高规整度金属杂原子分子筛的制备、表征及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子筛由于具有较高的比表面积,较大的孔容及均匀的孔径分布等特性,在基础科学研究和工业应用中受到了广泛关注。然而,纯硅分子筛作为催化剂使用时,其酸活性位较少,催化活性低,不能满足某些催化反应的需要。杂原子的引入可以有效增加分子筛的酸性位,这是提高分子筛催化活性最有效的方法之一。杂原子分子筛中骨架金属的含量与分子筛酸性位的数量有直接关系。因此,制备高金属含量、高规整度的金属杂原子分子筛对提高其催化活性具有重要的意义。
     根据分子筛孔径的大小,可将其分为微孔、介孔及大孔分子筛。微孔分子筛的晶体结构具有较好的稳定性,但由于孔径尺寸较小,在大分子催化反应中的应用受到限制;介孔分子筛虽然解决了孔径限制的问题,但其无定形的孔壁结构使得其水热稳定性较差,应用也受到极大的限制。目前,解决这一问题的主要方法是将微孔分子筛的结构单元引入到介孔分子筛的孔壁上,制备多级孔复合分子筛。多级孔复合分子筛的孔壁是由包含微孔分子筛单元的无定形介孔骨架构成的,制备具有全晶态骨架的介孔分子筛对解决这一问题提供了更有效的途径。
     本论文主要致力于高铁含量分子筛、多级孔复合分子筛、具有晶体结构介孔分子筛、高规整度杂原子介孔分子筛的制备研究,详细阐述了各种分子筛的合成条件和方法,并进一步对他们的结构特征、物理化学性能及催化活性进行了表征。
     论文通过水解控制及两步pH调节的方法,成功制备了高铁含量的微孔分子筛和介孔分子筛;通过两步晶化法将MFI结构单元引入到MCM-41介孔孔壁中,制备了微孔-介孔复合分子筛;以金属离子的配合物与长链表面活性剂分子的缔合物为模板剂,成功制备了具有晶体结构的介孔分子筛。通过X射线荧光光谱(XRF)、X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HR-TEM)、N_2吸附-脱附(N_2-sorption)、红外吸收光谱(FT-IR)、紫外可见分光光谱(UV-vis)、电子顺磁共振光谱(EPR)、X射线吸收精细结构(XAFS)、热重-差热(TG-DSC)、H2程序升温还原(H2-TPR)等分析测试手段对分子筛样品的组成、形貌、孔径结构、金属原子的配位状态、稳定性等进行了表征。并通过苯酚羟基化反应和渣油的加氢裂化反应对催化剂的催化活性进行了考察。论文的主要研究成果有:
     1)通过水解控制及两步pH调节的方法制备了骨架铁含量为10.5wt%(Si/Fe=8)的介孔分子筛Fe-MCM-41。测试结果表明,分子筛中Fe3+主要以四配位的方式存在于分子筛的硅氧骨架中,分子筛骨架在引入大量金属原子后依然保持了较好的介孔结构和较高的热稳定性。在以H_2O为反应介质,以H_2O_2为氧化剂的苯酚羟基化反应中,催化实验结果表明:苯酚的转化率随分子筛中骨架铁含量的增大而提高,当骨架中铁含量为10.5wt%时,分子筛具有较高的催化活性,在0.47g苯酚,0.03g催化剂,15ml去离子水,1.2ml H_2O_2,反应温度为70℃,反应时间为180min条件下,苯酚的转化率可达52wt%。
     2)通过水解控制的方法制备了骨架铁含量为7.2wt%微孔分子筛Fe-MFI。通过考察合成条件对其结晶度的影响,得到了最佳制备条件,并在该条件下制备了一系列不同铁含量的Fe-MFI。测试结果表明,制备的高铁含量Fe-MFI样品具有较好的晶体结构,随着铁含量的提高,样品的结晶度有所下降,晶粒尺寸也发生了改变。EPR和XAFS分析数据显示,Fe~(3+)主要以四配位的方式存在于分子筛的硅氧骨架中。制备的高铁含量微孔分子筛Fe-MFI的颜色为白色,也说明Fe~(3+)全部进入到分子筛的硅氧骨架中。
     3)通过双模板剂两步晶化的方法制备了双金属微孔-介孔复合结构的分子筛FeCo-MFI/MCM-41。测试结果表明,FeCo-MFI/MCM-41分子筛既具有MFI微孔结构,又具有MCM-41的介孔结构。XAFS数据显示,Fe~(3+)和Co~(2+)以四配位方式存在于分子筛的硅氧骨架中。渣油加氢裂化结果表明,FeCo-MFI/MCM-41催化剂对渣油的转化率和对汽油的选择性都高于单一孔结构、单一杂原子的微孔分子筛和介孔分子筛。
     4)以长链表面活性剂分子和金属配合物的络合物为模板剂,通过一步晶化法制备了具有晶体结构的介孔分子筛Cry-Ni-MCM-41。测试结果表明,样品既具有微孔分子筛的晶态骨架,同时又具有典型的介孔结构。扫描电镜图显示,材料可以形成较好的晶体结构,通过高分辨透射电镜可以观察到晶体上存在均一的介孔结构,且随着Ni含量的增大样品的结晶度也有所提高。样品中Ni的含量可达16wt%。样品经NaOH溶液处理之后依然保持了完整的晶体结构,说明该材料具有较好的碱稳定性。
     5)通过两步法制备了高规整度的介孔分子筛Fe-MCM-41。以K_3Fe(CN)_6为铁源,通过后处理法制备了具有极高规整度的Fe-MCM-41介孔分子筛。HR-TEM和N_2吸脱附表征结果表明,在将Fe~(3+)引入到分子筛骨架上之后,其规整度和孔道结构没有被破坏。在FT-IR和XAFS测试结果基础上,提出了高规整度介孔分子筛Fe-MCM-41形成机理,Fe(CN)~(3+)_6首先与模板剂分子发生相互作用,之后,Fe~(3+)在焙烧过程中进入到分子筛骨架上。苯酚羟基化反应结果证明,制备的含骨架铁的Fe-MCM-41其催化活性要高于氧化铁负载的介孔分子筛Fe/MCM-41,且随着Fe-MCM-41中铁含量从0.2wt%增大到0.7wt%,苯酚的转化率也从21.7%提高到38.9%。
     6)在测试结果的基础上,探讨了各类分子筛材料的形成机理。
Molecular sieve materials have received considerable attentions in basic scientificresearch and industrial applications on account of their acidity and structure features.However, their weak surface acidity restricts the applications of pure silica zeolite;on the other hand, the pore-restrictions of microporous zeolite and lowerhydrothermal stability of mesoporous molecular sieves also hindered theirapplications.
