抗菌肽Protegrin-1、PR-39在大肠杆菌和紫花苜蓿中串联表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PR-39与Protegrin-1(PG-1)都是猪源抗菌肽。PR-39具有广谱的抗细菌、真菌作用;能诱导嗜中性粒细胞的定向迁移,促进伤口恢复,减缓病理损伤,并且具有抗癌作用。PG-1具有很强的抗细菌活性和中等程度的抗真菌作用,还具有快速杀菌的活性;能够抵抗有囊膜的病毒,具有不同程度的抗HIV病毒的活性。本研究利用了大肠杆菌和紫花苜蓿作为生物反应器,串联表达PR-39与PG-1。
     1.抗菌肽Protegrin-1、PR-39基因在大肠杆菌中的融合表达为了使猪源抗菌肽Protegrin-1(PG-1)、PR-39在原核表达载体中获得表达,在不改变抗菌肽氨基酸顺序的基础上,根据大肠杆菌偏爱密码子表,替换部分密码子,通过重叠PCR化学合成PG-1、PR-39成熟肽基因片段,重组至融合表达载体pGEX-4T-1中,分别构建融合表达载体pGEX-PG-1、pGEX-PR-39,转化至大肠杆菌BL21(DE3)中,筛选得到的阳性克隆用IPTG进行诱导。SDS-PAGE电泳和Western-blotting检测表明融合蛋白已经成功表达。纯化得到的融合蛋白用肠激酶切割后,经亲合层析得到目的蛋白。重组抗菌肽PG-1和PR-39分别为1.38mg/1、1.11mg/l。抑菌实验结果表明重组抗菌肽具有生物活性。
     2.抗菌肽PR-39和Protegrin-1基因在大肠杆菌中的串联表达为了在大肠杆菌中串联表达抗菌肽PR-39和PG-1,设计了四条短核苷酸链,重叠PCR技术扩增得到PR-39和PG-1的串联基因。PR-39和PG-1的基因之间由盐酸羟胺切割位点(Asn-Gly)连接。串联基因片段插入到融合表达载体pGEX-4T-1中,构建融合表达载体pGEX-PR39-PG1,转化至大肠杆菌BL21(DE3)中,阳性克隆用IPTG进行诱导表达。SDS-PAGE电泳分析和Western-blotting检测表明串联基因已经成功表达。融合蛋白GST-PR39-PG1先经盐酸羟胺切割释放出重组抗菌肽PG-1,再经肠激酶切割得到重组抗菌肽PR-39。两种抗菌肽的产量分别为1.5mg/1、1.9mg/l。重组抗菌肽经抑菌试验,表现出生物活性,且抗菌肽PR-39与PG-1混合的抑菌活性强于PR-39与PG-1单个的抑菌活性。
     3.抗菌肽Protegrin-1和PR-39基因在紫花苜蓿中的串联表达为了在紫花苜蓿中实现抗菌肽PR-39和PG-1的共表达,用大豆多聚半乳糖醛酸内切酶抑制蛋白(Endopolygalacturonase-inhibiting protein, PGIP)引导肽作为信号肽,用在植物体内可被特异性切割的短肽作为连接肽,通过化学合成PR-39和PG-1的串联基因。串联基因片段插入到本实验室前期构建好的植物表达载体pC-1301-PMI中,同时构建包含单个抗菌肽的植物表达载体,导入农杆菌对紫花苜蓿遗传转化。由于紫花苜蓿的遗传转化周期长效率低,实验只获得To代转PR-39和PG-1串联基因紫花苜蓿2株,转PR-39基因的紫花苜蓿4株,转PG-1基因的紫花苜蓿5株。转基因植株经研磨体外抑菌试验表明表达的抗菌肽具有抑菌活性。
Antimicrobial peptide PR-39 is from swine, and has played a multifunction role in host innate immunity. PR-39 shows a broad spectrum of antimicrobial activity, and is chemotactic for neutrophils and capable of regulating vascular cell-cell interaction. It can inhibit invasion and metastasis of cancer cells and apoptosis of hypoxic endothelial cells. There is a significant interest in developing this peptide for pharmaceutical applications. Protegrin-1 (PG-1) was first discovered in porcine leukocytes. It kills microorganism by forming ion channels in cellular membranes. Due to the broad range of antimicrobial activity of PG-1, it is considered as a potential pharmaceutical agent too. There is no report about the heterologous expression of mature antimicrobial peptides PR-39 and PG-1. In this study, PR-39 and PG-1 were co-expressed in E. coli and alfalfa.
