, PPE-g-HPBBEA的量子产率有了明显提高,同时随着侧链超支化聚合物分子量的增大,PPE-g-HPBBEA的荧光量子产率也逐渐增加。
     2)为了提高介孔硅纳米粒子的分散性和稳定性,我们以表面带有ATRP引发基团的介孔硅纳米粒子(MSN-Br)为引发剂,进行自引发单体BBEA的SCATRVP,得到了表面接枝有超支化聚合物的介孔硅纳米粒子(MSN-g-HPBBEA)。随着BBEA与MSN-Br投料重量比的不断增大,表面接枝的超支化聚合物的分子量逐渐增大。我们利用所制备的MSN-g-HPBBEA表面的众多ATRP引发基团,继续引发DMAEMA的ATRP反应,制得了具有pH响应性的介孔硅纳米粒子,这种杂化纳米粒子在药物传输和生物显像等领域有广泛的应用前景。
     3)我们以MSN-Br为ATRP引发剂,聚合两种带有不同氧化乙烯侧链的单体(MEO2MA和OEGMA),得到了具有核壳结构的新型杂化粒子MSN-g-PMO,同时MSN的介孔结构仍然得以保留。我们通过调整MEO2MA和OEGMA的投料摩尔比,得到了具有不同LCST的MSN-g-PMO。FITC模型分子可以在室温下负载到MSN中,并通过温度的改变来进行FlTC的控制释放。通过内吞作用,MSN-g-PMO可以将FITC分子携带进入细胞并在一定温度下在细胞内释放。MSN-g-PMO具有良好的生物相容性和非常低的细胞毒性,在生物标记,生物传感器和药物控制释放领域都有广泛的应用前景。
     4)为了实现MEO2MA和OEGMA在水相中的RAFT聚合反应,我们以抗坏血酸-叔丁基过氧化氢为引发剂,CMP为RAFT试剂,在室温下水相中成功合成了PDMAa。利用PDMAa大分子RAFT试剂增加MEO2MA在水中的溶解性,同时控制MEO2MA和OEGMA的聚合,在水中制备了A-B-A三嵌段聚合物PDMAa-PMO-PDMAa。该三嵌段聚合物具有温敏性,其LCST随着OEGMA单元在共聚物中的含量增加而升高。该氧化还原引发体系生物相容性良好,在生物医用材料制备领域有着特殊价值。研究发现所合成的嵌段共聚物在不同的温度下可以形成胶束结构,一些难溶于水的物质可以进入胶束的内核,并可以在一定温度下通过胶束的解离而释放出来。这些性质都使得PDMAa-PMO-PDMAa在药物缓释领域有广泛的应用前景。
     5)我们利用RAFT聚合方法,在水相中室温下合成了PEO-b-PDMAEMA两嵌段共聚物有,并与MAH-β-CD反应,最终得到了PEO-b-PDMAEMA-(MAH-β-CD)共聚物。该聚合物生物相容性优良,细胞毒性小,是一种优秀的基因转染试剂。通过细胞转染实验,我们证实了该共聚物可以作为基因传递材料进入细胞并将负载的GFP基因成功表达。同时经过实验,我们发现PEO-b-PDMAEMA-(MAH-β-CD)共聚物可以引起细胞的自噬行为,这些优异的性质使得PEO-b-PDMAEMA-(MAH-β-CD)共聚物有望成为一种潜在的基因治疗材料在医治肿瘤方面有着广泛用途。
It is well known that the properties of polymers are strongly influenced by their chain architecture. The design of macromolecules is important for obtaining the polymer materials with predetermined properties. Controlling polymer properties through design and synthesis of copolymers and macromolecular architectures is a challenging theme for polymer chemistry. For studying the relationship between the architecture and properties of polymers, and further designing the polymers with predetermined properties, it is necessary to apply known controlled living polymerization mechanism to synthesize different kinds of polymer with special architecture.
     Hyperbranched polymers are highly branched macromolecules with three-dimensional dentritic architecture, and they have many special physical and chemical properties, such as low viscosity, high fluidity, good solubility and a large number of terminal groups in comparison of linear polymers. The synthesis of hyperbranched polymers can be classified by two main strategies:(i) step-growth polycondensation of ABX monomers and (ii) self-condensing vinyl polymerization. Utilizing these polymerization strategies, a wide variety of hyperbranched architectures have been synthesized successfully, including hyperbranched polyesters, polyamides, polycarbonates and polyurethanes. Hyperbranched polymers have been utilized in various fields such as medicine carriers, nonlinear optics, nanometer materials and catalysis.
     Recently, block copolymers have attracted considerable attention because of their unique behaviors and potential applications, such as thermoplastics, surfactants, modifiers, dispersants, and tackifier, etc. With the development of living radical polymerizations, such as SFRP, ATRP and RAFT, a large number of novel well-defined block copolymers with controlled molecular weights and narrow molecular weight distributions were prepared.
     The nanoscale coupling of organic and inorganic materials has proven to be a very efficient way to create smart hybrid materials. Due to their highly ordered structure associated with large specific surface area, high internal volume, and narrow pore size distribution, mesoporous silica nanoparticles (MSNs) are ideal inorganic nanocarriers. The increasing interest in these materials is strongly evidenced by their biomedical applications devoted for instance to biocatalysis, bone tissue engineering, or to the creation of stimuli-responsive nanovalves for controlled drug delivery. Such hybrid organic-inorganic nanosystems can be advantageously created by coupling MSNs with polymers of controlled architecture and precise properties. As a facile method to synthesize polymer grafted MSNs, surface-initiated controlled free radical polymerization (SI-CRP) provides polymer brushes grafted MSNs.
     Based on the researches of the precursors, this dissertation described several outspread works in the synthesis of topologically structured polymers and the modification of mesoporous silica nanoparticles. All these facts are the origin and impetus of this thesis. The main results obtained in this thesis are as follows:
     1) To enhance the solubility of PPE and decreaseπ-πinteractions of PPE main chains, a facile synthetic strategy for preparation of a novel conjugated polymer with hyperbranched polymer side chains-PPE-g-HPBBEA has been developed through SCATRVP in one-pot. The molecular weight of PPE-g-HPBBEA increased with increasing feed ratio of BBEA to PPE-Br. The conjugated PPE backbones are wrapped with the HPBBEA, and this structure restrains the stacking of conjugated PPE chains because hyperbranched side chains decrease theπ-πinteractions of PPE main chains. Thus, the PPE-g-HPBBEA has good solubility in normal organic solvents such as THF and chloroform. The quantum yields of PPE-g-HPBBEAs increased significantly in comparison with their precursor, PPE-OH, and the quantum yields increased with the increase of molecular weight of the HPBBEA on the PPE backbones.
     2) Core-shell nanostructure with a mesoporous silica nanoparticle core and a hyperbranched polymer shell has been prepared by the surface-initiated SCATRVP of BBEA using MSN with bromoisobutyryl groups as initiator. The molecular weight of HPBBEA grafted increased with the increasing ratio of inimer BBEA to MSN-Br. Hybrid nanoparticles showed better dispersibility in organic solvents than the precursor MSNs. Utilizing MSN-g-HPBBEA as macroinitiator, PDMAEMA was successfully grafted onto the hyperbranched polymer shell of MSN-g-HPBBEA. The resultant nanoparticles, MSN-g-HPBBEA-g-PDMAEMA showed pH-responsive property, which will have potential applications in biomedicine and biotechnology.
     3) MSN-g-PMO core-shell nanoparticles were successfully synthesized through surface-initiating ATRP technique, and the inner channels of MSNs remained. The LCST of MSN-g-PMO could be adjusted by changing the feed molar ratio of MEO2MA and OEGMA. FITC as a model guest molecule could be encapsulated in the mesopores of MSNs above LCST, and released from the mesopores in MSN when the temperature was below LCST. Through an endocytic mechanism, MSN-g-PMO could easily carry FITC into cells. The MSN-g-PMO showed good biocompatibility and very low cytotoxicity, which make it a promising material for applications in biomarkers, biosensors and controlled drug delivery systems.
     4) In order to achieve RAFT polymerization of MEO2MA and OEGMA in the aqueous phase, at first, we synthesized macroRAFT agent PDMAa by utilizing ascorbic acid/tert-butyl hydrogen peroxide redox initiator and CMP as the RAFT agent, in aqueous solution at room temperature. The polymers obtained were characterized by GPC. MacroRAFT agent PDMAa could enhance solubility of MEO2MA in water, while control RAFT copolymerization of MEO2MA and OEGMA in water. The obtained ABA triblock polymer-PDMAa-PMO-PDMAa exhibit thermo-sensitivity and the LCSTs rise with the increase of OEGMA content in the PDMAa-PMO-PDMAa. The initiators in polymerization exhibit better biocompatibility, which has a special value in the field of biological materials. The triblock copolymers can form micelle in different temperature, and some insoluble molecules could enter into the core of micelles. The guest molecules in core of micelle could be released through dissociation of micelle in predetermined temperature. These properties make PDMAa-PMO-PDMAa be widely used in the field of drug delivery.
     5) We synthesized the PEO-b-PDMAEMA diblock copolymer by RAFT polymerization in aqueous solution at room temperature, and obtained the PEO-b-PDMAEMA-(MAH-p-CD) copolymer by the reaction of PEO-b-PDMAEMA and MAH-P-CD. The copolymers have excellent biocompatibility and low cell toxicity. We confirmed that the PEO-b-PDMAEMA-(MAH-β-CD) copolymer can transfect gene into the cell and successfully expressed the GFP gene. Through the cell experiment, we found that PEO-b-PDMAEMA-(MAH-β-CD) copolymer can cause cell autophagic behavior. These outstanding properties make PEO-b-PDMAEMA-(MAH-P-CD) copolymer be potential gene treatment materials which have a wide range of applications in the treatment of cancer.