     The incorporation of foreign atoms into the silica framework was found to be aneffective strategy to promote the surface activity. The acidities of molecular sieveswere related to the metal content in the framework; more metal atoms in theframework could be conducive to the generation of more catalytically. Thus,metal-rich incorporation molecular sieves are desirable. A number of papers dealwith the synthesis of composite materials, which should combine the advantages ofmicroporous zeolite and mesoporous molecular sieves.
     In the present studies, we show that high content of iron can successfully beincorporation into the microporous zeolite and mesoporous molecular sievesframework using a simple hydrothermal method, avoiding co-precipitation of iron oxides during the synthesis. Micro-mesoporous composites were prepared using adual templating method through a process of two-step crystallization. Mesoporoussilica with crystalline zeolitic framework was synthesized through one-pot process.The obtained products were characterized by using X-ray fluorescence spectroscopy(XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), high-powertransmission electron microscopy (HR-TEM), N2adsorption/desorption(N_2-sorption), infrared absorption spectroscopy (FT-IR), UV-visible absorptionspectroscopy (UV-vis), electron paramagnetic resonance spectroscopy (EPR), X-rayabsorption fine structure (XAFS), thermogravimetric-differential scanningcalorimetry (TG-DSC), H_2temperature-programmed desorption (H_2-TPR). And thecatalytic activities were investigated through the hydroxylation of phenol and residuehydrocracking reaction. The main research results are as following:
     1) The mesoporous ferrisilicates (MFS) with high iron content were synthesizedby pH-modification method and the iron content could be up to10.5wt%(Si/Fe=8).The pH was kept less than2at pre-hydrothermal synthesis step and was adjusted to11during hydrothermal step. The characterized results suggested that the MFSmaterials were ordered2D-hexagonal mesophase of MCM-41, and the iron ionswere tetrahedral coordinated in the silica framework. This material could efficientlycatalyze the hydroxylation of phenol in water medium using H_2O_2as an oxidant, andthe phenol conversion could be up to52wt%under the optimal experimentalconditions.
     2) A series of Fe-MFIs with a high content of iron were synthesized using TBAB as the structure directing agent. The optimum limit of iron incorporation in theframework was7.2wt%. Characterization results showed the Fe~(3+)was tetrahedralcoordination in the silica framework. The crystallinity of Fe-MFI decreased with theiron content increases; the crystalline sizes also change with the iron contentincreases.
     3) The MFI/MCM-41composites with bimetallic Fe and Co were prepared usinga templating method through a process of two-step crystallization. Characterizationresults showed that two kinds of stable MFI/MCM-41composites can be synthesizedduring the course of recrystallization. The iron and cobalt were incorporated into thesilicon framework according to the characterization data. The composites presentedexcellent activities in hydrocracking of residual oil, which were superior to the purematerials of silicate-1/MCM-41.
     4) Mesoporous molecular sieves Cry-Ni-MCM-41with crystalline zeoliticframework was synthesized using one pot process. The obtained products possesseda good crystal particle with uniform mesoporous channel. The alkali stability of thesample wss much higher than the amorphous pore walls of mesoporous molecularsieves.
     5) A method of incorporating iron onto the mesoporous silica network usingpotassium ferricyanide (K_3Fe(CN)_6) as the iron source was established. TheFe(CN)_6~3+ions interact with the template and attached onto the silica network afterthe as-synthesized sample calcined at823K. FT-IR spectroscopy provided a clearevidence for the interaction between cyanide ligands and template. XANES spectroscopic displayed that the Fe~(3+)changed from octahedral to tetrahedralcoordinated during thermal treatment. XRD and HRTEM results indicated that theiron ions incorporated onto the silica network without destroying the lattice structureof the parent MCM-41. The synthesized material exhibited a good activity for phenolhydroxylation.
     6) According to the results of the characterizations, the formation mechanisticof the samples was described.
引文
[1]宋春敏.新型微孔-介孔复合结构硅酸铝分子筛的合成、表征及应用研究[D].中国石油大学博士论文,北京,2006.
    [2] Rungsirisakun R, Nanok T, Probst M, et al. Adsorption and diffusion of benzene in thenanoporous catalysts FAU, ZSM-5and MCM-22: A molecular dynamics study [J]. J.Mol. Graphics Modell.,2006,24:373–382.
    [3] Wang K Y, Wang X S, Li G, et al. A study on acid sites related to activity of nanoscaleZSM-5in toluene disproportionation [J]. Catal. Comm.,2007,8:324–328.
    [4] Georgiev P A, Albinati A, Mojet B L, et al. Observation of Exceptionally Strong Bindingof Molecular Hydrogen in a Porous Material: Formation of an e2-H2Complex in aCu-Exchanged ZSM-5Zeolite [J]. J. Am. Chem. Soc.,2007,129:8086-8087.
    [5] Reddy E P, Davydov L, Smirniotis P G, et al. Characterization of titamia loaded V-, Fe-,and Cr-incorporated MCM-41by XRD, TPR, UV-vis, Raman, and XPS Techniques [J]J. Phys. Chem. B.,2002,106:3394-3401.
    [6] Hammond C, Forde M, Rahim A, et al. Direct Catalytic Conversion of Methane toMethanol in an Aqueous Medium by using Copper‐Promoted Fe-ZSM-5. Angew.Chem. Int. Ed.,2012,51(21),5129-5133.
    [7] Cheng X, He Q, Guo J, et al. Studies on the hydrothermal stability of natural andmodified STI zeolite. Microporous Mesoporous Mater.,2012,149:10-15.
    [8] Liu Z, Song X, Li, et al.|(C4NH12)4|[M4Al12P16O64](M=Co, Zn): NewHeteroatom-Containing Aluminophosphate Molecular Sieves with Two Intersecting8-Ring Channels [J]. Inorg. Chem.,2012. DOI:10.1021/ic2022903.
    [9]姚婧媛.有序介孔炭/Ni复合材料的合成研究[D].北京化工大学硕士论文,北京,2008.
    [10]肖霓.介孔分子筛高温合成及其合成机制的研究[D].吉林大学硕士论文,长春,2009.
    [11]李倩.多孔硅酸铝材料吸附剂的研制[D].中国石油大学硕士论文,北京,2009.
    [12]林凡允.有序介孔碳修饰电极对多巴胺和硝基苯的电催化研究[D].东北师范大学硕士论文,长春,2007.
    [13]周志华. MCM-48/ZSM-5复合分子筛及膜的制备研究[D].大连理工大学硕士论文,大连,2009.
    [14]袁金芳.短孔道有序介孔材料的可控合成及吸附、催化性能研究[D].南京理工大学博士论文,南京,2011.