     1. Fusion expression of Protegrin-1, PR-39 gene from swine in Escherichia Coli To express swine antimicrobial peptide PG-1 and PR-39 in prokaryotic expression system, the part of codon of gene was replaced by codon preference of E. coli. Complementary primers were designed and the integrity of the PG-1 or PR-39 fragment was amplified by SOE-PCR. The amplified fragments were inserted into pGEX-4T-1, and the fusion expression plasmid pGEX4T-PG-1 and pGEX4T-PR-39 were constructed. The plasmids were transferred into E. coli BL21(DE3) and induced by IPTG SDS-PAGE and Western-blotting analysis showed that the recombinants had expressed the specific proteins. By Glutathione Sepharase 4B affinity chromatography, the fusion proteins GST-PG-1 and GST-PR-39 were obtained and purified. After cleaved by enterokinase, recombinant antimicrobial peptides, PG-1 and PR-39, were obtained. The yields of recombinant PG-1 and PR-39 were 1.38 mg/1 and 1.11 mg/1 respectively. The recombinant peptides showed antibacterial activities by growth inhibition method.
     2. Tandem expression of PR-39 and Protegrin-1 gene in Escherichia Coli To implement co-expression of antimicrobial peptide PR-39 and Protegrin-1 (PG-1) in prokaryotic expression system, a tandem gene fragment encoding PR-39 and PG-1 has been synthesized chemically. The cleavage site (Asn-Gly) of hydroxylamine hydrochloride was introduced between PR-39 and PG-1. The fragment was inserted into vector pGEX-4T-1 and expressed in Escherichia coli. The fusion protein GST-PR39-PG1, purified by affinity chromatography, was cleaved first by hydroxylamine hydrochloride to release recombinant PG-1 and then by enterokinase to release PR-39. Purification of recombinant PR-39 and PG-1 was achieved, and 1.5mg PG-1 and 1.9mg PR-39 were obtained respectively from 11 culture. The recombinant antimicrobial peptides showed antibacterial activity.
     3. Tandem expression of PR-39 and Protegrin-1 gene in Alfalfa To implement co-expression of antimicrobial peptide PR-39 and Protegrin-1 (PG-1) in alfalfa, a tandem gene fragment encoding PR-39 and PG-1, upstream of which the signal peptide geng was added, has been synthesized chemically. An intervening sequence (linker peptide) was introduced between PR-39 and PG-1. The fragment was inserted into plant express vector pC-1301-PMI which was constructed by our lab previously. At the same time, the plant express vectors containing single peptides were constructed. The express vectors plasmids were transformed into agrobacterium tumefaciens. Alfalfa was transformed by agrobacterium tumefaciens. After PCR detection,2 of alfalfa transfected with tandem genes,4 of alfalfa transfected with PR-39 and 5 of alfalfa transfected with PG-1 were obtained. The recombinant antimicrobial peptides showed antibacterial activity by growth inhibition method in vitro.
引文
Adessi C and Soto C. Converting a peptide into a drug:strategies to improve stability and bioavailability, Curr. Med. Chem., Vol.9, (2002), pp.963-978.
    Agerberth B, Lee JY, Amino acid sequence of PR-39:Isolation from pig intestine of a new member of the family praline-arsinine-rich antibacterial peptides[J], Eur J Biocchem,1991,2202:849.
    Alan AR, Blowers A, Earle ED. Expression of a magainin-type antimicrobial peptide gene (MSI-99) in tomato enhances resistance to bacterial speck disease. Plant Cell Rep.2004,22:388-396.