引文
1. Szwarc, M.; Levy, M.; Milkovich, R., Polymerization initiated by electron transfer to monomer. A new method of formation of block polymers. Journal of the American Chemical Society [J].1956,78,2656-2657.
    2. Miyamoto, M.; Sawamoto, M.; Higashimura, T., Living polymerization of isobutyl vinyl
    ether with hydrogen iodide/iodine initiating system. Macromolecules [J].1984,17,265-268.
    3. Wang, J. S.; Matyjaszewski, K., Controlled Living Radical Polymerizaition-Halogen Atom-Transfer Radical Polymerization Promoted BY A Cu(I)Cu(II) Redox Process. Macromolecules [J].1995,28,7901-7910.
    4. Wang, J. S.; Matyjaszewski, K., Controlled Living Radical Polymerizaition-Atom-Transfer Radical Polymerization in the Presence of Transition-Metal Complexes. Journal of the American Chemical Society [J].1995,117,5614-5615.
    5. Wang, J. S.; Matyjaszewski, K., Living Controlled Radical Polymerization-Transition-Metal-Catalyzed Atom-Transfer Radical Polymerization in the Presence of a Conventional Radical Initiator [J]. Macromolecules.1995,28,7572-7573.
    6. Kotani, Y.; Kato, M.; Kamigaito, M.; Sawamoto, M., Living radical polymerization of alkyl methacrylates with ruthenium complex and synthesis of their block copolymers. Macromolecules [J].1996,29,6979-6982.
    7. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T., Polymerization of Methyl-Methacrylate with the Carbon-Tetrachloride Dichlorotris (Triphenylphosphine) Ruthenium(II) Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System-Possibility of Living Radical Polymerization [J]. Macromolecules.1995,28,1721-1723.
    8. Wang, J. S.; Matyjaszewski, K., Living Controlled Radical Polymerization-Transition-Metal-Catalyzed Atom-Transfer Radical Polymerization in the Presence of a Conventional Radical Initiator [J]. Macromolecules.1995,28,7572-7573.
    9. Xia, J. H.; Matyjaszewski, K., Controlled/"living" radical polymerization. Homogeneous reverse atom transfer radical polymerization using AIBN as the initiator [J]. Macromolecules.1997,30,7692-7696.
    10. Hou, C.; Qu, R. J.; Ji, C. N.; Wang, C. H.; Wang, C. G., Synthesis of polyacrylonitrile via reverse atom transfer radical polymerization (ATRP) initiated by diethyl 2,3-dicyano-2,3-diphenylsuccinate, FeCl3, and triphenylphosphine [J]. Polymer International.2006,55,326-329.
    11. Jakubowski, W.; Matyjaszewski, K., Activator generated by electron transfer for atom transfer radical polymerization [J]. Macromolecules.2005,38,4139-4146.
    12. Matyjaszewski, K.; Saget, J.; Pyun, J.; Schlogl, M.; Rieger, B., Synthesis of polypropylene-poly(meth)acrylate block copolymers using metallocene catalyzed processes and subsequent atom transfer radical polymerization [J]. Journal of Macromolecular Science-Pure and Applied Chemistry.2002, A39,901-913.
    13. Qin, S. H.; Saget, J.; Pyun, J. R.; Jia, S. J.; Kowalewski, T.; Matyjaszewski, K., Synthesis of block, statistical, and gradient copolymers from octadecyl (meth)acrylates using atom transfer radical polymerization [J]. Macromolecules.2003,36,8969-8977.
    14. Min, K.; Gao, H. F.; Matyjaszewski, K., Preparation of homopolymers and block copolymers in miniemulsion by ATRP using activators generated by electron transfer (AGET) [J]. Journal of the American Chemical Society.2005,127,3825-3830.
    15. Oh, J. K.; Min, K.; Matyjaszewski, K., Preparation of poly(oligo(ethylene glycol) monomethyl ether methacrylate) by homogeneous aqueous AGET ATRP [J]. Macromolecules.2006,39,3161-3167.
    16. Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H., Living free-radical polymerization by reversible addition-fragmentation chain transfer:The RAFT process [J]. Macromolecules.1998,31,5559-5562.
    17. Goto, A.; Sato, K.; Fukuda, T.; Moad, G.; Rizzardo, E.; Thang, S. H., Mechanism and kinetics of reversible addition-fragmentation chain transfer-based controlled-radical polymerization of styrene [J]. Abstracts of Papers of the American Chemical Society.1999, 218,485.
    18. Hawthorne, D. G.; Moad, G.; Rizzardo, E.; Thang, S. H., Living radical polymerization with reversible addition-fragmentation chain transfer (RAFT):Direct ESR observation of intermediate radicals [J]. Macromolecules.1999,32,5457-5459.
    19. Chong, Y. K.; Krstina, J.; Le, T. P. T.; Moad, G.; Postma, A.; Rizzardo, E.; Thang, S. H., Thiocarbonylthio compounds [S=C(Ph)S-R] in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). Role of the free-radical leaving group (R) [J]. Macromolecules.2003,36,2256-2272.
    20. Chen, X. P.; Qiu, K. Y., Study of "living"/controlled radical polymerization [J]. Progress in Chemistry.2001,13,224-233.
    21. Cunningham, M. F., Living/controlled radical polymerizations in dispersed phase systems [J]. Progress in Polymer Science.2002,27,1039-1067.
    22. Moad, G.; Rizzardo, E.; Thang, S. H., Living radical polymerization by the RAFT process-A first update [J]. Australian Journal of Chemistry.2006,59,669-692.
    23. McLeary, J. B.; Klumperman, B., RAFT mediated polymerisation in heterogeneous media [J]. Soft Matter.2006,2,45-53.
    24. Chen, M.; Ghiggino, K. P.; Launikonis, A.; Mau, A. W. H.; Rizzardo, E.; Sasse, W. H. F.; Thang, S. H.; Wilson, G. J., RAFT synthesis of linear and star-shaped light harvesting polymers using di-and hexafunctional ruthenium polypyridine reagents [J]. Journal of
    Materials Chemistry.2003,13,2696-2700.
    25. Gaillard, N.; Guyot, A.; Claverie, J., Block copolymers of acrylic acid and butyl acrylate prepared by reversible addition-fragmentation chain transfer polymerization:Synthesis, characterization, and use in emulsion polymerization [J]. Journal of Polymer Science Part a-Polymer Chemistry.2003,41,684-698.
    26. Hao, X. J.; Heuts, J. P. A.; Barner-Kowollik, C.; Davis, T. P.; Evans, E., Living free-radical polymerization (reversible addition-fragmentation chain transfer) of 6-[4-(4 '-methoxyphenyl)phenoxy]hexyl methacrylate:A route to architectural control of side-chain liquid-crystal line polymers [J]. Journal of Polymer Science Part a-Polymer Chemistry.2003, 41,2949-2963.
    27. Bai, W.; Zhang, L.; Bai, R.; Zhang, G. Z., A very useful redox initiator for aqueous RAFT polymerization of N-isopropylacrylamide and acrylamide at room temperature [J]. Macromolecular Rapid Communications Article.2008,29,562-566.
    28. Kwak, Y.; Nicolay, R.; Matyjaszewski, K., Concurrent ATRP/RAFT of styrene and methyl methacrylate with dithioesters catalyzed by copper(Ⅰ) complexes [J]. Macromolecules.2008, 41,6602-6604.
    29. Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K., Narrow Molecular-Weight Resins by a Free-Radical Polymerization Process[J]. Macromolecules.1993,26,2987-2988.
    30. Colombani, D., Chain-growth control in free radical polymerization [J]. Progress in Polymer Science.1997,22,1649-1720.
    31. Endo, K.; Murata, K.; Otsu, T., Living Radical Polymerization of Styrene with Tetramethylene Disulfide [J]. Macromolecules.1992,25,5554-5556.
    32. Otsu, T.; Yoshioka, M.; Tanaka, T., Synthesis of Telechelic Polymers through Radical Polymerization with a 2-Component Iniferter System [J]. European Polymer Journal.1992, 28,1325-1329.
    33. Yamada, B.; Tanaka, H.; Konishi, K.; Otsu, T., Polymerization with Coupling Products of Stable Free-Radicals [J]. Journal of Macromolecular Science-Pure and Applied Chemistry.1994, A31,351-366.
    34. Otsu, T., Iniferter concept and living radical polymerization [J]. Journal of Polymer Science Part a-Polymer Chemistry.2000,38,2121-2136.
    35. Kim, Y. H.; Webster, O. W., Water soluble hyperbranched polyphenylene:"a unimolecular micelle?" [J] Journal of the American Chemical Society.1990,112,4592-4593.
    36. Frechet, J. M. J.; Henmi, M.; Gitsov, I.; Aoshima, S.; Leduc, M. R.; Grubbs, R. B., Self-Condensing Vinyl Polymerization-an Approach to Dendritic Materials [J]. Science.1995, 269,1080-1083.
    37. Gao, C.; Yan, D., Hyperbranched polymers:from synthesis to application[J]. Progress in Polymer Science.2004,29,183-275.
    38. Jikei, M.; Kakimoto, M., Hyperbranched polymers:a promising new class of materials [J]. Progress in Polymer Science.2001,26,1233-1285.
    39. Weimer, M. W.; Frechet, J. M. J.; Gitsov, I., Importance of active-site reactivity and reaction conditions in the preparation of hyperbranched polymers by self-condensing vinyl polymerization:Highly branched vs. linear poly[4-(chloromethyl)styrene] by metal-catalyzed "living" radical polymerization [J]. Journal of Polymer Science Part a-Polymer Chemistry.1998,36,955-970.
    40. Matyjaszewski, K.; Pyun, J.; Gaynor, S. G., Preparation of hyperbranched polyacrylates by atom transfer radical polymerization,4-The use of zero-valent copper [J]. Macromolecular Rapid Communications.1998,19,665-670.
    41. Zhang, X.; Chen, Y. M.; Gong, A. J.; Chen, C. F.; Fu, X. Dendrigraft polystyrene initiated by poly(p-chloromethyl styrene):synthesis and properties [J]. Polymer International 1999,48, 896.