    [15]贺建国.有序介孔碳的合成、修饰及在吸附苯酚中的应用[D].兰州大学硕士论文,兰州,2009.
    [16] Baoshan Li, Junqing Xu, Xiao Li, et al. Bimetallic iron and cobalt incorporatedMFI/MCM-41composite and its catalytic properties [J]. Mater. Res. Bull.10.1016/j.materresbull.2012.02.010
    [17]申宝剑,黄海燕,李海丽,等.一种中微孔复合分子筛组合物的分步晶化合成方法
    [P].2003, CN1393403A.
    [18]黄海燕.新型催化材料中微孔复合分子筛的合成及其在裂化催化剂中的应用[D].石油大学博士论文,北京,2002.
    [19]叶夏雷.二氧化硅介孔材料以及CoFe2O4/SBA-15纳米复合材料的制备、结构与磁性[D].兰州大学硕士论文.兰州,2009.
    [20]叶丹. MOR-MCM-41介微孔分子筛的合成、表征和催化性质[D].大连理工大学硕士论文,大连,2010.
    [21]陈国倩. SBA-15分子筛的改性合成研究及其在CO氧化反应中的应用[D].福建师范大学硕士论文,福州,2010.
    [22] Kloctstra K R, Janscn J C. Composite Molecular Sieve comprising MCM-41withIntrapourous ZSM-5Structures [C]. Symposium on Advances in FCC CoversionCatalysts,21th National Meeting, American Chemical Society, New Orleans, LA, March24-29,1996.
    [23]刘玲.钴化合物/有序介孔碳复合材料在电化学传感器中的应用[D].东北师范大学硕士论文,长春,2010.
    [24]曹喻霖.基于有序介孔碳的纳米材料的制备和研究[D].南京航空航天大学硕士论文,南京,2006.
    [25]许本静.糖类模板下介孔氧化铝的合成、表征及其催化应用研究[D].中国石油大学博士论文,北京,2006.
    [26]门秀杰.酸性添加物用于高含氮重油催化裂化的研究[D].中国石油大学硕士论文,北京,2007.
    [27] Absil R, Angevine P, Bundens R, et al. Octane improvement in catalytic cracking andcracking catalyst compostion therefore [P]. US,4983276,1991.
    [28] Lowenstein W. Am. Mineral [M].1954,39:92-97.
    [21] Degnan T, Fung A, Hatzikos G, et al. Catalyst and method of manufacture [P]. US,5470810,1995.
    [22]王海彦.催化裂化轻汽油醚化技术进展[J].炼油设计,1997,27:18-21.
    [23]王海彦,陈文艺,马骏,等.轻汽油醚化负载型磷钨酸铯催化剂性能研究[J].炼油设计,2001,31:26-29.
    [24] Hunger M, Horvath T, Weitkamp J, et al. Methyltertiary-butyl ethersynthesison zeoliteHBeta investigated by insitu MASNMR spectros copy under continuous-flow conditions[J]. Microporous and Mesoporous Mater.,1998,22:357-367.
    [25] Coollignon F, Loenders R, Martens J A, et al. Liquid Phase Synthesis of MTBE fromMethanoland Isobutene over Acid Zeolites and Amberlyst215[J]. J. Catal.1999,182:302-312.
    [26]袁兴东,李国辉,周敬来,等.分子筛催化合成MTBE的反应性能研究[J].石油化工,2000,29:826-828.
    [27]张英强,李昱,王海彦,等.催化裂化轻汽油醚化沸石催化剂的研究[J].炼油设计,2002,32:20-23.
    [28] Marchionna M, Girolamo M D, Patrini R, et al. Light olefins dimerization to high qualitygasoline components [J]. Catal. Today.2001,65:397-403.
    [29] Meier W M, Baerlocher C. Zeolite type frameworks: connectivities, configuration ofzoelite analogue Molecular Sieves [C]. Berlin Heidelberg: Spring-Verlag.1992,2:141-161.
    [30] McCusker L B, Liebau F, Engelhardt G. Nomenclature of structural and compositionalcharacteristics of ordered microporous and mesoporous materials with inorganic hosts(IUPAC recommendations2001)[J]. Microporous Mesoporous Mater.2003,58:3-13
    [31] McCusker L B, Baerlocher C. Zeolite structures [M]. Stud. Surf. Sci. Catal., Elsevier,2001.
    [32] http://www.iza-structure.org/databases
    [33] McNicol B D, Pott G T, Loos K R et al. Spectroscopic Studies of Zeolite Synthesis,Evidence for a Solid state Mechanism [J]. Adv. Chem. Series121“Molecular Serises”,Meier W N Uytterhoeven J B,1973,152-161.
    [34]侯莹,孔径及组成对有序介孔碳修饰电极电化学行为的影响研究[D].东北师范大学硕士论文,长春,2008.
    [35] Zhdanov S P.“Circular Series I”[M]. Adv. Chem. Series101Washington D.C.1971,20.
    [36]徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].科学出版社,北京,2004.
    [37]刘治军.无机有机杂化介孔材料的酶吸附行为研究[D].北京化工大学硕士论文,北京,2007.
    [38] Morris R E, Weigel S J. The synthesis of Molecular Sieves from Non-aqueous solvents[J]. Chem. Soc. Rev.,1997,26:309-317.
    [39] Han Y, Ma H, Qiu S, et al. Preparation of Zeolite A Membranes by Microwave Heating[J]. Microporous Mesoporous Mater.,1998,23:321-326.
    [40]王朝丽.分子筛中扩散及界面阻力的模型化研究[D].北京化工大学硕士论文,北京,2009.
    [41]范广林诚. β分子筛的改性研究进展[J].分子催化,2005,5:408-417.
    [42]李颖. SBA-15介孔分子筛的改性及其催化性能[D].哈尔滨工业大学硕士论文.哈尔滨,2007.
    [43] Antunes M, Lima S, Fernandes A, et al. Aqueous-phase dehydration of xylose to furfuralin the presence of MCM-22and ITQ-2solid acid catalysts [J]. Appl. Catal. A: Gen.2012. dx.doi.org/10.1016/j.apcata.2011.12.046.
    [44] Absil R, Angevine P, Bundens R, et al. Octane improvement in catalytic cracking andcracking catalyst compostion therefore [P]. US,4983276,1991.
    [45]傅军,刘中清,何鸣元,等. MWW结构分子筛的研究进展[J].石油化工,2002,31:574-579.
    [46] Degnan T, Fung A, Hatzikos G, et al. Catalyst and method of manufacture [P]. US,5470810,1995.
    [47]王海彦.催化裂化轻汽油醚化技术进展[J].炼油设计,1997,27:18-21.