    Austin S, Bingham ET, Mathews DE, et al. Production and field performance of transgenic alfalfa expressing alpha-amylase and manganese2 dependent lignin peroxidase. Euphytica.1995,85:381-393
    Baker MA, Maloy WL, Zasloff M and Jacob LS. Anticancer efficacy of magainin2 and analogue peptides. Cancer Res.1993,53:3052-3057.
    Beven L, Helluin O, Molle G, Duclohier H, Wroblewski H. Correlation between anti-bacterial activity and pore sizes of two classes of voltage-dependent channel-forming peptides. Biochim. Biophys. Acta.1999,1421:53-63.
    Boman HG, Agerberth B and Boman A. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine, Infect. Immun.1993,61:2978-2984.
    Bommineni YR, Dai H, Gong YX, et al. Fowlicidin-3 is an Ⅱ-helical cationic host defen-peptide with potent antibacterial and lipopolysaccharide-neutralizing activities. FEBS J.2007,274:418-428.
    Bowdish DME, Davidson DJ, Lau YE, et al. Impact of LL-37on anti-infective immunity. J Leukocyte Biol.2005,77(4):451-459.
    Cabiaux V, Agerberth B, Johansson J, Homble F, Goormaghtigh E and Ruysschaert JM. Secondary structure and membrane interaction of PR-39, a Pro-Arg-rich
    antibacterial peptide. Eur. J. Biochem.1994,224:1019-1027.
    Carlsson A, Engstriom P, Palva ET and Bennich H. Attacin, an antibacterial protein from Hyalophora cecropia, inhibits synthesis of outer membrane proteins in Escherichia coli by interfering with omp gene transcription. Infect. Immun.1991, 59:3040-3045.
    Chen X, Zhu FM, Cao YH, Qiao SY. Novel Expression Vector for Secretion of Cecropin AD in Bacillus subtilis with Enhanced Antimicrobial Activity. Antimicrobial agents and chemotherapy.2009,53:3683-3689
    Coca M, Penas G, Gomez J, Campo S, Bortolotti C, Messeguer J, Segundo BS, Enhanced resistance to the rice blast fungus M agnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta.2006,223(3): 392-406.
    Daly R, Heam MTW, Expression of heterologous proteins in Pichia pastoris:A useful experimental tool in protein engineering and production. J Mol Recognit,2005, 18(2):119-138.
    Demain AL, and Vaishnav P. Production of recombinant proteins by microbes and higher organisms, Biotechnology Advances, doi:10.1016/j.biotechadv.2009. 01.008
    Ding L, Yang I, Weiss TM, Waring AJ, Lehrer RI and Huang HW. Interaction of Antimicrobial Peptides with Lipopolysaccharides, Biochemistry.2003,42(42): 12251-12259
    Drin G, Temsamani J. Translecarin ofpmtegrin I through phospholipid membranes: role of peptide folding. Biechimiea et Biopbysica Acta,2002,1559(2):160-170.
    Dus Santos MJ,Wigdomvitz A, Trono K, et al. A novel methodology to develop a foot an d mouth disease virus (FMDV)peptide-based vaccine in transgenic plants. Vaecine.2002,20(7-8):1141-1147.
    Farky, Leedg, Jang SH, et al. ALe Lys rich antimicrobial peptide:Activity and mechanism. Bioehim Biophys Acta,2003,1645(2):172-182.
    Fortney K, Totten PA, Lehrer RI and Spinola SM. Haemophilus ducreyi is susceptible to protegrin. Antimicrobial Agents and Chemotherapy.1998,42(10):2690-2693
    Francois IE, de Bolle MF, Dwyer G, Goderis IJ, Woutors PF, Verhaert PD, Proost P, Schaaper WM, Cammue BP, Broekaert WF, Transgenic expression in Arabidopsis of a polyprotein construct leading to production of two different antimicrobial proteins. Plant Physiol.2002,128(4):1346-1358.
    Gallo RL, Ono M, Povsic T, Page C, Eriksson E, Klagsbrun M and Bernfield M. Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proc. Natl. Acad. Sci. U.S.A. 1994,91:11035-11039.
