鼻咽癌中Myocardin转录失活机制及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心肌素(Myocardin)基因是2001年在小鼠心脏cDNA文库中分离克隆的。因其在成年小鼠心脏的特异表达及其调控心肌分化重要作用而命名。它属于SAP结构域核蛋白家族并能与血清效应因子(serum response factor, SRF)结合,刺激心肌启动子。它在心肌和平滑肌的生长分化中是不可或缺的。研究表明,它参与调节缺氧导致的肺血管重塑、阿尔茨海默病中动脉过强收缩及脑血流下调、心肌肥大、扩张性心肌病的发病等。而新近的研究表明,心肌素在一些肿瘤中起负生长调节作用,可能是肿瘤抑制基因。
     本次我们研究了鼻咽癌中Myocardin基因转录失活机制及其在鼻咽癌中的作用。
     首先,我们检测了5个鼻咽癌细胞系Myocardin转录表达水平,发现3个表达沉默,1个表达下调。提示Myocardin转录失活可能在NPC中是一个普遍现象,并参与癌变过程。
     然后,我们用MSP方法检测了鼻咽癌细胞株、肿瘤组织、正常鼻咽上皮细胞株及正常上皮组织的Myocardin甲基化状态,结果显示4/5的鼻咽癌细胞株中Myocardin甲基化,鼻咽癌组73.8%的病例可检测到甲基化,而正常鼻咽组织则全部为非甲基化,差异具有显著性(p<0.01),说明NPC中Myocardin的甲基化具有肿瘤特异性。
     再次,我们用甲基化转移酶抑制剂对4个鼻咽癌细胞系进行处理,发现其能显著恢复Myocardin的表达,提示启动子甲基化是Myocardin表达下调的直接原因。
     最后,为明确Myocardin在NPC中的作用,我们利用Myocardin真核表达载体转染鼻咽癌细胞获得了稳定转染Myocardin的细胞株。功能试验结果显示,Myocardin可抑制鼻咽癌细胞生长、降低克隆形成效率。
     结果说明Myocardin在NPC中因为启动子CpG岛甲基化而失活,Myocardin可抑制鼻咽癌细胞的恶性生物学行为,是NPC相关的潜在肿瘤抑制基因。
Background:
     Nasopharyngeal carcinoma (NPC) is an serious health problem in southern China and south-eastern Asia while the disease is very rare in most parts of the world. The tumorgenesis of NPC is proposed to be a multistep process; besides its significant association with Epstein-Barr Virus infection, epigenetic inactivations of tumor suppressor genes (TSG) and other genes play indispensable roles in its carcinogenesis. Exploring novel genes that are targets of hypermethylation in NPC may provide further insights into the development of this unique malignancy and open the way to discover novel diagnostic and therapeutic strategies. To identify novel candidate TSGs in NPC, we performed a genome-wide screening for genes inactivated by promoter hypermethylation. By analyzing changes in global gene expression profiles in two NPC cell lines before and after treatment with the combine treatment of the a demethylating agent 5-aza-2O-deoxycytidine (5-aza-dC) and the histone deacetylase (HDAC) inhibitor TSA, we identified Myocardin was downregulated by promoter hypermethylation in NPC.
     Methods:
     Transcriptional expression levels of Myocardin in NPC cells and normal nasopharyngeal epithelia were evaluated by semiquantitave RT-PCR. Methylation status of Myocardin in NPC cells, primary tumors and normal nasopharyngeal epithelia were addressed by methylation specific PCR and bisulfate genomic sequencing. The complete CDS of Myocardin gene were coloned into the expression vector pCMV-3Tag3A and transfected into CNE2 cells. Stable transfectance of Myocardin were selected by geneticin. The properties of Myocardin as a tumor suppressor gene were address by cell proliferation assay and colony formation assay.
     Results:
     Myocardin mRNA expression were inactivated in four out of five NPC cell lines. Myocardin were aberrantly methylated in 80%(4/5) NPC cell lines and 73.8%(48/65) of NPC primary tumors, but not in any of the twelve normal nasopharyngeal tissues. Loss of Myocardin expression can be completely restored by the methyltransferase inhibitor 5-aza-dC in four NPC cell lines. Ectopic expression of Myocardin in the Myocardin-silenced and NPC cell line CNE2 shows that Myocardin could inhibit cell cycle progression, colony formation.