    42. Liu, B. L.; Kazlauciunas, A.; Guthrie, J. T.; Perrier, S., One-pot hyperbranched polymer synthesis mediated by reversible addition fragmentation chain transfer (RAFT) polymerization [J]. Macromolecules.2005,38,2131-2136.
    43. Xu, J. T.; Tao, L.; Liu, J. Q.; Bulmus, V.; Davis, T. P., Synthesis of Functionalized and Biodegradable Hyperbranched Polymers from Novel AB(2) Macromonomers Prepared by RAFT Polymerization [J]. Macromolecules.2009,42,6893-6901.
    44. Rosselgong, J.; Armes, S. P.; Barton, W.; Price, D., Synthesis of Highly Branched Methacrylic Copolymers:Observation of Near-Ideal Behavior using RAFT Polymerization [J]. Macromolecules.2009,42,5919-5924.
    45. Imai, T.; Satoh, T.; Kaga, H.; Kaneko, N.; Kakuchi, T., Synthesis of hyperbranched carbohydrate polymer by ring-opening multibranching polymerization of 1,4-anhydroerythritol and 1,4-anhydro-L-threitol [J]. Macromolecules.2004,37,3113-3119.
    46. Sunder, A.; Hanselmann, R.; Frey, H.; Mulhaupt, R., Controlled Synthesis of Hyperbranched Polyglycerols by Ring-Opening Multibranching Polymerization [J]. Macromolecules.1999, 32,4240-4246.
    47. Chang, H.-T.; Frechet, J. M. J., Proton-Transfer Polymerization:A New Approach to Hyperbranched Polymers [J]. Journal of the American Chemical Society.1999,121, 2313-2314.
    48. Jikei, M.; Chon, S.-H.; Kakimoto, M.-a.; Kawauchi, S.; Imase, T.; Watanebe, J., Synthesis of Hyperbranched Aromatic Polyamide from Aromatic Diamines and Trimesic Acid [J]. Macromolecules.1999,32,2061-2064.
    49. Yan, D.; Gao, C., Hyperbranched Polymers Made from A2 and BB'B" Type Monomers.1. Polyaddition of 1-(2-Aminoethyl)piperazine to Divinyl Sulfone [J]. Macromolecules.2000, 33,7693-7699.
    50. Mather, B. D.; Viswanathan, K.; Miller, K. M.; Long, T. E., Michael addition reactions in macromolecular design for emerging technologies [J]. Progress in Polymer Science.2006,31, 487-531.
    51. Smid, J.; Van Beylen, M.; Hogen-Esch, T. E [J].Progress in Polymer Science.2006,31, 1041-1067.
    52. Wu; Liu, Y.; Chen, L.; He; Chung, T. S.; Goh, S. H.,2A2+BB'B" Approach to Hyperbranched Poly(amino ester)s [J]. Macromolecules.2005,38,5519-5525.
    53 Hong, C. Y.; You, Y. Z.; Wu, D. C.; Liu, Y.; Pan, C. Y., Thermal control over the topology of cleavable polymers:From linear to hyperbranched structures [J]. Journal of the American Chemical Society.2007,129,5354-5355.
    54. Kricheldorf, H. R.; Hobzova, R.; Vakhtangishvili, L.; Schwarz, G., Multicyclic poly(ether ketone)s by polycondensation of 1,3,5-tris(4-fluorobenzoyl)benzene with various diphenols [J]. Macromolecular Chemistry and Physics.2005,206,2133-2142.
    55. Kricheldorf, H. R.; Vakhtangishvili, L.; Schwarz, G.; Kruger, R. P., Cyclic hyperbranched poly(ether ketone)s derived from 3,5-bis(4-fluorobenzoyl)phenol [J]. Macromolecules.2003, 36,5551-5558.
    56. Johnson, M. A.; Iyer, J.; Hammond, P. T., Microphase segregation of PEO-PAMAM linear-dendritic diblock copolymers [J]. Macromolecules.2004,37,2490-2501.
    57. Wang, T. W.; Jiang, M.; Wu, Y., Nanoparticles composed of PLGA and hyperbranched poly (amine-ester) as a drug carrier [J]. Journal of Polymer Research.2010,17,335-345.
    58. Liang, Y.; Wan, D. C.; Cai, X. Y.; Jin, M.; Pu, H. T., Unimolecular Micelle Derived from Hyperbranched Polyethylenimine with Well-Defined Hybrid Shell of Poly(ethylene oxide) and Polystyrene:A Versatile Nanocapsule [J]. Journal of Polymer Science Part a-Polymer Chemistry.2010,48,681-691.
    59. Hu, H.; Fan, X. D.; Cao, Z. L.; Cheng, W. X.; Liu, Y. Y., Synthesis and characterization of the environmental-sensitive hyperbranched polymers as novel carriers for controlled drug release [J]. Journal of Applied Polymer Science.2006,101,311-316.
    60. Rossi, N. A. A.; Constantinescu, I.; Kainthan, R. K.; Brooks, D. E.; Scott, M. D.; Kizhakkedathu, J. N., Red blood cell membrane grafting of multi-functional hyperbranched polyglycerols. Biomaterials.2010,31,4167-4178.
    61. Asif, A.; Shi, W. F., Synthesis and properties of UV curable waterborne hyperbranched aliphatic polyester [J]. European Polymer Journal.2003,39,933-938.
    62. Huang, Z. G.; Shi, W. F., Synthesis and properties of a novel hyperbranched polyphosphate acrylate applied to UV curable flame retardant coatings [J]. European Polymer Journal.2007, 43,1302-1312.
    63. Cheng, X. E.; Huang, Z. G.; Liu, J. H.; Shi, W. F., Synthesis and properties of semi-crystalline hyperbranched poly (ester-amide) grafted with long alkyl chains used for UV-curable powder coatings [J]. Progress in Organic Coatings.2007,59,284-290.
    64. Caps, V.; Tsang, S. C., Heterogenisation of Os species on MCM-41 structure for epoxidation of trans-stilbene [J]. Applied Catalysis a-General.2003,248,19-31.
    65. Jia, M. J.; Valenzuela, R. X.; Amoros, P.; Beltran-Porter, D.; El-Haskouri, J.; Marcos, M. D.; Corberan, V. C., Direct oxidation of isobutane to methacrolein over V-MCM-41 catalysts [J]. Catalysis Today.2004,91-2,43-47.
    66. Toufaily, J.; Hamieh, T.; Soulard, M.; Guth, J. L.; Patarin, J.; Baydoun, G.; Naoufal, D.; Kodeih, M.; Fadlallah, M. B.; Zeineddine, I.; Elrifai, M.; Kanj, A.; Houteit, A.; Sierra, L., Epoxidation of cyclohexene on new organized mesoporous silica catalysts [J]. Journal De Physique Iv.2004,113,151-154.
    67. Walcarius, A.; Sibottier, E.; Etienne, M.; Ghanbaja, J., Electrochemically assisted self-assembly of mesoporous silica thin films [J]. Nature Materials.2007,6,602-608.
    68. Burke, A. M.; Hanrahan, J. P.; Healy, D. A.; Sodeau, J. R.; Holmes, J. D.; Morris, M. A., Large pore bi-functionalised mesoporous silica for metal ion pollution treatment [J]. Journal of Hazardous Materials.2009,164,229-234.
    69. Perez-Quintanilla, D.; Sanchez, A.; del Hierro, I.; Fajardo, M.; Sierra, I., Preconcentration of Zn(Ⅱ) in water samples using a new hybrid SBA-15-based material [J]. Journal of Hazardous Materials.2009,166,1449-1458.
    70. Fan, Z. F., Hg(Ⅱ)-imprinted thiol-functionalized mesoporous sorbent micro-column preconcentration of trace mercury and determination by inductively coupled plasma optical emission spectrometry [J]. Talanta.2006,70,1164-1169.
    71. Lee, C. H.; Lin, T. S.; Mou, C. Y., Mesoporous materials for encapsulating enzymes [J]. Nano Today.2009,4,165-179.
    72. Hartmann, M., Ordered mesoporous materials for bioadsorption and biocatalysis [J].
    Chemistry of Materials.2005,17,4577-4593.
    73. Lai, C. Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S. Y., A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules [J]. Journal of the American Chemical Society.2003,125,4451-4459.
    74. Song, S. W.; Hidajat, K.; Kawi, S., Functionalized SBA-15 materials as carriers for controlled drug delivery:Influence of surface properties on matrix-drug interactions [J]. Langmuir.2005,21,9568-9575.
    75. Cui, F. M.; Feng, C. D.; Xie, R. J.; Hua, Z. L.; Ohtsuka, H.; Sakka, Y.; Shi, J. L., Magnetic field-induced off-resonance third-order optical nonlinearity of iron oxide nanoparticles incorporated mesoporous silica thin films during heat treatment [J]. Optics Express.2010,18, 2010-2019.
    76. Lee, J. E.; Lee, N.; Kim, H.; Kim, J.; Choi, S. H.; Kim, J. H.; Kim, T.; Song, I. C.; Park, S. P.; Moon, W. K.; Hyeon, T., Uniform Mesoporous Dye-Doped Silica Nanoparticles Decorated with Multiple Magnetite Nanocrystals for Simultaneous Enhanced Magnetic Resonance Imaging, Fluorescence Imaging, and Drug Delivery [J]. Journal of the American Chemical Society.2010,132,552-557.
    77. Beck J S,Vartui J C, RothW J, et al. A new family ofmesoporousmolecular sieves p repared with liquid crystal templates [J]. Journal of the American Chemical Society.1992,114, 10834-10843.
    78. Chen C. Y., S. L. Urkeet, H. X. Li, Studies on Mesoporous Materials II Synthesis mechanism of MCM-41 Microporous Material,1993,2,27.