    Ganz T and Lehrer RI. Defensins, Pharmacol. Ther.1995,66:191-205.
    Ganz T, Defensins and host defense, Science,1999,286:420-421.
    Goldstein DA, and Thomas JA. Biopharmaceuticals derived from genetically modified plants. Journal Medisine.2004,97:705-716
    Goodman M, Zapf and C and Rew Y, New reagents, reactions, and peptide mimeticsfor drug design. Biopolymers.2001,60:229-245.
    GudmundssonGH, Magnusson KP, Chowdhary BP, et al. Structure of the gene for porcine peptide antibiotic PR-39, a cathelin gene family member:comparative mapping of the locus for the human peptide antibiotic FALL-39. Proc. Natl. Acad. Sci. USA.1995,92(7):85-89.
    Hamilton SR, Bobrowicz P, Bobrowicz B, Davidson RC, Li HJ, M itchell T, Nett JH, Rausch S, Stadheim TA, Wischnewski H, Wildt S and Gemgross TU. Production of complex human glycoproteins in yeast. Science.2003,301:1244-1246
    Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol.2006,24:1551-1557.
    Hancock REW and Chapple DS. Peptide antibiotics. Antimicrob. Agents Chemother. 1999,43:1317-1323.
    Haught C, Davis GD, Subramanian R, Jackson KW and Harrison RG. Recombinant production and purification of a novel antimicrobial pepfide in Escherichia coli, Biotechnol Bioeng,1998,57:55-61
    HeHer WT, Waxing AJ. Emebrane thinning efect of the B-sheet antimicrobial protegrin. Biochemistry.2000,39:139-145
    Hong IP, Lee SJ, Kim YS, et al. Recombinant expression of human eathelicidin (hCAP18/LL-37)in Pichia pastoris. Biotechnol Lett.2007,29(1):73-78.
    Howe J, Andra J, Conde R, et al. Thermodynamic analysis of the lipopolysaceharide dependent resistance of Gram negative bacteria against polymyxin B. Biophys J. 2007,
    Huang Y, Nordeen RO, Di M, Owens LD. M cBeth JH, Expression of an engineered cecropin gene cassette in transgenic tobacco plants confers disease resistance to Pseudomonas syringae pv. tabaci. Phytopathology.1997,87(5):494-499
    Inan M, Aryasomayajula D, Sinha J, and Meagher MM. Enhancement ofprotein secretion in Pichia pastoris by overexpression of protein disulfide isomerase. Biotechnol. Bioeng.2006,93(4):771-778
    Ingham AB, Moore RJ. Recombinant production of antimicrobial peptides in heterologous microbial systems. Biotechnol. Appl. Biochem.2007,47:1-9.
    Jin F, Xu X, Wang L, et al. Expression of recombinant hybrid peptide cecropinA(1-8)-magainin2(1-12)in Pichia pastoris. Purification and characterization. Protein Expres Purif.2006,50:147-156
    Jo SH, Kwon SY, Park DS, Yang KS, Kim JW, Lee KT, Kwak SS, Lee HS. High-yield production of functional human lactoferrin in transgenic cell cultures of siberian ginseng(Acanthopanax senticosus). Biotechnology and bioprocess engineering, 2006,11:442-448
    Kim SJ, Quan RS, Lee SJ, Lee KK, Choi JK. Antibacterial activity of recombinant hCAP18/LL-37 protein secreted from Pichia pastoris, The journal of microbiology.2009,47(3):358-362
    Kim S, Kim SS, Bang YJ, Kim SJ and Lee BJ. In vitro activities of native and designed peptide antibiotics against drug sensitive and resistant tumor cell lines. Peptides.2003,24:945-953
    Kokryakov VN, Harwig SS, Panyutich EA, Shevchenko AA, Aleshina GM, Shamova OV, Korneva HA and Lehrer RI. Protegrins:leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett. 1993,327(2):231-236