     Conclusions:
     Epigenetic inactivation of Myocardin is frequent and tumor specific event in NPC. Myocardin might be considering as a candidate tumor suppressor gene in NPC.
引文
[1]Tao Q, Chan AT. Nasopharyngeal carcinoma:molecular pathogenesis and therapeutic developments [J]. Expert Rev Mol Med,2007,9(12):1-24.
    [2]Porter MJ, Field JK, Lee JC, et al. Detection of the tumour suppressor gene p53 in nasopharyngeal carcinoma in Hong Kong Chinese [J]. Anticancer Res,1994,14(3B):1357-1360.
    [3]Yu WM, Hussain SS. Incidence of nasopharyngeal carcinoma in Chinese immigrants, compared with Chinese in China and South East Asia: review[J]. J Laryngol Otol,2009,123(10):1067-1074.
    [4]Yu MC, Yuan JM. Epidemiology of nasopharyngeal carcinoma[J]. Semin Cancer Biol,2002,12(6):421-429.
    [5]Lo KW, To KF, Huang DP. Focus on nasopharyngeal carcinoma[J]. Cancer Cell,2004,5(5):423-428.
    [6]Marks JE, Phillips JL, Menck HR. The National Cancer Data Base report on the relationship of race and national origin to the histology of nasopharyngeal carcinoma[J]. Cancer,1998,83(3):582-588.
    [7]Lu SJ, Day NE, Degos L, et al. Linkage of a nasopharyngeal carcinoma susceptibility locus to the HLA region[J]. Nature, 1990,346(6283):470-471.
    [8]Hildesheim A, Apple RJ, Chen CJ, et al. Association of HLA class I and II alleles and extended haplotypes with nasopharyngeal carcinoma in Taiwan [J]. J Natl Cancer Inst,2002,94(23):1780-1789.
    [9]Zhu XN, Chen R, Kong FH, et al. Human leukocyte antigens-A,-B,-C, and-DR and nasopharyngeal carcinoma in northern China [J]. Ann Otol Rhinol Laryngol,1990,99(4 Pt 1):286-287.
    [10]Hildesheim A, Levine PH. Etiology of nasopharyngeal carcinoma:a review[J]. Epidemiol Rev,1993,15(2):466-485.
    [11]Hassen E, Nahla G, Bouaouina N, et al. The human leukocyte antigen class I genes in nasopharyngeal carcinoma risk[J]. Mol Biol Rep, 2010,37(1):119-126.
    [12]Li X, Fasano R, Wang E, et al. HLA associations with nasopharyngeal carcinoma[J]. Curr Mol Med,2009,9(6):751-765.
    [13]Feng BJ, Huang W, Shugart YY, et al. Genome-wide scan for familial nasopharyngeal carcinoma reveals evidence of linkage to chromosome 4[J]. Nat Genet,2002,31(4):395-399.
    [14]Xiong W, Zeng ZY, Xia JH, et al. A susceptibility locus at chromosome 3p21 linked to familial nasopharyngeal carcinoma[J]. Cancer Res, 2004,64 (6):1972-1974.
    [15]Yu MC, Yuan JM. Epidemiology of nasopharyngeal carcinoma[J]. Semin Cancer Biol,2002,12(6):421-429.
    [16]Yu MC, Huang TB, Henderson BE. Diet and nasopharyngeal carcinoma: a case-control study in Guangzhou, China[J]. Int J Cancer, 1989,43(6):1077-1082.
    [17]Yu MC, Ho JH, Lai SH, et al. Cantonese-style salted fish as a cause of nasopharyngeal carcinoma:report of a case-control study in Hong Kong[J]. Cancer Res,1986,46(2):956-961.
    [18]Huang DP, Ho JH, Saw D, et al. Carcinoma of the nasal and paranasal regions in rats fed Cantonese salted marine fish[J]. IARC Sci Publ, 1978, (20):315-328.
    [19]Chen L, Gallicchio L, Boyd-Lindsley K, et al. Alcohol consumption and the risk of nasopharyngeal carcinoma:a systematic review[J]. Nutr Cancer,2009,61(1):1-15.
    [20]Tao Q, Young LS, Woodman CB, et al. Epstein-Barr virus (EBV) and its associated human cancers-genetics, epigenetics, pathobiology and novel therapeutics[J]. Front Biosci,2006,11:2672-2713.
    [21]Henle G, Henle W. Epstein-Barr virus-specific IgA serum antibodies as an outstanding feature of nasopharyngeal carcinoma[J]. Int J Cancer,1976,17(1):1-7.