    79. Huo, Q.; Margolese, D. I.; Ciesla, U.; Demuth, D. G.; Feng, P.; Gier, T. E.; Sieger, P.; Firouzi, A.; Chmelka, B. F., Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays [J]. Chemistry of Materials.1994,6,1176-1191.
    80. Monnier A., Shuth, F, Q. Huo, D. Kumar, D. Margolesse, R. S. Maxwell, G. D. Stucky,M. Krishnamurty, P. Petroff, A. Friouzi.M. Janicke, B. F. Chmelka, Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructure [J], Science,1994,261, 1299-1303.
    81. Radu, D. R.; Lai, C. Y.; Jeftinija, K.; Rowe, E. W.; Jeftinija, S.; Lin, V. S. Y., A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent [J]. Journal of the American Chemical Society.2004,126,13216-13217.
    82. Radu, D. R.; Lai, C. Y.; Wiench, J. W.; Pruski, M.; Lin, V. S. Y., Gatekeeping layer effect:A poly(lactic acid)-coated mesoporous silica nanosphere-based fluorescence probe for detection of amino-containing neurotransmitters [J]. Journal of the American Chemical Society.2004, 126,1640-1641.
    83. Xue, J. M.; Shi, M., PLGA/mesoporous silica hybrid structure for controlled drug release [J]. Journal of Controlled Release.2004,98,209-217.
    84. Giri, S.; Trewyn, B. G.; Stellmaker, M. P.; Lin, V. S. Y., Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles [J]. Angewandte Chemie-International Edition.2005,44,5038-5044.
    85. Vivero-Escoto, J. L.; Slowing,Ⅱ; Wu, C. W.; Lin, V. S. Y., Photoinduced Intracellular Controlled Release Drug Delivery in Human Cells by Gold-Capped Mesoporous Silica Nanosphere [J]. Journal of the American Chemical Society Article.2009,131,3462-3463.
    86. Patel, K.; Angelos, S.; Dichtel, W. R.; Coskun, A.; Yang, Y. W.; Zink, J. I.; Stoddart, J. F., Enzyme-responsive snap-top covered silica nanocontainers [J]. Journal of the American Chemical Society.2008,130,2382-2383.
    87. Chung, P. W.; Kumar, R.; Pruski, M.; Lin, V. S. Y., Temperature responsive solution partition of organic-inorganic hybrid poly(N-isopropylacrylamide)-coated mesoporous silica nanospheres [J]. Advanced Functional Materials.2008,18,1390-1398.
    88. You, Y. Z.; Kalebaila, K. K.; Brock, S. L.; Oupicky, D., Temperature-controlled uptake and release in PNIPAM-modified porous silica nanoparticles. Chemistry of Materials.2008,20, 3354-3359.
    89. Yang, Y.; Yan, X. H.; Cui, Y.; He, Q.; Li, D. X.; Wang, A. H.; Fei, J. B.; Li, J. B., Preparation of polymer-coated mesoporous silica nanoparticles used for cellular imaging by a "graft-from" method [J]. Journal of Materials Chemistry Article.2008,18,5731-5737.
    90. Hong, C. Y.; Li, X.; Pan, C. Y., Smart core-shell nanostructure with a mesoporous core and a stimuli-responsive nanoshell synthesized via surface reversible addition-fragmentation chain transfer polymerization [J]. Journal of Physical Chemistry C.2008,112,15320-15324.
    91. Hong, C. Y.; Li, X.; Pan, C. Y., Fabrication of smart nanocontainers with a mesoporous core and a pH-responsive shell for controlled uptake and release [J]. Journal of Materials Chemistry.2009,19,5155-5160.
    1. Sirringhaus, H.; Tessler, N.; Friend, R. H., Integrated optoelectronic devices based on conjugated polymers [J]. Science 1998,280,1741-1744.
    2. Wild, A.; Egbe, D. A. M.; Birckner, E.; Cimrova, V.; Baumann, R.; Grummt, U.; Schubert, U. S., Anthracene-and Thiophene-Containing MEH-PPE-PPVs:Synthesis and Study of the Effect of the Aromatic Ring Position on the Photophysical and Electrochemical Properties [J]. Journal of Polymer Science Part a-Polymer Chemistry 2009,47,2243-2261.
    3. Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bredas, J. L.; Logdlund, M.; Salaneck, W. R., Electroluminescence in conjugated polymers [J]. Nature 1999,397,121-128.
    4. Yang, Y.; Pei, Q.; Heeger, A. J., Efficient blue polymer light-emitting diodes from a series of soluble poly(paraphenylene)s [J]. Journal of Applied Physics 1996,79,934-939.
    5. Scherf, U.; List, E. J. W., Semiconducting polyfluorenes-Towards reliable structure-property relationships [J]. Advanced Materials 2002,14,477-482.
    6. Roncali, J., Conjugated Poly(thiophines)-Synthesis, Functionalization, and Applications [J]. Chemical Reviews 1992,92,711-738.
    7. Becker, H.; Spreitzer, H.; Kreuder, W.; Kluge, E.; Schenk, H.; Parker, I.; Cao, Y., Soluble PPVs with enhanced performance-A mechanistic approach [J]. Advanced Materials 2000,12, 42-45.
    8. Spreitzer, H.; Becker, H.; Kluge, E.; Kreuder, W.; Schenk, H.; Demandt, R.; Schoo, H., Soluble phenyl-substituted PPVs-New materials for highly efficient polymer LEDs [J]. Advanced Materials 1998,10,1340-1346.
    9. Wang, M. F.; Zou, S.; Guerin, G.; Shen, L.; Deng, K. Q.; Jones, M.; Walker, G. C.; Scholes, G. D.; Winnik, M. A., A water-soluble pH-responsive molecular brush of poly(N,N-dimethylaminoethyl methacrylate) grafted polythiophene [J]. Macromolecules 2008,41,6993-7002.
    10. Kang,J. M.; Cho, H. J.; Lee, J.; Lee, J. I.; Lee, S. K.; Cho, N. S.; Hwang, D. H.; Shim, H. K., Highly bright and efficient electroluminescence of new PPV derivatives containing polyhedral oligomeric silsesquioxanes (POSSs) and their blends [J]. Macromolecules 2006, 39,4999-5008.
    11. Gunes, S.; Neugebauer, H.; Sariciftci, N. S., Conjugated polymer-based organic solar cells [J]. Chemical Reviews 2007,107, (4),1324-1338.
    12. Bunz, U. H. F., Poly(aryleneethynylene)s [J]. Macromolecular Rapid Communications 2009, 30,772-805.
    13. Breen, C. A.; Tischler, J. R.; Bulovic, V.; Swager, T. M., Highly efficient blue electroluminescence from poly(phenylene ethynylene) via energy transfer from a hole-transport matrix [J]. Advanced Materials 2005,17,1981-1987.
    14. Li, H.; Powell, D. R.; Hayashi, R. K.; West, R., Poly((2,5-dialkoxy-p-phenylene) ethynylene-p-phenyleneethynylene)s and Their Model Compounds [J]. Macromolecules 1998, 31,52-58.
    15. Kloppenburg, L.; Song, D.; Bunz, U. H. F., Alkyne Metathesis with Simple Catalyst Systems: Poly(p-phenyleneethynylene)s [J]. Journal of the American Chemical Society 1998,120, 7973-7974.
    16. Sato, T.; Jiang, D. L.; Aida, T., A blue-luminescent dendritic rod:Poly(phenyleneethynylene) within a light-harvesting dendritic envelope [J]. Journal of the American Chemical Society 1999,121,10658-10659.
    17. Breen, C. A.; Deng, T.; Breiner, T.; Thomas, E. L.; Swager, T. M., Polarized photoluminescence from poly(p-phenylene-ethynylene) via a block copolymer nanotemplate [J]. Journal of the American Chemical Society 2003,125,9942-9943.
    18 Pu, K. Y.; Chen, Y.; Qi, X. Y.; Qin, C. Y.; Chen, Q. Q.; Wang, H. Y.; Deng, Y.; Fan, Q. L.; Huang, Y. Q.; Liu, S. J.; Wei, W.; Peng, B.; Huang, W., Synthesis of grafted poly(p-phenyleneethynylene) with energy donor-acceptor architecture via atom transfer radical polymerization:Towards nonaggregating and hole-facilitating light-emitting material[J]. Journal of Polymer Science Part a-Polymer Chemistry.2007,45,3776-3787.
    19 Wang, Y.; Erdogan, B.; Wilson, J. N.; Bunz, U. H., Grafted conjugated polymers:synthesis and characterization of a polyester side chain substituted poly(paraphenyleneethynylene) [J]. Chem Commun (Camb).2003,1624-1625.
    20 Englert, B. C.; Bakbak, S.; Bunz, U. H. F., Click Chemistry as a Powerful Tool for the Construction of Functional Poly(p-phenyleneethynylene)s:Comparison of Pre-and Postfunctionalization Schemes[J]. Macromolecules.2005,38,5868-5877.
    21. Gao, C.; Yan, D., Hyperbranched polymers:from synthesis to applications [J]. Progress in Polymer Science 2004,29,183-275.
    22. Matyjaszewski, K.; Pyun, J.; Gaynor, S. G., Preparation of hyperbranched polyacrylates by atom transfer radical polymerization,4-The use of zero-valent copper [J]. Macromolecular Rapid Communications 1998,19,665-670.
    23. Frechet, J. M. J.; Henmi, M.; Gitsov, I.; Aoshima, S.; Leduc, M. R.; Grubbs, R. B., Self-Condensing Vinyl Polymerization-an Approach to Dendritic Materials [J]. Science 1995,269,1080-1083.
    24. Kim, H. J.; Jung, E. Y.; Jin, L. Y.; Lee, M., Solution behavior of dendrimer-coated rodlike coordination polymers [J]. Macromolecules 2008,41, (16),6066-6072.