    Li Q, Lawrence CB, Davies HM, EvereR NP. A trideca peptide possesses both antimicrobial and protease-inhibitory activities. Peptides,2002,23(1):1-6
    Li Q, Lawrence CB, Xing HY, Babbitt RA, Bass WT, Maiti IB, Everett NP, Enhanced disease resistance conferred by expression of an antimicrobial magainin analog in transgenic tobacco. Planta,2001,212(4):635-639
    Li W and Chen SL. Fusion expression of hepcidin gene from Paralichthys olivaceus in Escherichia Coli. High Technology Letters,2007,17(7):765-770
    Li YF. Carrier proteins for fusion expression of antimicrobial peptides in Escherichia coli, Biotechnol. Appl. Biochem,2009,54:1-9
    Li YF, Chen ZX, RAPD:a database of recombinantly-produced antimicrobial peptides, FEMS Microbiol Lett.2008,289:126-129
    Liang Y, Wang JX, Zhao XF, Du XJ and Xue JF. Molecular cloning and characterization of cecropin from the housefly(Musca domestica), and its expression in Escherichia coli. Developmental and Comparative Immunology. 2006,30(3):249-257
    Lynn DJ, Bradley DG. Discovery of a-defensins in basal mammals. Dev Comp Immunol.2007, 31(10):963-967
    Macauley PS, Fazenda ML, Mcneil B et al. Heterologous protein production using the Pichia pastoris expression system. Yeast.2005,22(4):249-270
    Mahmoud K. Recombinant protein production:strategic technology and a vital research tool, Research Journal of Cell and Molecular Biology,2007,1(1):9-22
    MangoniME, Aumelas A, Chamet P, et al. Change in membrane permeability induced by protegrin-1:implacation of disulphide bridges for pore formation. FEBS Lett,1996,383(1-2):93-98
    Mason HS. Expression of hepatitis B surface antigen in transgenic plants. Proe Natl Aead Sci USA.1992,89(24):11745-11749
    Matsuzaki K, Murase O, Fujii N and Miyajima K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry.1996,35:11361-11368
    Miyasaki KT, Lehrer RI. β-sheet antibiotic peptides as potential dental therapeutics. International Journal of Anfimicrobial Agents.1998,9:269-280
    Morassutti C, Deamicis F, Skerlavaj B, Zanetti M, Mawhetti S. Production of a recombinant antimicrobial peptide in transgenic plants using a modified VMA intein expression system. FEBS Lett.2002,519:141-146
    Mygind PH, Fischer RL, Schno KM, et al. Plectasin is a peptide antibiotic Mth therapeutic potential from a saprophytic fungus. Nature.2005,437(7061): 975-980
    Oh J, Cajal Y, Skowronska EM, Belkin S, Chen J, Van Dyk TK, Sasse RM and Jain M.K. Cationic peptide antimicrobials induce selective transcription of micF and osmY in Escherichia coli. Biochim. Biophys. Acta.2000,1463:43-54
    Osusky M, Zhou G, Osuska L, Hancock RE, Kay WW, Misra S. Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. NatBiotechnol,2000,18(11):1162-1166
    Osusky M, Osuska L, Haneock RE, Kay WW, Misra S. Transgenic potatoes expressing a novel cationic peptide are resistant to late blight and pink rot. Transgenic Res,2004,1223:1-10
    Panyutich A, Shi JS, Boutz PL, Zhao CQ and Ganz T. Porcine polymorphonuclear leukecytes generate extracellular microbicidal activity by elastase-mediated activation of secreted proprotegrins. Infection and Immunity.1997,65(3): 978-985
    Park CB, Kim HS and Kim SC. Mechanism of action of the antimicrobial peptide buforin II:buforin II kills microorganisms by penetrating the cell mem brane and inhibiting cellular functions. Biochem. Biophys. Res. Commun.,1998,244: 253-257.