    [22]Ho HC, Ng MH, Kwan HC, et al. Epstein-Barr-virus-specific IgA and IgG serum antibodies in nasopharyngeal carcinoma[J]. Br J Cancer, 1976,34 (6):655-660.
    [23]Chen JY, Chen CJ, Liu MY, et al. Antibodies to Epstein-Barr virus-specific DNase in patients with nasopharyngeal carcinoma and control groups[J]. J Med Virol,1987,23(1):11-21.
    [24]Raab-Traub N. Epstein-Barr virus in the pathogenesis of NPC[J]. Semin Cancer Biol,2002,12(6):431-441.
    [25]Young LS, Rickinson AB. Epstein-Barr virus:40 years on[J]. Nat Rev Cancer,2004,4(10):757-768.
    [26]李桂源,刘华英,周鸣,等.鼻咽癌癌变的分子机理[J].生物化学与生物物理进展,2006,33(10):922-931.
    [27]Chou J, Lin YC, Kim J, et al. Nasopharyngeal carcinoma-review of the molecular mechanisms of tumorigenesis[J]. Head Neck, 2008,30(7):946-963.
    [28]宗永生,钟碧玲,梁英杰,等.鼻咽癌变过程生物学特性研究的进展[J].癌症,2002,21(6):686-695.
    [29]Lo KW, Teo PM, Hui AB, et al. High resolution allelotype of microdissected primary nasopharyngeal carcinoma[J]. Cancer Res, 2000,60(13):3348-3353.
    [30]邵建永,曾微芬,曾益新.鼻咽癌分子遗传学研究进展[J].癌症,2002,21(1):1-10.
    [31]李小玲,武明花,李桂源,等.鼻咽癌易感/抑瘤基因的功能基因组学研究[J].中南大学学报(医学版),2008,33(7):553-558.
    [32]邵建永,李宇红,吴秋良,等.华南地区鼻咽癌13号和14号染色体长臂发生高频率等位基因杂合性缺失[J].中华医学杂志(英文版),2002,115(4):571-575.
    [33]刘华英,彭淑平,周鸣,等.鼻咽癌的表观遗传学研究进展[J].生物化学与生物物理进展,2007,34(7):673-681.
    [34]Gutierrez MI, Ibrahim MM, Dale JK, et al. Discrete alterations in the BZLF1 promoter in tumor and non-tumor-associated Epstein-Barr virus[J]. J Natl Cancer Inst,2002,94(23):1757-1763.
    [35]Lo AK, Huang DP, Lo KW, et al. Phenotypic alterations induced by the Hong Kong-prevalent Epstein-Barr virus-encoded LMP1 variant (2117-LMP1) in nasopharyngeal epithelial cells[J]. Int J Cancer, 2004,109 (6):919-925.
    [36]Morris MA, Dawson CW, Young LS. Role of the Epstein-Barr virus-encoded latent membrane protein-1, LMP1, in the pathogenesis of nasopharyngeal carcinoma[J]. Future Oncol,2009,5(6):811-825.
    [37]Wei MX, de Turenne-Tessier M, Decaussin G, et al. Establishment of a monkey kidney epithelial cell line with the BARF1 open reading frame from Epstein-Barr virus[J]. Oncogene, 1997,14(25):3073-3081.
    [38]Chan AS, To KF, Lo KW, et al. Frequent chromosome 9p losses in histologically normal nasopharyngeal epithelia from southern Chinese[J]. Int J Cancer,2002,102(3):300-303.
    [39]Chan AS, To KF, Lo KW, et al. High frequency of chromosome 3p deletion in histologically normal nasopharyngeal epithelia from southern Chinese[J]. Cancer Res,2000,60(19):5365-5370.
    [40]彭宏,赵彤,姚开泰.鼻咽癌组织RASSF1A基因的表达[J].第一军医大学学报,2003,23(7):673-676.
    [41]易红梅,任彩萍,彭丹,等.鼻咽癌组织中GNAT1基因的表达、杂合性丢失及甲基化分析[J].癌症,2007,26(1):9-14.
    [42]易红梅,任彩萍,彭丹,等.SEMA3B基因在鼻咽癌组织中的表达、杂合性丢失和甲基化分析[J].生命科学研究,2006,10(2):183-188.