    25. Zhou, Q.; Swager, T. M., Method for enhancing the sensitivity of fluorescent chemosensors: energy migration in conjugated polymers [J]. Journal of the American Chemical Society 2002, 117,7017-7018.
    26. Moroni, M.; Le Moigne, J.; Luzzati, S., Rigid rod conjugated polymers for nonlinear optics:Characterization and linear optical properties of poly(aryleneethynylene) derivatives. Macromolecules.2002,27,562-571.
    27. Hong, C. Y.; You, Y. Z.; Wu, D. C.; Liu, Y.; Pan, C. Y., Multiwalled carbon nanotubes grafted with hyperbranched polymer shell via SCVP [J]. Macromolecules 2005,38,2606-2611.
    28. Wang, J. S.; Matyjaszewski, K., Controlled Living Radical Polymerizaition-Halogen Atom-Transfer Radical Polymerization Promoted BY A Cu(Ⅰ)Cu(Ⅱ) Redox Process. Macromolecules.1995,28,7901-7910.
    29. Mori, H.; Seng, D. C.; Zhang, M. R.; Muller, A. H. E., Hybrid nanoparticles with hyperbranched polymer shells via self-condensing atom transfer radical polymerization from silica surfaces [J]. Langmuir 2002,18,3682-3693.
    30. Hong, C. Y.; Pan, C. Y., Synthesis and characterization of hyperbranched polyacrylates in the presence of a tetrafunctional initiator with higher reactivity than monomer by self-condensing vinyl polymerization [J]. Polymer 2001,42,9385-9391.
    31. Hong,C. Y.; Pan,C. Y.; Huang.Y.; Xu,Z. D., Synthesis of hyperbranched polymethacrylates in the presence of a tetrafunctional initiator [J]. Polymer 2001,42,6733-6740.
    32. Costanzo, P. J.; Stokes, K. K., Synthesis and characterization of poly(methyl acrylate) grafted from poly(thiophene) to form solid-state fluorescent materials. Macromolecules.2002,35,6804-6810.
    1. Vallet-Regi, M.; Ramila, A.; del Real, R. P.; Perez-Pariente, J., A new property of MCM-41: Drug delivery system [J]. Chemistry of Materials 2001,13,308-311.
    2. Xue, J. M.; Shi, M., PLGA/mesoporous silica hybrid structure for controlled drug release [J]. Journal of Controlled Release 2004,98,209-217.
    3. Lai, C. Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S. Y., A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules [J]. Journal of the American Chemical Society 2003,125,4451-4459.
    4. Radu, D. R.; Lai, C. Y.; Jeftinija, K.; Rowe, E. W.; Jeftinija, S.; Lin, V. S. Y, A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent [J]. Journal of the American Chemical Society 2004,126,13216-13217.
    5. Song, S. W.; Hidajat, K.; Kawi, S., Functionalized SBA-15 materials as carriers for controlled drug delivery:Influence of surface properties on matrix-drug interactions [J]. Langmuir 2005, 21,9568-9575.
    6. Czaun, M.; Rahman, M. M.; Takafuji, M.; Ihara, H., Molecular shape recognition-structure correlation in a phenylalanine-based polymer-silica composite by surface-initiated atom transfer radical polymerization [J]. Polymer 2008,49,5410-5416.
    7. Chen, S. T.; Guo, C. Y.; Liu, L.; Xu, H.; Dong, J. X.; Hu, Y. L., Immobilization of a zirconium complex bearing bis(phenoxyketimine) ligand on MCM-41 for ethylene polymerization [J]. Polymer 2005,46,11093-11098.
    8. De, M.; Ghosh, P. S.; Rotello, V. M., Applications of Nanoparticles in Biology [J]. Advanced Materials 2008,20,4225-4241.
    9. You, Y. Z.; Kalebaila, K. K.; Brock, S. L.; Oupicky, D., Temperature-controlled uptake and release in PNIPAM-modified porous silica nanoparticles [J]. Chemistry of Materials 2008,20, 3354-3359.
    10. Radu, D. R.; Lai, C. Y.; Wiench, J. W.; Pruski, M.; Lin, V. S. Y., Gatekeeping layer effect:A poly(lactic acid)-coated mesoporous silica nanosphere-based fluorescence probe for detection of amino-containing neurotransmitters [J]. Journal of the American Chemical Society 2004, 126,1640-1641.
    11. Hong, C. Y.; Li, X.; Pan, C. Y., Grafting polymer nanoshell onto the exterior surface of mesoporous silica nanoparticles via surface reversible addition-fragmentation chain transfer polymerization [J]. European Polymer Journal 2007,43,4114-4122.
    12. Audouin, F.; Blas, H.; Pasetto, P.; Beaunier, P.; Boissiere, C.; Sanchez, C.; Save, M.; Charleux, B., Structured hybrid nanoparticles via surface-initiated ATRP of methyl methacrylate from ordered mesoporous silica [J]. Macromolecular Rapid Communications 2008,29,914-921.
    13. Hong, C. Y.; Li, X.; Pan, C. Y., Fabrication of smart nanocontainers with a mesoporous core and a pH-responsive shell for controlled uptake and release [J]. Journal of Materials Chemistry 2009,19,5155-5160.
    14. Hong, C. Y.; Li, X.; Pan, C. Y., Smart core-shell nanostructure with a mesoporous core and a stimuli-responsive nanoshell synthesized via surface reversible addition-fragmentation chain transfer polymerization [J]. Journal of Physical Chemistry C 2008,112,15320-15324.
    15. Chung, P. W.; Kumar, R.; Pruski, M.; Lin, V. S. Y., Temperature responsive solution partition of organic-inorganic hybrid poly(N-isopropylacrylamide)-coated mesoporous silica nanospheres [J]. Advanced Functional Materials 2008,18,1390-1398.
    16. Gao, C.; Yan, D., Hyperbranched polymers:from synthesis to applications [J]. Progress in Polymer Science 2004,29,183-275.
    17. Matyjaszewski, K.; Pyun, J.; Gaynor, S. G., Preparation of hyperbranched polyacrylates by atom transfer radical polymerization,4-The use of zero-valent copper [J]. Macromolecular Rapid Communications 1998,19,665-670.
    18. Ambade, A. V.; Kumar, A., Controlling the degree of branching in vinyl polymerization [J]. Progress in Polymer Science 2000,25,1141-1170.
    19. Cheng, G. L.; Simon, P. F. W.; Hartenstein, M.; Muller, A. H. E., Synthesis of hyperbranched poly(tert-butyl acrylate) by self-condensing atom transfer radical polymerization of a macroinimer [J]. Macromolecular Rapid Communications 2000,21,846-852.
    20. Liu, P.; Wang, T. M., Surface-graft hyperbranched polymer via self-condensing atom transfer radical polymerization from zinc oxide nanoparticles [J]. Polymer Engineering and Science 2007,47,1296-1301.
    21. Mori, H.; Seng, D. C.; Zhang, M. F.; Muller, A. H. E., Hybrid nanoparticles with hyperbranched polymer shells via self-condensing atom transfer radical polymerization from silica surfaces [J]. Langmuir 2002,18,3682-3693.
    22. Hong, C. Y.; You, Y. Z.; Wu, D. C.; Liu, Y.; Pan, C. Y., Multiwalled carbon nanotubes grafted with hyperbranched polymer shell via SCVP [J]. Macromolecules 2005,38,2606-2611.
    23. Rosenholm, J. M.; Duchanoy, A.; Linden, M., Hyperbranching surface polymerization as a tool for preferential functional ization of the outer surface of mesoporous silica [J]. Chemistry of Materials 2008,20,1126-1133.
    24. Rosenholm, J. M.; Penninkangas, A.; Linden, M., Amino-functionalization of large-pore mesoscopically ordered silica by a one-step hyperbranching polymerization of a surface-grown polyethyleneimine [J]. Chemical Communications 2006,3909-3911.
    25. Mu, B.; Wang, T. M.; Liu, P., Well-defined dendritic-graft copolymer grafted silica nanoparticle by consecutive surface-initiated atom transfer radical polymerizations [J]. Industrial& Engineering Chemistry Research 2007,46,3069-3072.
    26. Li, C.; Benicewicz, B. C., Synthesis of Well-Defined Polymer Brushes Grafted onto Silica Nanoparticles via Surface Reversible Addition Fragmentation Chain Transfer Polymerization [J]. Macromolecules 2005,38,5929-5936.
    27. Nagase, K.; Kobayashi, J.; Kikuchi, A.; Akiyama, Y.; Kanazawa, H.; Okano, T., Preparation of thermoresponsive cationic copolymer brush surfaces and application of the surface to separation of biomolecules [J]. Biomacromolecules.2008,9,1340-1347.
    28. Casasus, R.; Marcos, M. D.; Martinez-Manez, R.; Ros-Lis, J. V.; Soto, J.; Villaescusa, L. A.; Amoros, P.; Beltran, D.; Guillem, C.; Latorre, J., Toward the Development of Ionically Controlled Nanoscopic Molecular Gates [J]. Journal of the American Chemical Society 2004, 126,8612.
    29. Wang, J. S.; Matyjaszewski, K., Controlled Living Radical Polymerizaition-Halogen Atom-Transfer Radical Polymerization Promoted by a Cu(Ⅰ)Cu(Ⅱ) Redox Process. Macromolecules [J].1995,28,7901-7910.
    30. Hong, C. Y.; Pan, C. Y., Synthesis and characterization of hyperbranched polyacrylates in the presence of a tetrafunctional initiator with higher reactivity than monomer by self-condensing vinyl polymerization[J]. Polymer 2001,42,9385-9391.
    31. Muller, A. H. E.; Yan, D.; Wulkow, M., Molecular Parameters of Hyperbranched Polymers Made by Self-Condensing Vinyl Polymerization.1. Molecular Weight Distribution[J]. Macromolecules 1997,30,7015-7023.
    32. Hong, C. Y.; Pan, C. Y.;Huang, Y.; Xu, Z. D., Synthesis of hyperbranched polymethacrylates in the presence of a tetrafunctional initiato [J]. Polymer 2001,42,6733-6740.