    [48]王海彦,陈文艺,马骏,等.轻汽油醚化负载型磷钨酸铯催化剂性能研究[J].炼油设计,2001,31:26-29.
    [49] Hunger M, Horvath T, Weitkamp J, et al. Methyltertiary-butyl ether synthesison zeoliteH-Beta investigated by insitu MAS NMR spectroscopy under continuous-flowconditions [J]. Microporous Mesoporous Mater.,1998,22:357-367.
    [50] Coollignon F, Loenders R, Martens J A, et al. Liquid Phase Synthesis of MTBE fromMethanoland Isobutene over Acid Zeolites and Amberlyst215[J]. J. Catal.,1999,182:302-312.
    [51]袁兴东,李国辉,周敬来,等.分子筛催化合成MTBE的反应性能研究[J].石油化工,2000,29:826-828.
    [52]张英强,李昱,王海彦,等.催化裂化轻汽油醚化沸石催化剂的研究[J].炼油设计,2002,32:20-23
    [53] Marchionna M, Girolamo M D, Patrini R, et al. Light olefins dimerization to high qualitygasoline components [J]. Catal. Today,2001,65:397-403.
    [54] Li D D, Li M F, Chu Y, et al. Skeletal isomerization of light FCC naphtha [J]. Catal.Today,2003,81:65-73.
    [55] Looij F V, Laan P V D, Stork W H, et al. Key parameters in deep hydrodesulfurizationof diesel fuel [J]. Appl. Catal., A: Gen.,1998,170:1-12.
    [56]王鹏,傅军,何鸣元,等.含噻吩烷烃在分子筛上裂化脱硫的研究[J].石油炼制与化工,2000,31:58-62.
    [57] Ye Q, Wang L, Yang R, et al. Activity, propene poisoning resistance and hydrothermalstability of copper exchanged chabazite-like zeolite catalysts for SCR of NO withammonia in comparison to Cu/ZSM-5[J]. Appl. Catal. A: Gen.,2012.dx.doi.org/10.1016/j.apcata.2012.03.026.
    [58] Naoki M, Masaki O, Hiromi Y, et al. Oxidative Dehydrogenation of Ethane overCr/ZSM-5Catalysts Using CO2as an Oxidant [J]. J. Phys. Chem. B,2006,110:21764–21770.
    [59] Laha S C, Mukherjee P, Sainkar S R, et al. Cerium Containing MCM-41-TypeMesoporous Materials and their Acidic and Redox Catalytic Properties [J]. J. Catal.,2002.207:213-217.
    [60] Che S, Sakamoto Y, Yoshitake H, et al. Synthesis and Characterization of Mo SBA-1Cubic Mesoporous Molecular Sieves [J]. J. Phys. Chem. B,2001,105:10565–10572.
    [61]杨东. SBA-15主体-罗丹明B客体纳米复合材料及苯基化的SBA-15材料研究[D].长春理工大学硕士论文,长春,2008.
    [62]王琪. SBA-15分子筛主体—对甲基二溴偶氮胂客体纳米复合材料及烷基化SBA-15材料研究[D].长春理工大学硕士论文,长春,2008.
    [63]宋春敏.新型微孔-介孔复合结构硅酸铝分子筛的合成、表征及应用研究[D].中国石油大学博士论文,北京,2006.
    [64]贺建国.有序介孔碳的合成、修饰及在吸附苯酚中的应用[D].兰州大学硕士论文,兰州,2009.
    [65]张娟.在聚硅烷胶束中和二氧化硅纳米粒子制备过程中的手性转移[D].苏州大学硕士论文,苏州,2009.
    [66]刘钢.柠檬酸路线合成新型介孔材料及其催化性能研究[D].吉林大学博士论文,长春,2007.
    [67]孙竹青.有序TiO2介孔材料的制备表征及应用[D].江南大学硕士论文,无锡,2007.
    [68] Chang H, Chun C, Aksay I, et al. Conversion of fly ash into mesoporous aluminosilicate[J]. Ind. Eng. Chem. Res.,1999,38:973-977
    [69] Lee Y, Surjadi D, Rathman J. Effects of Aluminate and Silicate on the Structure ofQuaternary Ammonium Surfactant Aggregates [J]. Langmuir,1996,12:6202-6210.
    [70] Kumar N, Leino E, Maki-Arvela P, et al. Synthesis and characterization of solid basemesoporous and microporous catalysts: Influence of the support, structure and type ofbase metal [J]. Microporous Mesoporous Mater.,2012,152,71-77.
    [71] Peng R, Zhao D, Dimitrijevic N, et al. Room Temperature Synthesis of Ti-MCM-48andTi-MCM-41Mesoporous Materials and Their Performance on Photocatalytic Splitting ofWater [J]. J. Phys. Chem. C,2012,116:1605–1613.
    [72]宋伟明.介孔分子筛催化脂肪醇乙氧基化反应[D].大连理工大学博士论文,大连.2005.
    [73] Corma A, Navarro M T, Pariente J. Synthesis of an ultralarge pore titanium silicateisomorphous to MCM-41and its application as a catalyst for selective oxidation ofhydrocarbons [J]. J. CHEM. SOC., CHEM. COMMUN.,1994,2:147-148.
    [74] Lihitkar P, Violet S, Shirolkar M, et al. Confinement of zinc oxide nanoparticles inordered mesoporous silica MCM-41. Mater. Chem. Phys.,2012,133:850–856.
    [75] Wang X, Wang Y, Tang Q, et al. MCM-41-supported iron phosphate catalyst forpartialoxidation of methane to oxygenates with oxygen and nitrous oxide [J]. J. Catal.,2003,217:457-467.
    [76]胡胜伟.表面活性剂辅助纳米氧化锆的合成与表征[D].福州大学硕士论文,福州,2005.
    [77]高雄厚,毛学文,曹镭,等.提高MCM-41分子筛稳定性的研究[J].石油学报,1997,13:15-20.
    [78] NDAMANISHA Jean Chrysostome.有序介孔碳改性:合成与应用[D].东北师范大学博士论文,长春,2009.
    [79] Frank K, Milind J, Christof H, et al. Selective oxidation of ethane over aVOx/γ-Al2O3catalyst–investigation of the reaction network [J]. Appl. Catal. A: Gen.,2004,260:101-110
    [80] Zhang Z, Zhang X. Synthesis, characterization, and catalytic testing of W-MCM-41mesoporous molecular sieves [J]. Appl. Catal. A: Gen.,1999,179:11-19.
    [81] Shaikh R A, Chandrasekar G, Biswas K, et al. Tetralin oxidation over chromiumcontaining molecular sieve catalysts [J]. Catal. Today.2008,132:52-57.