    [43]Chan AT, Hsu MM, Goh BC, et al. Multicenter, phase II study of cetuximab in combination with carboplatin in patients with recurrent or metastatic nasopharyngeal carcinoma[J]. J Clin Oncol, 2005,23(15):3568-3576.
    [44]Ma BB, Chan AT. Systemic treatment strategies and therapeutic monitoring for advanced nasopharyngeal carcinoma[J]. Expert Rev Anticancer Ther,2006,6(3):383-394.
    [45]Hasselt CAv, Alan GG. Nasopharyngeal Carcinoma[M].香港:香港中文大学出版社,2002.
    [46]曹素梅,郭翔,李宁炜,等.1142例住院广东籍鼻咽癌患者的临床资料分析[J].癌症,2006,25(2):204-208.
    [47]李宇红,邵建永,冯惠霞,等.鼻咽癌患者血浆游离EBV/DNA的定量检测及其临床意义[J].中国肿瘤临床,2004,31(8):421-424.
    [48]Wong TS, Chang HW, Tang KC, et al. High frequency of promoter hypermethylation of the death-associated protein-kinase gene in nasopharyngeal carcinoma and its detection in the peripheral blood of patients[J]. Clin Cancer Res,2002,8(2):433-437.
    [49]Tong JH, Tsang RK, Lo KW, et al. Quantitative Epstein-Barr virus DNA analysis and detection of gene promoter hypermethylation in nasopharyngeal (NP) brushing samples from patients with NP carcinoma[J]. Clin Cancer Res,2002,8(8):2612-2619.
    [50]Wong TS, Kwong DL, Sham JS, et al. Quantitative plasma hypermethylated DNA markers of undifferentiated nasopharyngeal carcinoma[J]. Clin Cancer Res,2004,10(7):2401-2406.
    [51]Issa JP, Garcia-Manero G, Giles FJ, et al. Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2'-deoxycytidine (decitabine) in hematopoietic malignancies[J]. Blood,2004,103(5):1635-1640.
    [52]Momparler RL, Bouffard DY, Momparler LF, et al. Pilot phase Ⅰ-Ⅱ study on 5-aza-2'-deoxycytidine (Decitabine) in patients with metastatic lung cancer[J]. Anticancer Drugs,1997,8(4):358-368.
    [53]Sessa C, ten BHW, Stoter G, et al. Phase II study of 5-aza-2'-deoxycytidine in advanced ovarian carcinoma. The EORTC Early Clinical Trials Group [J]. Eur J Cancer,1990,26(2):137-138.
    [54]张念华,张晓实,李疆,等.鼻咽癌组织中EBV潜伏膜蛋白2跨膜区CTL表位序列分析[J].癌症,2006,25(5):566-569.
    [1]Wang D, Chang PS, Wang Z, et al. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor[J]. Cell,2001,105(7):851-862.
    [2]Zhu P, Huang L, Ge X, et al. Trans differentiation of pulmonary arteriolar endothelial cells into smooth muscle-like cells regulated by myocardin involved in hypoxia-induced pulmonary vascular remodelling[J]. Int J Exp Pathol,2006,87(6):463-474.
    [3]Chow N, Bell RD, Deane R, et al. Serum response factor and myocardin mediate arterial hypercontractility and cerebral blood flow dysregulation in Alzheimer's phenotype[J]. Proc Natl Acad Sci U S A,2007,-104(3):823-828.
    [4]Xing W, Zhang TC, Cao D, et al. Myocardin induces cardiomyocyte hypertrophy[J]. Circ Res,2006,98(8):1089-1097.
    [5]Torrado M, Lopez E, Centeno A, et al. Myocardin mRNA is augmented in the failing myocardium:expression profiling in the porcine model and human dilated cardiomyopathy[J]. J Mol Med, 2003,81(9):566-577.
    [6]Kipp M, Gohring F, Ostendorp T, et al. SAF-Box, a conserved protein domain that specifically recognizes scaffold attachment region DNA[J]. Mol Cell Biol,2000,20(20):7480-7489.
    [7]Norman C, Runswick M, Pollock R, et al. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element[J]. Cell,1988,55(6):989-1003.
    [8]Shore P, Sharrocks AD. The MADS-box family of transcription factors [J]. Eur J Biochem,1995,229(1):1-13.
    [9]Firulli AB. Another hat for myocardin [J]. J Mol Cell Cardiol, 2002,34 (10):1293-1296.