    33. Hong, C. Y.; Zou, Y. F.; Pan, C. Y., Hyperbranched polyacrylates prepared by self-condensing 2003,52,257-264.
    34. Roy, D.; Knapp, J. S.; Guthrie, J. T.; Perrier, S., Antibacterial cellulose fiber via RAFT surface graft polymerization [J]. Biomacromolecules 2008,9,91-99.
    35. Tan, K. L.; Woon, L. L.; Wong, H. K.; Kang, E. T.; Neoh, K. G., Surface modification of plasma-pretreated poly(tetrafluoroethylene) films by graft copolymerization [J]. Macromolecules 1993,26,2832.
    36. Liu, T.; Jia, S.; Kowalewski, T.; Matyjaszewski, K.; Casado-Portilla, R.; Belmont, J., Water-Dispersible Carbon Black Nanocomposites Prepared by Surface-Initiated Atom Transfer Radical Polymerization in Protic Media [J]. Macromolecules 2005,39,548.
    37. An, S. W.; Thirtle, P. N.; Thomas, R. K.; Baines, F. L.; Billingham, N. C.; Armes, S. P.; Penfold, J., Structure of a Diblock Copolymer Adsorbed at the Hydrophobic Solid/Aqueous Interface:Effects of Charge Density on a Weak Polyelectrolyte Brush [J]. Macromolecules 1999,32,2731-2738.
    1. Pouton, C. W.; Wagstaff, K. M.; Roth, D. M.; Moseley, G. W.; Jans, D. A., Targeted delivery to the nucleus [J]. Advanced Drug Delivery Reviews 2007,59,698-717.
    2. Lee, Y.; Kataoka, K., Biosignal-sensitive polyion complex micelles for the delivery of biopharmaceuticals [J]. Soft Matter 2009,5,3810-3817.
    3. Wang, S. B., Ordered mesoporous materials for drug delivery. Microporous and Mesoporous Materials [J] 2009,117,1-9.
    4. Slowing, Ⅱ.; Vivero-Escoto, J. L.; Wu, C. W.; Lin, V. S. Y., Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers [J]. Advanced Drug Delivery Reviews 2008,60,1278-1288.
    5. Rapoport, N., Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery [J]. Progress in Polymer Science 2007,32,962-990.
    6. Oh, J. K.; Bencherif, S. A.; Matyjaszewski, K., Atom transfer radical polymerization in inverse miniemulsion:A versatile route toward preparation and functionalization of microgels/nanogels for targeted drug delivery applications [J]. Polymer 2009,50,4407-4423.
    7. Harada, A.; Kataoka, K., Supramolecular assemblies of block copolymers in aqueous media as nanocontainers relevant to biological applications [J]. Progress in Polymer Science 2006, 31,949-982.
    8. Vallet-Regi, M.; Ramila, A.; del Real, R. P.; Perez-Pariente, J., A new property of MCM-41: Drug delivery system [J]. Chemistry of Materials 2001,13,308-311.
    9. Giri, S.; Trewyn, B. G.; Stellmaker, M. P.; Lin, V. S. Y, Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles [J]. Angewandte Chemie-International Edition 2005,44,5038-5044.
    10. Slowing, Ⅱ.; Trewyn, B. G.; Giri, S.; Lin, V. S. Y., Mesoporous silica nanoparticles for drug delivery and biosensing applications [J]. Advanced Functional Materials 2007,17, 1225-1236.
    11. De, M.; Ghosh, P. S.; Rotello, V. M., Applications of Nanoparticles in Biology [J]. Advanced Materials 2008,20,4225-4241.
    12. Lai, C. Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S. Y., A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules [J]. Journal of the American Chemical Society 2003,125,4451-4459.
    13. Hong, C. Y.; Li, X.; Pan, C. Y., Fabrication of smart nanocontainers with a mesoporous core and a pH-responsive shell for controlled uptake and release [J]. Journal of Materials Chemistry.2009,19,5155-5160.
    14. Liu, R.; Zhang, Y.; Zhao, X.; Agarwal, A.; Mueller, L. J.; Feng, P. Y., pH-Responsive Nanogated Ensemble Based on Gold-Capped Mesoporous Silica through an Acid-Labile Acetal Linker [J]. Journal of the American Chemical Society.2010,132,1500-1501
    15. Leung, K. C. F.; Nguyen, T. D.; Stoddart, J. F.; Zink, J. I., Supramolecular nanovalves controlled by proton abstraction and competitive binding [J]. Chemistry of Materials 2006, 18,5919-5928.
    16. Vivero-Escoto, J. L.; Slowing, Ⅱ; Wu, C. W.; Lin, V. S. Y., Photoinduced Intracellular Controlled Release Drug Delivery in Human Cells by Gold-Capped Mesoporous Silica Nanosphere [J]. Journal of the American Chemical Society 2009,131,3462-3463.
    17. Patel, K.; Angelos, S.; Dichtel, W. R.; Coskun, A.; Yang, Y. W.; Zink, J. I.; Stoddart, J. F., Enzyme-responsive snap-top covered silica nanocontainers [J]. Journal of the American Chemical Society 2008,130,2382-2383
    18. Li, X.; Hong, C. Y.; Pan, C. Y., Preparation and characterization of hyperbranched polymer grafted mesoporous silica nanoparticles via self-condensing atom transfer radical vinyl polymerization [J]. Polymer 51,92-99.
    19. Radu, D. R.; Lai, C. Y.; Wiench, J. W.; Pruski, M.; Lin, V. S. Y., Gatekeeping layer effect:A poly(lactic acid)-coated mesoporous silica nanosphere-based fluorescence probe for detection of amino-containing neurotransmitters [J]. Journal of the American Chemical Society 2004, 126,1640-1641.
    20. Rosenholm, J. M.; Penninkangas, A.; Linden, M., Amino-functionalization of large-pore mesoscopically ordered silica by a one-step hyperbranching polymerization of a surface-grown polyethyleneimine [J]. Chemical Communications.2006,3909-3911.
    21. Rosenholm, J. M.; Duchanoy, A.; Linden, M., Hyperbranching surface polymerization as a tool for preferential functionalization of the outer surface of mesoporous silica [J]. Chemistry of Materials 2008,20,1126-1133.
    22. Hong, C. Y.; Li, X.; Pan, C. Y., Smart core-shell nanostructure with a mesoporous core and a stimuli-responsive nanoshell synthesized via surface reversible addition-fragmentation chain transfer polymerization [J]. Journal of Physical Chemistry C 2008,112,15320-15324.
    23. You, Y. Z.; Kalebaila, K. K.; Brock, S. L.; Oupicky, D., Temperature-controlled uptake and release in PNIPAM-modified porous silica nanoparticles [J]. Chemistry of Materials 2008,20, 3354-3359.
    24. Yang, Y.; Yan, X. H.; Cui, Y.; He, Q.; Li, D. X.; Wang, A. H.; Fei, J. B.; Li, J. B., Preparation of polymer-coated mesoporous silica nanoparticles used for cellular imaging by a "graft-from" method [J]. Journal of Materials Chemistry.2008,18,5731-5737.
    25. Chung, P. W.; Kumar, R.; Pruski, M.; Lin, V. S. Y., Temperature responsive solution partition of organic-inorganic hybrid poly(N-isopropylacrylamide)-coated mesoporous silica nanospheres [J]. Advanced Functional Materials 2008,18,1390-1398.
    26. Liu, Y. Y.; Yu, Y.; Tian, W.; Sun, L.; Fan, X. D., Preparation and Properties of Cyclodextrin/PNIPAm Microgels [J]. Macromolecular Bioscience 2009,9,525-534.
    27. Zhao, C. W.; Zhuang, X. L.; He, C. L.; Chen, X. S.; Jing, X. B., Synthesis of Novel Thermo-and pH-Responsive Poly(L-lysine)-Based Copolymer and its Micellization in Water [J]. Macromolecular Rapid Communications 2008,29,1810-1816.
    28. Fu, Q.; Rao, G. V. R.; Ward, T. L.; Lu, Y. F.; Lopez, G. P., Thermoresponsive transport through ordered mesoporous silica/PNIPAAm copolymer membranes and microspheres [J]. Langmuir 2007,23,170-174.
    29. Fu, Q.; Rao, G. V. R.; Ista, L. K.; Wu, Y.; Andrzejewski, B. P.; Sklar, L. A.; Ward, T. L. Lopez, G. P., Control of molecular transport through stimuli-responsive ordered mesoporous materials [J]. Advanced Materials 2003,15,1262-1267.
    30. Bianco-Peled, H.; Gryc, S., Binding of amino acids to "smart" sorbents:Where does hydrophobicity come into play [J]? Langmuir.2004,20,169-174
    31. Lutz, J. F.; Akdemir, O.; Hoth, A., Point by point comparison of two thermosensitive polymers exhibiting a similar LCST:Is the age of poly(NIPAM) over [J]? Journal of the American Chemical Society 2006,128,13046-13047.
    32. Lutz, J. F.; Hoth, A., Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate [J]. Macromolecules 2006,39,893-896.
    33. Lutz, J. F.; Weichenhan, K.; Akdemir, O.; Hoth, A., About the phase transitions in aqueous solutions of thermoresponsive copolymers and hydrogels based on 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate [J]. Macromolecules 2007,40, 2503-2508.
    34. Han, S.; Hagiwara, M.; Ishizone, T., Synthesis of thermally sensitive water-soluble polymethacrylates by living anionic polymerizations of oligo(ethylene glycol) methyl ether methacrylates [J]. Macromolecules 2003,36,8312-8319.
    35. Ishizone, T.; Seki, A.; Hagiwara, M.; Han, S.; Yokoyama, H.; Oyane, A.; Deffieux, A.; Carlotti, S., Anionic polymerizations of oligo(ethylene glycol) alkyl ether methacrylates: Effect of side chain length and omega-alkyl group of side chain on cloud point in water [J]. Macromolecules 2008,41,2963-2967.