    [82] Yang X, Dai W, Chen H, et al. Novel tungsten-containing mesoporous HMS material: itssynthesis, characterization and catalytic application in the selective oxidation ofcyclopentene to glutaraldehyde by aqueous H2O2[J]. Appl. Catal. A: Gen.,2005,283:1-8
    [83] Lizama L Y, Klimova T E. SBA-15modified with Al, Ti, or Zr as supports for highlyactive NiW catalysts for HDS [J]. J. MATER. SCI.2009,44:6617-6628.
    [84]周午纵. MCM-41中孔分子筛[J].科学,1998,50:35-38.
    [85] Zou J, Chang N, Zhang X, et al. Isomerization and Dimerization of Pinene using Al‐Incorporated MCM‐41Mesoporous Materials [J]. ChemCatChem,2012, DOI:10.1002/cctc.201200106.
    [86]李晓芬,何静,马润宇,等.青霉素酰化酶在介孔分子筛MCM-41上的固化研究[J].化学学报,2000,58:167-171.
    [87]王炎,郑旭翰,姜兆华.有序介孔材料在生物医药领域中的应用[J].化学进展,2006,10:1345-1351.
    [88]高峰,赵建伟,张松等.中孔分子筛SBA-15作为液相色谱固定相以及在旈基化合物分离中的应用[J].高等化学学报,2002,23:1494-1497.
    [89] Tzoulaki D, Jentys A, Perez-Ramírez J, et al. On the location, strength and accessibilityof Br nsted acid sites in hierarchical ZSM-5particles []J. Catal. Today,2012,dx.doi.org/10.1016/j.cattod.2012.03.078.
    [90] Mehlhorn D, Valiullin R, Karger J, et al. Intracrystalline Diffusion in MesoporousZeolites [J]. CHEMPHYCHEM,2012, DOI:10.1002/cphc.201200048.
    [91] Ogura M, Inoue K, Yamaguchi T, et al. A mechanistic study on the synthesis ofMCM-22from SBA-15by dry gel conversion to form a micro-and mesoporouscomposite [J]. Catal. Today.2011,1:118-123.
    [92] Vernimmen J, Meynen V, Herregods S J, et al. New Insights in the Formation ofCombined Zeolitic/Mesoporous Materials by using a One-Pot Templating Synthesis [J].Europ. J. Inorganic Chem.2011,2011:4234-4240.
    [93] Wang Y, Liu K, He T, et al. Zeolite with trimodal porosity by desilication of zeolitenanocrystals aggregate [J]. J. Solid State Chem.,2012,dx.doi.org/10.1016/j.jssc.2012.04.028.
    [94] Zhao X, Wang H, Dong B. Facile synthesis of FeAlPO-5molecular sieve in eutecticmixture via a microwave-assisted process [J]. Microporous Mesoporous Mater.,2012,151:56-63.
    [95] Zhao L, Gao J, Xu C, et al. Alkali-treatment of ZSM-5zeolites with different SiO2/Al2O3ratios and light olefin production by heavy oil cracking [J]. Fuel Proc. Tech.,2011,92:414-420.
    [96] Chen Z, Li Y, Yin D, et al. Microstructural optimization of mordenite membrane forpervaporation dehydration of acetic acid [J]. J. Membrane Sci.,2012,dx.doi.org/10.1016/j.memsci.2012.04.030.
    [97]韩伟,贾玉心,熊国兴,等.介孔-微孔复合材料的水热稳定性及其催化裂化性能[J].催化学报,2011,3:418-427.
    [98] Han Y, Xiao F, Wu S, et al. A Novel method for incorporation of hetematoms into theframework of oniered mesopomus silica materials synthesizedin strong acidic media [J].J. Phys. Chem. B.,2001,105:7963-7966.
    [99]徐玲,阚秋斌.多级复合孔硅铝材料的合成与表征[J].应用化学,2011,4:478-482.
    [100]李工,阚秋斌,吴通好,等.具有强酸位的六方和立方介孔硅铝分子筛合成及催化活性比较[J].高等学校化学学报,2002,23:1171.
    [101] Fan Y, Xiao H, Shi G, et al. Alkylphosphonic acid-and smallamine-templated synthesis of hierarchical silicoaluminophosphate molecular sieves withhigh isomerization selectivity to di-branched paraffins [J], J. Catal.,2012,285:251-259.
    [102] Huang J, Li G, Wu S et al, Synthesis, characterization and catalytic activity of cubic Ia3dand p6mm mesoporous aluminosilicates with enhanced acidity [J], J. Mater. Chem.,2005,15:1055.
    [103] He J, Zhang J, Li J, et al. Shape-Selective Alkylation of Toluene with Propylene overModified Zeolite [J]. Adv. Mater. Res.,2012,396:739-744.
    [104] Breck D W. Chapter7“Ion exchange reaction in zeolites.” in “Zeolite MolecularSieves”[M].(Wiley) New York,1974.
    [105]庞文琴,裘式纶,周凤歧.杂原子分子筛合成研究进展[J].吉林大学学报(特刊),1992:78.
    [106] Liu X. Gallosilicate Zeolites [D]. Thesis Ph. D, University of Cambridge,1986.
    [107] Rigutto S, Ruiter R, Niederer J P M, et al. Titanium-containing large pore molecularsieves from boron-Beta preparation, characterization and catalysis [J]. Stu. Surf. Sci.Catal.,1994,84C:2245-2252.
    [108] Kosslick H, Tuan V A, Fricke R. Ga-ZSM–5Conditions of Synthesis [J]. Crystal Res.Tech.,1991,36:64-67.
    [109] Scherzer J. The preparation and charazation of aluminum deficient zeolite [M].“Catalytic Materials” ACS symposium seriers.1984,248:157-200.
    [110] Niwa M, Itoh H, Kato S, et al. Modification of H-mordenite by a vapour-phasedeposition method [J]. J. Chem. Soc., Chem. Commun.,1982:819-820.
    [1] Mandal M, Kruk M, et al. Family of Single-Micelle-Templated Organosilica HollowNanospheres and Nanotubes Synthesized through Adjustment of Organosilica/SurfactantRatio [J]. Chem. Mater.,2012,24:123-132.
    [2] Wan Y, Zhao D. Controllable Soft-Templating Approach to Mesoporous Silicates [J].ChemInform,2007,38:no-no.
    [3] Kishore P N R, Jeevanandam P. A novel thermal decomposition approach for the synthesisof silica-iron oxide core-shell nanoparticles [J]. J. Alloys Comp.,2012,522:51-62.
    [4]杨英.含席夫碱或8-羟基喹啉金属配合物的有机—无机杂化材料的合成、表征及其环氧化催化性能研究[D].吉林大学博士论文,长春,2010.