    [10]Ueyama T, Kasahara H, Ishiwata T, et al. Myocardin expression is regulated by Nkx2.5, and its function is required for cardiomyogenesis[J]. Mol Cell Biol,2003,23(24):9222-9232.
    [11]Liu ZP, Wang Z, Yanagisawa H, et al. Phenotypic modulation of smooth muscle cells through interaction of Foxo4 and myocardin[J]. Dev Cell,2005,9(2):261-270.
    [12]Callis TE, Cao D, Wang DZ. Bone morphogenetic protein signaling modulates myocardin transactivation of cardiac genes [J]. Circ Res, 2005,97(10):992-1000.
    [13]Oh J, Wang Z, Wang DZ, et al. Target gene-specific modulation of myocardin activity by GATA transcription factors [J]. Mol Cell Biol, 2004,24(19):8519-8528.
    [14]Cao D, Wang Z, Zhang CL, et al. Modulation of smooth muscle gene expression by association of histone acetyltransferases and deacetylases with myocardin[J]. Mol Cell Biol,2005,25(1):364-376.
    [15]Small EM, Warkman AS, Wang DZ, et al. Myocardin is sufficient and necessary for cardiac gene expression in Xenopus[J]. Development, 2005,132 (5):987-997.
    [16]Du KL, Ip HS, Li J, et al. Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation[J]. Mol Cell Biol, 2003,23 (7):2425-2437.
    [17]Owens GK. Regulation of differentiation of vascular smooth muscle cells[J]. Physiol Rev,1995,75(3):487-517.
    [18]Wang Z, Wang DZ, Hockemeyer D, et al. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression [J]. Nature,2004,428(6979):185-189.
    [19]Guo M, House MG, Akiyama Y, et al. Hypermethylation of the GATA gene family in esophageal cancer[J]. Int J Cancer, 2006,119 (9):2078-2083.
    [20]Caslini C, Capo-chichi CD, Roland IH, et al. Histone modifications silence the GATA transcription factor genes in ovarian cancer [J]. Oncogene,2006,25(39):5446-5461.
    [21]Li QL, Ito K, Sakakura C, et al. Causal relationship between the loss of RUNX3 expression and gastric cancer[J]. Cell, 2002,109(1):113-124.
    [22]Milyavsky M, Shats I, Erez N, et al. Prolonged culture of telomerase-immortalized human fibroblasts leads to a premalignant phenotype[J]. Cancer Res,2003,63(21):7147-7157.
    [23]Shats I, Milyavsky M, Cholostoy A, et al. Myocardin in tumor suppression and myofibroblast differentiation[J]. Cell Cycle, 2007,6(10):1141-1146.
    [24]Kimura Y, Morita T, Hayashi K, et al. Myocardin functions as an effective inducer of growth arrest and differentiation in human uterine leiomyosarcoma cells[J]. Cancer Res,2010,70(2):501-511.
    [25]Liang J, Wu L, Xiao H, et al. Use of myocardin in the classification of mesenchymal tumors of the uterus[J]. Int J Gynecol Pathol, 2010,29(1):55-62.
    [26]Milyavsky M, Shats I, Cholostoy A, et al. Inactivation of myocardin and p16 during malignant transformation contributes to a differentiation defect[J]. Cancer Cell,2007,11(2):133-146.
    [27]Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J]. Nat Genet,2006,38(2):228-233.
    [28]Liu Y, Sinha S, McDonald OG, et al. Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression [J]. J Biol Chem,2005,280(10):9719-9727.
    [29]Creemers EE, Sutherland LB, McAnally J, et al. Myocardin is a direct transcriptional target of Mef2, Tead and Foxo proteins during cardiovascular development[J]. Development, 2006,133(21):4245-4256.
    [30]Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis[J]. Nature,2005,436(7048):214-220.
    [31]Tang RH, Zheng XL, Callis TE, et al. Myocardin inhibits cellular proliferation by inhibiting NF-kappaB(p65)-dependent cell cycle progression[J]. Proc Natl Acad Sci U S A,2008,105(9):3362-3367.
    [32]Milyavsky M, Shats I, Erez N, et al. Prolonged culture of telomerase-immortalized human fibroblasts leads to a premalignant phenotype[J]. Cancer Res,2003,63(21):7147-7157.
    [33]Islam AH, Ehara T, Kato H, et al. Loss of calponin h1 in renal angiomyolipoma correlates with aggressive clinical behavior[J]. Urology,2004,64 (3):468-473.