    Patrzykat A and Douglas SE. Gone fishing:how to catch novel marine antimicrobials, Trends in Biotechnology,2003,21(8):362-369
    Peng LS, Zhong XF, Ou JX, Zheng SL, Liao J, Wang L, and Xu AL. High-level secretory production of recombinant bovine enterokinase light chain by Pichia pastoris, Journal ofBacteriology,2004,108(2):185-192
    Piers KL, Brown MH and Hancock RE. Recombinant DNA procedures for producing small antimicrobial cationic peptides in bacteria, Gene.1993,134:7-13
    Qu XD, Harwig SSL., Shafer WM and Lehrer RI. Protegrin structure and activity against Nesseria gonorrhoeae, Infectinon and Immunity,1997,65:636-639
    Qu XD, Harwig SSL, Oren A, et al. Suscepribiliry of Neisseria gonorrhoeae to protegrins. Infection and Immunity.1996,64:1240-1245
    Ramanathan B, Davis EG, Ross CR and Blecha F. Cathelicidins:microbicidal activity, mechanisms of action, and roles in innate immunity, Microbes and Infection, 2002,4(3):361-372
    Ramanathan B, Davis EC, Ross CR,et al. Carhelicidins:microbicidal activity, mechanism of action, and roles ininnate immunity. Microbes and Infection. 2002,4(3):361-372
    Rasehke WC, Neiditch BR, Hendrieks M, et al. Inducible expression of a heterologous protein in Hansenula polymorpha using the alcohol oxidase 1 promoter of Pichia pastoris. Gene.1996,177(1-2):163-167
    Reed WA, Elzer PH, Enright FM, et al. Interleukin 2 promoter/enhancer controlled expression of a synthetic cecropin-class lytic peptide in transgenic mice and subsequent resistance to Brucella abortus. Transgenic Res.1997,6(5):337-347
    Richter S, Nieveler J, Schulze H, Bachmann TT and Schmid RD. High yield production of a mutant Nippostrongylus brasiliensis acetylcholinesterase in Pichia pastoris and itspurification, Biotechnol. Bioeng.2006,93(5):1017-1022
    Rigano MM, Manna C, Giulini A, Vitale A and Cardi T. Plants as biofactories for the production of subunit vaccines against biosecurity-related bacteria and viruses, Vaccine.2009,27(25-26):3463-3466
    Roumestand C, Louis V, Aumelas A, et al. Oligomerization of protegrin-1 in the presence of DPC miceles, A proton high-resolution NMR study. FEBS Lett, 1998,421(3):263-267
    Rybicki EP. Plant-produced vaccines:promise and reali. Drug Discovery Today,2009, 14(1-2):16-24
    Sansom MSP. Alamethicin and related peptaibols-model ion channels, Eur. Biophys. 1993,22:105-124
    Sawai MV Waring AJ, Kearney WR, et al. Impact of single-residue mutations on the structure and function of ovispirin/novispifin antimierobial peptides. Protein Eng. 2002,15(3):225-232
    Sharma A, Sharma R, Imamura M, Yamakawa M, Machii H. Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice. FEBS Lett.2000.484:7-11
    Shen S, Suher G, Jeffies TW, et al. A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris. Gene.1998, 216(1):93-102
    Shi J, GanzT. The role ofprotegrinsand other elastase-activated polypeptides in the bactericidal properities of porcine inflammatory fluids. Infection and Immuniry, 1998,66:3611-3617
    Shi J, Ross CR, Chenappa MM and Blecha F. Identif-ication of a proline-arginine-rich antibacterial peptide from neutrophils that is analogous to PR-39, an antibacterialpeptide from the small intestine, J. Leukoc. Biol.1994, 56:807-811
    Shin SY, Lee SH, Yang ST, et al. Antibacterial, antitumor and hemolytic activities of ot-helical antibiotic peptide, P18 and its analogs. J Pept Res,2001,58(6): 504-514
    Smeianov V, Scott K, Reid G. Activity of cccropin PI and FA11-37 against urogenital microflora. Microbes Infect.2000,2(7):773-777