    [5] Xin H, Liu J, Fan F, et al. Mesoporous ferrosilicates with high content of isolated ironspecies synthesized in mild buffer solution and their catalytic application [J]. MicroporousMesoporous Mater.,2008,113:231-239.
    [6] Karandikar P, Agashe M, Vijayamohanan K, et al. Cu2+-perchlorophthalocyanineimmobilized MCM-41: catalyst for oxidation of alkenes [J]. Appl. Catal. A: Gen.,2004,257:133-143.
    [7] Nakamura T, Ogawa M. Attachments of Sulfonic Acid Group in the Interlayer Space of aLayered Alkali Silicate, Octosilicate [J]. Langmuir,2012,28:7505–7511.
    [8]闫欣.有序介孔氧化硅、硅铝酸盐、硅钛酸盐材料的合成与表征[D].山东大学博士论文,济南,2007.
    [9]许俊强.掺杂介孔MCM-41分子筛的制备,表征及其催化性能研究[D].四川大学博士论文,成都,2007.
    [10] Wei L, Lee C W, Li L J, et al. Assessment of (n, m) selectively enriched small diametersingle-walled carbon nanotubes by density differentiation from cobalt-incorporatedMCM-41for macroelectronics [J]. Chem. Mater.,2008,20:7417-7424.
    [11] Huang H, Wang H, Wei Y, et al. Chemical Structure of Nanosize Copper Wires inMCM-41[J]. Adv. Mater. Res.,2008,47:1125-1128.
    [12] Campos J M, Loureno J P, Fernandes A, et al. Mesoporous Ga-MCM-41: A very efficientsupport for the heterogenisation of metallocene catalysts [J]. Catal. Commun.2008,10:71-73.
    [13] Subramanian H, Nettleton E G, Budhi S, et al. Baeyer–Villiger oxidation of cyclic ketonesusing Fe containing MCM-48cubic mesoporous materials [J]. J. Mol. Catal. A: Chem.2010,330:66-72.
    [14] Liu H, Lu G, Guo Y, et al. Study on the synthesis and the catalytic properties of Fe-HMSmaterials in the hydroxylation of phenol [J]. Microporous Mesoporous Mater.,2008,108:,56-64.
    [15], Joyner R, Stockenhuber M. Preparation, characterization, and performance of Fe-ZSM-5catalysts [J]. J. Phys. Chem. B,1999,103:5963-5976.
    [16] Dzwigaj S, Stievano L, Wagner F E, et al. Effect of preparation and metal content on theintroduction of Fe in BEA zeolite, studied by DR UV–vis, EPR and M ssbauerspectroscopy [J]. J. Phys. Chem. Solids.2007,68:1885-1891.
    [17] Kumar R, Thangaraj A, Bhat R, et al. Synthesis of iron-silicate analogs of zeolite beta [J].Zeolites1990,10:85-89.
    [18] Grubert G, Hudson M J, Joyner R W, et al. The room temperature, stoichiometricconversion of N2O to adsorbed NO by Fe-MCM-41and Fe-ZSM-5[J]. J. Catal.,2000,196:126-133.
    [19] Samanta S, Giri S, Sastry P U, et al. Synthesis and Characterization of Iron-Rich HighlyOrdered Mesoporous Fe-MCM-41[J]. Ind. Eng. Chem. Res.2003,42:3012-3018.
    [20] Cheng C, Liu S, Cheng H, et al. Microwave Hydrothermal Synthesis and Acidity ofNanosize Gallosilicate Mesoporous Molecular Sieves [J]. J. Chinese Chem. Soc.,2011,58:155-162.
    [21] Pradhan A C, Parida K M. Facile synthesis of mesoporous composite Fe/Al2O3-MCM-41:an efficient adsorbent/catalyst for swift removal of methylene blue and mixed dyes [J]. J.Mater. Chem.,2012,22:7567-7579.
    [22] Braganca L F F P G, Ojeda M, Fierro J L G, et al. Bimetallic Co-Fe nanocrystalsdeposited on SBA-15and HMS mesoporous silicas as catalysts for Fischer-Tropschsynthesis [J]. Appl. Catal. A: Gen.2012,423–424:146–153
    [23] K Parida, Mishra G, Dash S K. Adsorption of Copper(II) on NH2-MCM-41and ItsApplication for Epoxidation of Styrene [J]. Ind. Eng. Chem. Res.,2012,51:2235-2246.
    [24] Decyk P. States of Transition Metal Ions in Modified Mesoporous MCM-41and inMicroporous ZSM-5studied by ESR Spectroscopy [J]. Catal. Today,2006,114:142-153.
    [25] Aritani H, Nishimura S, Tamai M, et al. Local Structure of Framework Iron inFe-Substituted Al-Mordenites by Fe K Edge XAFS [J]. Chem. Mater.,2002,14:562-567.
    [26] Stockenhuber M, Hudson M, Joyner R. Preparation, Characterization, and UnusualReactivity of Fe-MCM-41[J]. J. Phys. Chem. B,2000,104:3370-3374.
    [27] Li B, Xu J, Liu J, et al. Preparation of mesoporous ferrisilicate with high content offramework iron by pH-modification method and its catalytic performance [J]. J. ColloidInterface Sci.2012,366:114-119
    [28] Ates A, Reitzmann A, Waters G. Surface oxygen generated upon N2O activation on ironcontaining ZSM-5type zeolites with different elemental composition [J]. Appl. Catal. B:Environ.,2012,119–120:329–339.
    [29] Park J N, Wang J, Choi K Y, et al. Hydroxylation of phenol with H2O2over Fe2+and/orCo2+ion-exchanged NaY catalyst in the fixed-bed flow reactor [J]. J. Mol. Catal. A:Chem.,2006,247:73-79.
    [30] Ayodele O, Lim J, Hameed B. Degradation of phenol in photo-Fenton process byphosphoric acid modified kaolin supported ferric-oxalate catalyst: optimization and kineticmodeling [J]. Chem. Engin. J.,2012, dx.doi.org/10.1016/j.cej.2012.04.053.
    [1] Duan A.; Gao Z; Huo, Q; et al. Preparation and Evaluation of the Composite ContainingUSL Zeolite-Supported NiW Catalysts for Hydrotreating of FCC Diesel [J]. Energy Fuels,2009,24:796-803.
    [2] Lazau C, Ratiu C, Orha C, Pode R, et al. Photocatalytic activity of undoped and Ag-dopedTiO2-supported zeolite for humic acid degradation and mineralization [J]. Mater. Res.Bull.,2011.46:1916-1921.
    [3] Masika E, Mokaya R. Mesoporous Aluminosilicates from a Zeolite BEA Recipe [J].Chem. Mater.,2011,23:2491-2498.