    [34]Yamamura H, Yoshikawa H, Tatsuta M, et al. Expression of the smooth muscle calponin gene in human osteosarcoma and its possible association with prognosis[J]. Int J Cancer,1998,79(3):245-250.
    [1]Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts[J]. Nature, 1983,301 (5895):89-92.
    [2]Esteller M. Cancer epigenomics:DNA methylomes and histone-modification maps[J]. Nat Rev Genet,2007,8(4):286-298.
    [3]Jablonka E, Lamb MJ. The changing concept of epigenetics[J]. Ann N Y Acad Sci,2002,981:82-96.
    [4]Qian W, Hu LF, Chen F, et al. Infrequent MDM2 gene amplification and absence of gross WAF1 gene alterations in nasopharyngeal carcinoma[J]. Eur J Cancer B Oral Oncol,1995,31B(5):328-332.
    [5]Yung WC, Sham JS, Choy DT, et al. ras mutations are uncommon in nasopharyngeal carcinoma[J]. Eur J Cancer B Oral Oncol, 1995,31B (6):399-400.
    [6]Lo KW, Huang DP. Genetic and epigenetic changes in nasopharyngeal carcinoma[J]. Semin Cancer Biol,2002,12(6):451-462.
    [7]Agaoglu FY, Dizdar Y, Dogan O, et al. P53 overexpression in nasopharyngeal carcinoma[J]. In Vivo,2004,18(5):555-560.
    [8]Burgos JS. Absence of p53 alterations in nasopharyngeal carcinoma Spanish patients with Epstein-Barr virus infection [J]. Virus Genes, 2003,27 (3):263-268.
    [9]Makitie AA, MacMillan C, Ho J, et al. Loss of p16 expression has prognostic significance in human nasopharyngeal carcinoma[J]. Clin Cancer Res,2003,9(6):2177-2184.
    [10]Sun Y, Hegamyer G, Colburn NH. Nasopharyngeal carcinoma shows no detectable retinoblastoma susceptibility gene alterations[J]. Oncogene,1993,8(3):791-795.
    [11]Huang GW, Mo WN, Kuang GQ, et al. Expression of p16, nm23-H1, E-cadherin, and CD44 gene products and their significance in nasopharyngeal carcinoma[J]. Laryngoscope, 2001,111(8):1465-1471.
    [12]Sun Y, Hildesheim A, Lanier AE, et al. No point mutation but decreased expression of the p16/MTS1 tumor suppressor gene in nasopharyngeal carcinomas[J]. Oncogene,1995,10(4):785-788.
    [13]Sung NS, Zeng Y, Raab-Traub N. Alterations on chromosome 3 in endemic and nonendemic nasopharyngeal carcinoma[J]. Int J Cancer, 2000,86(2):244-250.
    [14]Lo KW, To KF, Huang DP. Focus on nasopharyngeal carcinoma[J]. Cancer Cell,2004,5(5):423-428.
    [15]Tao Q, Chan AT. Nasopharyngeal carcinoma:molecular pathogenesis and therapeutic developments [J]. Expert Rev Mol Med,2007,9(12):1-24.
    [16]Wang D, Chang PS, Wang Z, et al. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor[J]. Cell,2001,105(7):851-862.
    [17]Kimura Y, Morita T, Hayashi K, et al. Myocardin functions as an effective inducer of growth arrest and differentiation in human uterine leiomyosarcoma cells[J]. Cancer Res,2010,70(2):501-511.
    [18]Liang J, Wu L, Xiao H, et al. Use of myocardin in the classification of mesenchymal tumors of the uterus[J]. Int J Gynecol Pathol, 2010,29(1):55-62.
    [19]Milyavsky M, Shats I, Cholostoy A, et al. Inactivation of myocardin and p16 during malignant transformation contributes to a differentiation defect[J]. Cancer Cell,2007,11(2):133-146.
    [20]洪明晃.鼻咽癌的筛查问题[J].实用肿瘤杂志,2004,(04):275-276.
    [21]向燕群,郭翔,闵华庆.鼻咽癌分子标记物研究进展[J].实用肿瘤杂志,2004,19(4):273-275.
    [22]Moggs JG, Goodman JI, Trosko JE, et al. Epigenetics and cancer: implications for drug discovery and safety assessment [J]. Toxicol Appl Pharmacol,2004,196(3):422-430.
    [23]Lund AH, van LM. Epigenetics and cancer[J]. Genes Dev, 2004,18(19):2315-2335.