    36. Jiang, X.; Lavender, C. A.; Woodcock, J. W.; Zhao, B., Multiple micellization and dissociation transitions of thermo-and light-sensitive poly(ethylene oxide)-b-poly(ethoxytri(ethylene glycol) acrylate-co-o-nitrobenzyl acrylate) in water [J]. Macromolecules 2008,41,2632-2643.
    37. Yamamoto, S.; Pietrasik, J.; Matyjaszewski, K., ATRP synthesis of thermally responsive molecular brushes from oligo(ethylene oxide) methacrylates [J]. Macromolecules 2007,40, 9348-9353.
    38. Lutz, J. R.; Andrieu, J.; Uzgun, S.; Rudolph, C.; Agarwal, S., Biocompatible, thermoresponsive, and biodegradable:Simple preparation of "all-in-one" biorelevant polymers [J]. Macromolecules 2007,40,8540-8543.
    39. Chen, G.; Wright, P. M.; Geng, J.; Mantovani, G.; Haddleton, D. M., Tunable thermoresponsive water-dispersed multiwalled carbon nanotubes [J]. Chemical Communications 2008,1097-1099.
    40. Wischerhoff, E.; Uhlig, K.; Lankenau, A.; Borner, H. G.; Laschewsky, A.; Duschl, C.; Lutz, J. F., Controlled cell adhesion on PEG-based switchable surfaces [J]. Angewandte Chemie-International Edition 2008,47,5666-5668.
    41. Tan, K. L.; Woon, L. L.; Wong, H. K.; Kang, E. T.; Neoh, K. G., Surface modification of plasma-pretreated poly(tetrafluoroethylene) films by graft copolymerization [J]. Macromolecules 1993,26,2832.
    42. Li, C.; Benicewicz, B. C., Synthesis of Well-Defined Polymer Brushes Grafted onto Silica Nanoparticles via Surface Reversible Addition Fragmentation Chain Transfer Polymerization [J]. Macromolecules 2005,38,5929-5936
    1. Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K.,Narrow Molecular-Weight Resins by a Free-Radical Polymerization Process [J]. Macromolecules.1993,26,2987-2988.
    2. Sato, K.; Goto, T.; Iwabuchi, S.; Hirai, H., Polymerization of Coordinated Monomers.22. Abinitio Molecular-Orbital Study on the Binary Radical Complexes of 2-Methoxycarbonyl Propyl Radical with Boron-Trichloride and with Boron-Trifluoride as a Model of Growing Radical End [J]. J Polym Sci Part A:Polym Chem 1993,31,763-768.
    3. Wang, J. S.; Matyjaszewski, K., Controlled Living Radical Polymerizaition-Atom-Transfer Radical Polymerization in the Presence of Transition-Metal Complexes [J]. J. Am. Chem. Soc.2000.1995,117,5614-5615.
    4. Wang, J. S.; Matyjaszewski, K., Living Controlled Radical Polymerization-Transition-Metal-Catalyzed Atom-Transfer Radical Polymerization in the Presence of a Conventional Radical Initiator [J]. Macromolecules.1995,28,7572-7573.
    5. Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H., Living free-radical polymerization by reversible addition-fragmentation chain transfer:The RAFT process [J]. Macromolecules.1998,31,5559-5562.
    6. Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Chong, Y. K.; Moad, G.; Thang, S. H.,
    Living radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization) using dithiocarbamates as chain transfer agents [J]. Macromolecules.1999, 32,6977-6980.
    7. Ganachaud, F.; Monteiro, M. J.; Gilbert, R. G.; Dourges, M. A.; Thang, S. H.; Rizzardo, E., Molecular weight characterization of poly(N-isopropylacrylamide) prepared by living free-radical polymerization [J]. Macromolecules.2000,33,6738-6745.
    8. Chen, X. P.; Qiu, K. Y., Study of "livingn/controlled radical polymerization. Prog Chem [J].2001,13,224-233.
    9. Tsavalas, J. G.; Schork, F. J.; de Brouwer, H.; Monteiro, M. J., Living radical polymerization by reversible addition-fragmentation chain transfer in ionically stabilized miniemulsions [J]. Macromolecules.2001,34,3938-3946.
    10. Lowe, A. B.; Sumerlin, B. S.; Donovan, M. S.; Thomas, D. B.; Hennauxz, P.; McCormick, C. L., RAFT polymerization in homogeneous aqueous media [J]. Advances in Controlled/Living Radical Polymerization.2003,854,586-602.
    11. Lowe, A. B.; Sumerlin, B. S.; McCormick, C. L., The direct polymerization of 2-methacryloxyethyl glucoside via aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization [J]. Polymer.2003,44,6761-6765.
    12. Sumerlin, B. S.; Lowe, A. B.; Stroud, P. A.; Zhang, P.; Urban, M. W.; McCormick, C. L. Modification of gold surfaces with water-soluble (co)polymers prepared via aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization [J]. Langmuir.2003, 19,5559-5562.
    13. Baussard, J. F.; Habib-Jiwan, J. L.; Laschewsky, A.; Mertoglu, M.; Storsberg, J., New chain transfer agents for reversible addition-fragmentation chain transfer (RAFT) polymerisation in aqueous solution [J]. Polymer.2004,45,3615-3626.
    14. McCormick, C. L.; Kirkland, S. E.; York, A. W., Synthetic routes to stimuli-responsive micelles, vesicles, and surfaces via controlled/living radical polymerization [J]. Polymer.2006,46,421-443.
    15. Lowe, A. B.; McCormick, C. L., Reversible addition-fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media [J]. Prog.Polym.Sci.2007,32,283-351.
    16. Bai, W.; Zhang, L.; Bai, R.; Zhang, G. Z., A very useful redox initiator for aqueous RAFT polymerization of N-isopropylacrylamide and acrylamide at room temperature [J]. Macromol Rapid.Commun.2008,29,562-566.
    17. You, Y. Z.; Oupicky, D., Synthesis of temperature-responsive heterobifunctional block copolymers of polyethylene glycol) and poly(N-isopropylacrylamide) [J]. Biomacromolecules.2007,8,98-105.
    18. You, Y. Z.; Zhou, Q. H.; Manickam, D. S.; Wan, L.; Mao, G. Z.; Oupicky, D., Dually responsive multiblock copolymers via reversible addition-fragmentation chain transfer polymerization:Synthesis of temperature-and redox-responsive copolymers of poly(N-isopropylacrylamide) and poly(2-(dimethylamino)ethyl methacrylate) [J]. Macromolecules.2007,40,8617-8624.
    19. Zhang, K.; Ma, J.; Zhang, B.; Zhao, S.; Li, Y. P.; Xu, Y. X.; Yu, W. Z.; Wang, J. Y., Synthesis of thermoresponsive silica nanoparticle/PNIPAM hybrids by aqueous surface-initiated atom transfer radical polymerization [J]. Mater. Let.2007,61,949-952.
    20. Bianco-Peled, H.; Gryc, S., Binding of amino acids to "smart" sorbents:Where does hydrophobicity come into play [J]? Langmuir.2004,20,169-174.
    21. Lutz, J. F.; Hoth, A., Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate [J]. Macromolecules 2006,39,893-896.
    22. Lutz, J. F.; Andrieu, J.; Uzgun, S.; Rudolph, C.; Agarwal, S., Biocompatible, thermoresponsive, and biodegradable:Simple preparation of "all-in-one" biorelevant polymers [J]. Macromolecules 2007,40,8540-8543.
    23. Lutz, J. F.; Weichenhan, K.; Akdemir, O.; Hoth, A., About the phase transitions in aqueous solutions of thermoresponsive copolymers and hydrogels based on 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate [J]. Macromolecules 2007,40, 2503-2508.
    24. Ishizone, T.; Seki, A.; Hagiwara, M.; Han, S.; Yokoyama, H.; Oyane, A.; Deffieux, A.; Carlotti, S., Anionic polymerizations of oligo(ethylene glycol) alkyl ether methacrylates: Effect of side chain length and omega-alkyl group of side chain on cloud point in water [J]. Macromolecules.2008,41,2963-2967.
    25. Lai, J. T.; Filla, D.; Shea, R., Functional Polymers from Novel Carboxyl-Terminated Trithiocarbonates as Highly Efficient RAFT Agents [J]. Macromolecules.2002,35, 6754-6756.
    1. Onaca,O.; Enea, R.; Hughes, D. W.; Meier, W., Stimuli-Responsive Polymersomes as Nanocarriers for Drug and Gene Delivery [J]. Macromolecular Bioscience.2009,9,129-139.
    2. Park, H. W.; Jung, J.; Chang, T., New Characterization Methods for Block Copolymers and their Phase Behaviors [J]. Macromolecular Research.2009,17,365-377.
    3. Smith, A. E.; Xu, X. W.; McCormick, C. L., Stimuli-responsive amphiphilic (co)polymers via RAFT polymerization [J]. Progress in Polymer Science 35,45-93.
    4. Chuang, Y. H.; Yang, Y. H.; Wu, S. J.; Chiang, B. L., Gene Therapy for Allergic Diseases [J]. Current Gene Therapy.2009,9,185-191.
    5. Fumoto, S.; Nishi, J.; Nakamura, J.; Nishida, K., Gene therapy for gastric diseases [J]. Current Gene Therapy.2008,8,187-200.
    6. Lim, F.; Diaz-Nido, J., Gene Therapy Approaches to Ataxias [J]. Current Gene Therapy.2009,9,
    1-8.
    7. Nazari, R.; Joshi, S., HIV-1 Gene Therapy at Pre-Integration and Provirus DNA Levels [J]. Current Gene Therapy.2009,9,20-25.