    [4] Lombardo M, Videla M, Calvo A, et al. Aminopropyl-modified mesoporous silica SBA-15as recovery agents of Cu (II)-sulfate solutions: adsorption efficiency, functional stabilityand reusability aspects [J]. J. Hazard. Mater.,2012,223–224:53–62.
    [5]殷成阳.介孔沸石材料的催化性能研究[D].吉林大学博士论文,长春,2009.
    [6] Huang L, Guo W, Deng P, et al. Steam-assisted crystallization of TPA+-exchangedMCM-41type mesoporous materials with thick pore walls [J]. Mater. Res. Bull.,2012,http://dx.doi.org/10.1016/j.materresbull.2012.03.029.
    [7] Kraleva E, Saladino M, Spinella A, et al. Supported on mesoporous MCM-41andAl-MCM-41materials: preparation and characterization [J]. J. Mater. Sci.,2011,46:7114-7120.
    [8] Inagaki S, Ogura M, Inami T, et al. Synthesis of MCM-41-type mesoporous materialsusing filtrate of alkaline dissolution of ZSM-5zeolite [J]. Microporous MesoporousMater.,2004,74:163-170.
    [9] Kalita B, Talukdar A K. An efficient synthesis of nanocrystalline MFI zeolite usingdifferent silica sources: A green approach [J]. Mater. Res. Bull.,2009,44:254-258.
    [10] Wattanakit C, Warakulwit C, Pantu P, et al. The versatile synthesis method for hierarchicalmicro-and mesoporous zeolite: An embedded nanocarbon cluster approach [J]. CanadianJ. Chem. Eng.,2011, DOI:10.1002/cjce.20692.
    [11] Hensen E, Zhu Q, Liu P, et al. On the role of aluminum in the selective oxidation ofbenzene to phenol by nitrous oxide over iron-containing MFI zeolites: an in situ FeXANES study [J]. J. Catal.2004,226:466-470.
    [12] Schwartz V, Prins R, Wang X, et al. Characterization by EXAFS of Co/MFI catalystsprepared by sublimation [J]. J. Phys. Chem. B,2002,106:7210-7217.
    [13] Chen Y, Ciuparu D, Lim S, et al. Synthesis of uniform diameter single-wall carbonnanotubes in Co-MCM-41: effects of the catalyst prereduction and nanotube growthtemperatures [J]. J. Catal.,2004,225:453-465.
    [14]Lim S, Ciuparu D, Pak C, et al. Synthesis and Characterization of Highly OrderedCo-MCM-41for Production of Aligned Single Walled Carbon Nanotubes (SWNT)[J]. J.Phys. Chem. B,2003,107:11048-11056
    [15] Amama P B, Lim S, Ciuparu D, et al. Synthesis, characterization, and stability ofFe-MCM-41for production of carbon nanotubes by acetylene pyrolysis [J]. J. Phys.Chem. B,2005,109:2645-2656
    [16] Li B, Xu J, Li X, et al. Bimetallic iron and cobalt incorporated MFI/MCM-41composite
    and its catalytic properties [J]. Mater. Res. Bull.2012,47:1142–1148.
    [1] Duan A, GaoZ, Huo Q, et al. Preparation and Evaluation of the Composite ContainingUSL Zeolite-Supported NiW Catalysts for Hydrotreating of FCC Diesel [J]. Energy Fuels,2009,24:796-803.
    [2] Lazau C, Ratiu C, Orha C, et al. Photocatalytic activity of undoped and Ag-dopedTiO2-supported zeolite for humic acid degradation and mineralization [J]. Mater. Res.Bull.,2011,46:1916-1921.
    [3] Masika E, Mokaya R. Mesoporous Aluminosilicates from a Zeolite BEA Recipe [J].Chem. Mater.,2011,23:2491-2498.
    [4] Zhao D, Feng J, Huo Q, et al. Triblock Copolymer Syntheses of Mesoporous Silica withPeriodic50to300Angstrom Pores [J]. Science,1998,279:548-552.
    [5] Karlsson A, Stocker M, Schmidt R. Composites of micro-and mesoporous materials:simultaneous syntheses of MFI/MCM-41like phases by a mixed template approach [J].Microporous Mesoporous Mater.,1999,27:181-192.
    [6] Huang L, Guo W, Deng P, et al. Investigation of synthesizing MCM-41/ZSM-5composites [J]. J. Phys. Chem. B.,2000,104:2817-2823.
    [7] Kraleva E, Saladino M, Spinella A, et al. Supported on mesoporous MCM-41andAl–MCM-41materials: preparation and characterization [J]. J. Mater. Sci.,2011,46:7114-7120.
    [8] Inagaki S, Ogura M, Inami T, et al. Synthesis of MCM-41-type mesoporous materialsusing filtrate of alkaline dissolution of ZSM-5zeolite [J]. Microporous MesoporousMater.,2004,74:163-170.
    [9] Kalita B, Talukdar A K. An efficient synthesis of nanocrystalline MFI zeolite usingdifferent silica sources: A green approach [J]. Mater. Res. Bull.,2009,44:254-258.
    [10] Tao Y, Kanoh H, Abrams L, et al. Mesopore-modified zeolites: Preparation,characterization, and applications [J]. Chem. Rev.,2006,106:896-910.
    [11] Hensen E, Zhu Q, Liu P, et al. On the role of aluminum in the selective oxidation ofbenzene to phenol by nitrous oxide over iron-containing MFI zeolites: an in situ FeXANES study [J]. J. Catal.2004,226:466-470.
    [12] Schwartz V, Prins R, Wang X, et al. Characterization by EXAFS of Co/MFI catalystsprepared by sublimation [J]. J. Phys. Chem. B,2002,106:7210-7217.
    [13] Chen Y, Ciuparu D, Lim S, et al. Synthesis of uniform diameter single-wall carbonnanotubes in Co-MCM-41: effects of the catalyst prereduction and nanotube growthtemperatures [J]. J. Catal.,2004,225:453-465.
    [14]Lim S, Ciuparu D, Pak C, et al. Synthesis and Characterization of Highly OrderedCo-MCM-41for Production of Aligned Single Walled Carbon Nanotubes (SWNT)[J]. J.Phys. Chem. B,2003,107:11048-11056.
    [15] Amama P, Lim S, Ciuparu D, et al. Synthesis, characterization, and stability ofFe-MCM-41for production of carbon nanotubes by acetylene pyrolysis [J]. J. Phys.Chem. B,2005,109:2645-2656.
    [16] Zhang Q, Guo Q, Wang X, et al. Iron-catalyzed propylene epoxidation by nitrous oxide:Toward understanding the nature of active iron sites with modified Fe-MFI andFe-MCM-41catalysts [J]. J. Catal.,2006,239:105-116.