    [24]Tang RH, Zheng XL, Callis TE, et al. Myocardin inhibits cellular proliferation by inhibiting NF-kappaB(p65)-dependent cell cycle progression[J]. Proc Natl Acad Sci U S A,2008,105(9):3362-3367.
    [25]Shi W, Bastianutto C, Li A, et al. Multiple dysregulated pathways in nasopharyngeal carcinoma revealed by gene expression profiling[J]. Int J Cancer,2006,119(10):2467-2475.
    [26]Lo AK, Lo KW, Tsao SW, et al. Epstein-Barr virus infection alters cellular signal cascades in human nasopharyngeal epithelial cells[J]. Neoplasia,2006,8(3):173-180.
    [27]Deng L, Yang J, Zhao XR, et al. Cells in G2/M phase increased in human nasopharyngeal carcinoma cell line by EBV-LMP1 through activation of NF-kappaB and AP-1[J]. Cell Res,2003,13(3):187-194.
    [28]Murono S, Inoue H, Tanabe T, et al. Induction of cyclooxygenase-2 by Epstein-Barr virus latent membrane protein 1 is involved in vascular endothelial growth factor production in nasopharyngeal carcinoma cells [J]. Proc Natl Acad Sci U S A, 2001,98(12):6905-6910.
    [29]Chou J, Lin YC, Kim J, et al. Nasopharyngeal carcinoma-review of the molecular mechanisms of tumorigenesis[J]. Head Neck, 2008,30(7):946-963.
    [30]Dackour R, Carter T, Steinberg BM. Phosphatidylinositol 3-kinase regulates early differentiation in human laryngeal keratinocytes[J]. In Vitro Cell Dev Biol Anim, 2005,41(3-4):111-117.
    [31]Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival[J]. J Cell Mol Med,2005,9(1):59-71.
    [32]Liu ZP, Wang Z, Yanagisawa H, et al. Phenotypic modulation of smooth muscle cells through interaction of Foxo4 and myocardin[J]. Dev Cell,2005,9(2):261-270.
    [33]Worsham MJ, Pals G, Schouten JP, et al. Delineating genetic pathways of disease progression in head and neck squamous cell carcinoma [J]. Arch Otolaryngol Head Neck Surg,2003,129(7):702-708.
    [34]Milde-Langosch K. The Fos family of transcription factors and their role in tumourigenesis[J]. Eur J Cancer,2005,41(16):2449-2461.
    [35]Kwong J, Lo KW, To KF, et al. Promoter hypermethylation of multiple genes in nasopharyngeal carcinoma[J]. Clin Cancer Res, 2002,8(1):131-137.
    [36]Song X, Tao YG, Deng XY, et al. Heterodimer formation between c-Jun and Jun B proteins mediated by Epstein-Barr virus encoded latent membrane protein 1[J]. Cell Signal,2004,16(10):1153-1162.
    [37]Hwang CF, Cho CL, Huang CC, et al. Loss of cyclin D1 and p16 expression correlates with local recurrence in nasopharyngeal carcinoma following radiotherapy[J]. Ann Oncol,2002,13(8):1246-1251.
    [38]Milyavsky M, Shats I, Erez N, et al. Prolonged culture of telomerase-immortalized human fibroblasts leads to a premalignant phenotype[J]. Cancer Res,2003,63(21):7147-7157.
    [39]Shats I, Milyavsky M, Cholostoy A, et al. Myocardin in tumor suppression and myofibroblast differentiation [J]. Cell Cycle, 2007,6(10):1141-1146.
    [40]Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis[J]. Nature,2005,436(7048):214-220.
    [41]Chen JF, Mandel EM, Thomson JM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J]. Nat Genet,2006,38(2):228-233.
    [42]Milyavsky M, Shats I, Erez N, et al. Prolonged culture of telomerase-immortalized human fibroblasts leads to a premalignant phenotype[J]. Cancer Res,2003,63(21):7147-7157.
    [43]Lo AK, Huang DP, Lo KW, et al. Phenotypic alterations induced by the Hong Kong-prevalent Epstein-Barr virus-encoded LMP1 variant (2117-LMP1) in nasopharyngeal epithelial cells[J]. Int J Cancer, 2004,109 (6):919-925.
    [44]Liu Y, Sinha S, McDonald OG, et al. Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression [J]. J Biol Chem,2005,280(10):9719-9727.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700