    8. Palazzoli, F.; Carnus, E.; Wells, D. J.; Bigot, Y., Sustained Transgene Expression Using Non-Viral Enzymatic Systems for Stable Chromosomal Integration [J]. Current Gene Therapy.2008,8,367-390.
    9. Sawyer, G. J.; Rela, M.; Davenport, M.; Whitehorne, M.; Zhang, X. H.; Fabre, J. W., Hydrodynamic Gene Delivery to the Liver:Theoretical and Practical Issues for Clinical Application [J]. Current Gene Therapy.2009,9,128-135.
    10. Ghosh, P.; Han, G.; De, M.; Kim, C. K.; Rotello, V. M., Gold nanoparticles in delivery applications [J]. Advanced Drug Delivery Reviews.2008,60,1307-1315.
    11. Sanders, N.; Rudolph, C.; Braeckmans, K.; De Smedt, S. C.; Demeester, J., Extracellular barriers in respiratory gene therapy [J]. Advanced Drug Delivery Reviews.2009,61,115-127.
    12. Shubayev, V. I.; Pisanic, T. R.; Jin, S. H., Magnetic nanoparticles for theragnostics. Advanced Drug Delivery Reviews [J].2009,61,467-477.
    13. Yamada, Y.; Harashima, H., Mitochondrial drug delivery systems for macromolecule and their therapeutic application to mitochondrial diseases [J]. Advanced Drug Delivery Reviews.2008,60, 1439-1462.
    14. Al-Jamal, K. T.; Al-Jamal, W. T.; Akerman, S.; Podesta, J. E.; Yilmazer, A.; Turton, J. A.; Bianco, A.; Vargesson, N.; Kanthou, C.; Florence, A. T.; Tozer, G. M.; Kostarelos, K., Systemic antiangiogenic activity of cationic poly-L-lysine dendrimer delays tumor growth [J]. Proceedings of the National Academy of Sciences of the United States of America 107,3966-3971.
    15. Zhang, X.; Oulad-Abdelghani, M.; Zelkin, A. N.; Wang, Y. J.; Haikel, Y.; Mainard, D.; Voegel, J. C.; Caruso, F.; Benkirane-Jessel, N., Poly(L-lysine) nanostructured particles for gene delivery and hormone stimulation [J]. Biomaterials 31,1699-1706.
    16. Ito, T.; Yoshihara, C.; Hamada, K.; Koyama, Y., DNA/polyethyleneimine/hyaluronic acid small complex particles and tumor suppression in mice [J]. Biomaterials 31,2912-2918.
    17. van Gaal, E. V. B.; Oosting, R. S.; Hennink, W. E.; Crommelin, D. J. A.; Mastrobattista, E., Junk DNA enhances pEI-based non-viral gene delivery [J]. Int J Pharm 390,76-83.
    18. Han, L.; Zhang, A.; Wang, H.; Pu, P.; Jiang, X.; Kang, C.; Chang, J., Tat-BMPs-PAMAM conjugates enhance therapeutic effect of small interference RNA on U251 glioma cells in vitro and in vivo [J]. Hum Gene Ther.2010,21,417-426.
    19. Kang, C. S.; Yuan, X. B.; Li, F.; Pu, P. Y.; Yu, S. Z.; Shen, C. H.; Zhang, Z. Y.; Zhang, Y. T., Evaluation of foIate-PAMAM for the delivery of antisense oligonucleotides to rat C6 glioma cells in vitro and in vivo [J]. Journal of Biomedical Materials Research Part A.2010,93A,585-594.
    20. Mei, M.; Ren, Y.; Zhou, X.; Yuan, X. B.; Li, F.; Jiang, L. H.; Kang, C. S.; Yao, Z., Suppression of Breast Cancer Cells In Vitro by Polyamidoamine-Dendrimer-Mediated 5-Fluorouracil Chemotherapy Combined with Antisense Micro-RNA 21 Gene Therapy [J]. Journal of Applied Polymer Science.2009,114,3760-3766.
    21. Dehousse, V.; Garbacki, N.; Jaspart, S.; Castagne, D.; Piel, G.; Colige, A.; Evrard, B., Comparison of chitosan/siRNA and trimethylchitosan/siRNA complexes behaviour in vitro [J]. International Journal of Biological Macromolecules.2010,46,342-349.
    22. Klausner, E. A.; Zhang, Z.; Chapman, R. L.; Multack, R. F.; Volin, M. V., Ultrapure chitosan oligomers as carriers for corneal gene transfer [J]. Biomaterials.2010,31,1814-1820.
    23. Wang, J.; Tao, X.; Zhang, Y.; Wei, D.; Ren, Y., Reversion of multidrug resistance by tumor targeted delivery of antisense oligodeoxynucleotides in hydroxypropyl-chitosan nanoparticles [J]. Biomaterials.2010,31,4426-4433.
    24. Williams, K. A.; Coster, D. J., Gene therapy for diseases of the cornea-a review [J]. Clinical and Experimental Ophthalmology.2010,38,93-103.
    25. Abedin, M. J.; Wang, D.; McDonnell, M. A.; Lehmann, U.; Kelekar, A., Autophagy delays apoptotic death in breast cancer cells following DNA damage [J]. Cell Death Differ.2007,14, 500-510.
    26. Abeliovich, H.; Klionsky, D. J., Autophagy in yeast:mechanistic insights and physiological function [J]. Microbiol Mol Biol Rev.2001,65,463-479, table of contents.
    27. Aguas, A. P.; Soares, J. O.; Nunes, J. F., Autophagy in mouse hepatocytes induced by lysine acetylsalicylate. Experientia [J].1978,34,1618-1619.
    28. Akdemir, F.; Farkas, R.; Chen, P.; Juhasz, G.; Medved'ova, L.; Sass, M.; Wang, L.; Wang, X.; Chittaranjan, S.; Gorski, S. M.; Rodriguez, A.; Abrams, J. M., Autophagy occurs upstream or parallel to the apoptosome during histolytic cell death [J]. Development.2006,133,1457-1465.
    29. Huang, J.; Klionsky, D. J., Autophagy and human disease [J]. Cell Cycle.2007,6,1837-1849.
    30. Ideo, A.; Sasaki, M.; Nakamura, C.; Mori, K.; Shimada, J.; Kanda, Y.; Kunii, S.; Kawase, M.; Sakagami, H., Cytotoxic activity of selected trifluoromethyl ketones against oral tumor cells [J]. Anticancer Res.2006,26,4335-4341.
    31. Jellinger, K. A.; Stadelmann, C, Problems of cell death in neurodegeneration and Alzheimer's Disease [J]. J Alzheimers Dis.2001,3,31-40.
    32. Akar, U.; Chaves-Reyes, A.; Barria, M.; Tari, A.; Saungino, A.; Kondo, Y.; Kondo, S.; Arun, B.; Lopez-Berestein, G.; Ozpolat, B., Silencing of Bcl-2 Expression by Small Interfering RNA Induces Autophagic Cell Death in MCF-7 Breast Cancer Cells [J]. Autophagy.2008,4.
    33. Amaravadi, R. K.; Yu, D.; Lum, J. J.; Bui, T.; Christophorou, M. A.; Evan, G. I.; Thomas-Tikhonenko, A.; Thompson, C. B., Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma [J]. J Clin Invest.2007,117,326-336.
    34. Arthur, C. R.; Gupton, J. T.; Kellogg, G. E.; Yeudall, W. A.; Cabot, M. C; Newsham,I. F.; Gewirtz, D. A., Autophagic cell death, polyploidy and senescence induced in breast tumor cells by the substituted pyrrole JG-03-14, a novel microtubule poison [J]. Biochem Pharmacol.2007,74, 981-991.
    35. Bergmann, A., Autophagy and cell death:no longer at odds [J]. Cell.2007,131,1032-1034.
    36. Chang, C. L.; Liao, J. J.; Huang, W. P.; Lee, H., Lysophosphatidic acid inhibits serum deprivation-induced autophagy in human prostate cancer PC-3 cells [J]. Autophagy.2007,3, 268-270.
    37. Fu, J.; Shao, C. J.; Chen, F. R.; Ng, H. K.; Chen, Z. P., Autophagy induced by valproic acid is associated with oxidative stress in glioma cell lines [J]. Neuro-Oncology.2010,12,328-340.
    38. Michaelis, M.; Cinatl, J.; Anand, P.; Rothweiler, F.; Kotchetkov, R.; von Deimling, A.; Doerr, H. W.; Shogen, K., Onconase induces caspase-independent cell death in chemoresistant neuroblastoma cells [J]. Cancer Lett.2007,250,107-116.
    39. Mitsui, K.; Nakagawa, D.; Nakamura, M.; Okamoto, T.; Tsurugi, K., Valproic acid induces apoptosis dependent of Ycalp at concentrations that mildly affect the proliferation of yeast [J]. Febs Letters.2005,579,723-727.
    40. Cui, Q.; Tashiro, S.; Onodera, S.; Minami, M.; Ikejima, T., Oridonin induced autophagy in human cervical carcinoma HeLa cells through Ras, JNK, and P38 regulation [J]. J Pharmacol Sci.2007, 105,317-325.
    41. Cui, Q.; Tashiro, S.; Onodera, S.; Minami, M.; Ikejima, T., Autophagy preceded apoptosis in oridonin-treated human breast cancer MCF-7 cells [J]. Biol Pharm Bull.2007,30,859-864.
    42. Jones, R. A.; Poniris, M. H.; Wilson, M. R., (P)DMAEMA is internalised by endocytosis but does not physically disrupt endosomes [J]. Journal of Controlled Release.2004,96,379-391.
    43. Soer, W.J.; Ming, W.H.; Klumperman, B., Surfactant-free artificial latexes from modified styrene-maleic anhydride (SMA) copolymers[J]. Polymer.2006,47,7621-7627.
    44. Liu, Y. Y.; Fan, X. D., Preparation and characterization of a novel responsive hydrogel with a beta-cyclodextrin-based macromonomer [J]. J Appl Polym Sci.2003,89,361-367.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700