    [1]X Qian, B Li, Y Hu, et al. Exploring Meso-/Microporous Composite Molecular Sieveswith Core–Shell Structures [J]. Chemistry-A European Journal,2012,18:931-939.
    [2]Satoshi I, Masaru O, Tomoaki I, et al. Synthesis of MCM-41-type mesoporous materialsusing filtrate of alkaline dissolution of MFI zeolite [J]. Microporous Mesoporous Mater.,2004,74:163-170.
    [3]Kollar M, Mihalyi R M, Pal-Borbely G, et al. Micro/mesoporous aluminosilicatecomposites from zeolite MCM-22precursor [J]. Microporous Mesoporous Mater.,2007,99:37-46.
    [4]刘福建.高温水热,溶剂热法合成稳定多功能化的介孔材料[D].吉林大学博士论文,长春,2011.
    [5]Xue T, Chen L, Wang Y, et al. Seed-induced synthesis of mesoporous ZSM-5aggregatesusing tetrapropylammonium hydroxide as single template [J]. Microporous MesoporousMater.,2012,156:97-105.
    [6]Inagaki S, Ogura M, Inami T, et al. Synthesis of MCM-41-type mesoporous materialsusing filtrate of alkaline dissolution of MFI zeolite [J]. Microporous Mesoporous Mater.,2004,74:163-170.
    [7]Xue Z, Ma J, Hao W, et al. Synthesis and characterization of ordered mesoporous zeoliteLTA with high ion exchange ability [J]. J. Mater. Chem.,2012,22:2532-2538.
    [8]Jones B, Lodge T. Nanocasting nanoporous inorganic and organic materials frompolymeric bicontinuous microemulsion templates [J]. Polymer J.,2012,44:131-146.
    [9]Li B, Xu J, Li X, et al. Bimetallic iron and cobalt incorporated MFI/MCM-41compositeand its catalytic properties [J]. Mater. Res. Bull.2012,47:1142–1148.
    [10]Kraleva E, Saladino M, Spinella A, et al. Supported on mesoporous MCM-41andAl-MCM-41materials: preparation and characterization [J]. J. Mater. Sci.,2011,46:7114-7120.
    [11]Wang P, Shen B J, Shen D D, et al. Synthesis of ZSM-5zeolite from expandedperlite/kaolin and its catalytic performance for FCC naphtha aromatization [J]. Catal.Comm.,2007,8(10):1452-1456.
    [12]Dzwigaj S, Che M. Incorporation of Co(II) in Dealuminated BEA Zeolite at LatticeTetrahedral Sites Evidenced by XRD, FTIR, Diffuse Reflectance UV Vis, EPR, and TPR[J]. J. Phys. Chem. B,2006,110:12490-12493.
    [13]Bachari K, Guerroudj R M. Characterization and catalytic properties of nickel-substitutedhexagonal mesoporous silica prepared by microwave-hydrothermal method [J]. ComptesRendus Chimie,2012,15:317-323.
    [14]Wu C, Wang L, Williams P T, et al. Hydrogen production from biomass gasification withNi/MCM-41catalysts: Influence of Ni content [J]. Appl. Catal. B: Environ.2011,108-109:6-13.
    [15]Lehmann T, Wolff T, Zahn V M, et al. Preparation of Ni-MCM-41by equilibriumadsorption-Catalytic evaluation for the direct conversion of ethene to propene [J]. Catal.Comm.,2011,12:368-374.
    [1] Jana S, Dutta B, Hond H, et al. Mesoporous silica MCM-41with rod-shaped morphology:Synthesis and characterization [J]. Appl. Clay Sci.2011,54:138-143
    [2] Gannouni A, Rozanska X, Albel B, et al. Theoretical and experimental investigations onsite occupancy for palladium oxidation states in mesoporous Al-MCM-41materials [J]. J.Catal.,2012, http://dx.doi.org/10.1016/j.jcat.2012.02.014.
    [3] Samanta S, Giri S, Sastry P U, et al. Synthesis and Characterization of Iron-Rich HighlyOrdered Mesoporous Fe-MCM-41[J]. Ind. Eng. Chem. Res.,2003,42:3012-3018.
    [4] Subhan F, Liu B S, Zhang Y, et al. High desulfurization characteristic of lanthanumloaded mesoporous MCM-41sorbents for diesel fuel [J]. Fuel Proc. Tech.,2012,97:71-78.
    [5] Zou J, Xu Y, Zhang X, et al. Isomerization of endo-dicyclopentadiene using Al-graftedMCM-41[J]. Appl. Catal. A: Gen.2012,421-422:79-85.
    [6] Ying Z, Li Z, Yong Z, et al. Synthesis and characterization of Fe-Ce-MCM-41[J]. MaterLett.2006,60:3221-3223
    [7] Xin H, Liu J, Fan F, et al. Mesoporous ferrosilicates with high content of isolated ironspecies synthesized in mild buffer solution and their catalytic application [J]. MicroporousMesoporous Mater.,2008,113:231-239.
    [8] Parida K, Mishra K, Dash S. Adsorption of Copper (II) on NH2-MCM-41and ItsApplication for Epoxidation of Styrene [J]. Ind. Engin. Chem. Res.,2012,51:2235–2246.
    [9] Ng E, Chateigner D, Bein T, et al. Capturing Ultrasmall EMT Zeolite from Template-FreeSystems [J]. Science,2012,335:70-73.
    [10] Lihitkar P B, Violet S, Shirolkar M, et al. Confinement of zinc oxide nanoparticles inordered mesoporous silica MCM-41[J]. Mater. Chem. Phys.2012,133:850-856.
    [11] Zhang S, Liang S, Wang X, et al. Trinuclear iron cluster intercalated montmorillonitecatalyst: Microstructure and photo-Fenton performance [J]. Cataly. Today.2011,175:362-369.
    [12] Aritani H, Nishimura S, Tamai M, et al. Local Structure of Framework Iron in Fe-Substituted Al-Mordenites by Fe K Edge XAFS [J]. Chem. Mater.,2002,14:562-567.
    [13] Joyner R, Stockenhuber M. Preparation, characterization, and performance of Fe-ZSM-5catalysts [J]. J. Phys. Chem. B,103:5963-5976.
    [14] Tian M, Bi W, Row K H. Simultaneous extraction and purification of myricetin fromChamaecyparis obtusa by multi-phase extraction with ionic liquid-modified mesoporousMCM-41[J]. J Chem. Tech. Biotech.,2012,87:165-169.
    [15] Canepa A L, Herrero E R, Crivello M E, et al, H2O2based α-pinene oxidation overTi-MCM-41. A kinetic study [J]. J. Molecular Catal. A: Chem.,2011,347:1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700