    S(?)ensen O, Bratt T, Johnsen AH, Madsen MT and Borregaard N. The human antibacterial cathelicidin, hCAP-18, is bound to lipoproteins in plasma. J. Biol. Chem.1999,274:22445-22451
    Sokolov Y, Mirzabekov T, Martin DW, et al. Membrane channel formation by antimierobial protegrins. Biechimica etca Acta.1999,1420:23-29
    Squires CH, Lucy P and Vendor V. A new paradigm for bacterial strain engineering, Bio. Process Intnl.2008,6:22-27
    Steinberg DA, Hurst MA, Fujii CA, Kung AHC, Ho JF, Loury DJ and Fiddes JC. Protegrin-1:a broad-spectrum, rapidly microbicidal peptide with in vivo activity, Antimicrobial Agents and Chemotherapy.1997,41(8):1738-1742
    Subbalakshmi and Sitaram N. Mechanism of antimicrobial action of indolicidin, FEMS Microbiol. Lett.1998,160:91-96
    Sugiarto H, Yu PL. Mechanisms of action of ostrich p-defensins against Escheriehia coli. FEMS Microbiol Lett.2007,270(2):195-200
    Sundar IK, and Sakthivel N. Advances in selectable marker genes for plant transform ation, Journal of Plant Physiology,2008,165(16):1698-1716
    Taguchi S, Nakagawa K, Macno M, et al. In vivo monitoring system for structure-function relationship analysis of the an tibacterial peptide apidaecin. Appl Environ Microbiol.1994,60(10):3566-3572
    Tamamura H, Murakami T, Horiuchi S, Sugihara K, Otakada A, Takada W, Ibuka T, Waki M, Yamamoto N and Fujii N. Synthesis of protegrin-related peptides and their antibacterial and anti-human immunodeficiency virus Activity, Chen. Pharm. Bull.1995,43(5):853-858
    Tanaka T, Nakamura I, Lee NY, Kumura H, Shimazaki K. Expression of bovine lactoferrin and lactoferrin N-lobe by recombinant baculovirus and its antimicrobial activity against Prototheca zopfii. Biochemistry and cell biology-biochime et biologie cellulaire,81:349-354
    Tauro S, Coutinho E, Srivastava_S, An Antiparallel Sheet And Aturu Characterize The Structure of Antimicrobal Hiv-1 Pepfide T140, As Revealed By 2d Nmr And Md Simulations. Proteinand pepfide letters,2003,10(4):346-360
    Tsai CW, Duggan PF, Shimp J, Richard L, Miller LH and Narum DL. Overproduction of Pichia pastoris or Plasmodium falciparutm protein disulfide isomerase afects expression, folding and O-linked glycosylation of a malaria vaccine candidate expressed in P. pastoris. Journal of Biotechnology.2006,121 (4):458-470
    Tuholy T, Yu W, Bailey A, et al. Immunogenieity of porcine transmissible gastroenteritis virus spike protein expressed in plant. Vaccine,2000, 18(19-20):2023-2028
    Wachinger M, Saermark T, Erfle V. Influence of amphipathic peptides Oil the HIV-1 production in persistently infected T lymphoma cells. Febs Lett.1992, 309(3):235-241.
    Wang AP, Wang S, Shen MQ, Chen F, Zou ZM, Ran XZ, Cheng TM, Su YP, Wang JP. High level expression and purification of bioactive human a-defensin 5 mature peptide in Pichia pastoris. Appl Microbiol Biotechnol,2009,84:877-884
    Wang G.S. and Li X.,2008, APD2:the updated antimicrobial peptide database and its application in peptide design, Nucleic Acids Research,10:1-5
    Wigdorovitz A, Carrilo C, Dus Santos MJ, et al. Induction of a protective an tibody respo nse to food and mouth disease virus inmicefollowing oral or parenter alimmunization alfalfa transgentie plants expressing the viral structural protein VP1. Virology,1999,255(2):347-353
    Wu H, Zhang G, Chrestopher R. Cathelicidin gene expression in porcine tissues:Roles in ontogeny and tissue specificity. Imfect. Immun.1999,67:439-442
    Wu H, Zhang G, Minton Jig, et al. Regulation of eathelieidin gene expressin:induction by lipopolysaceharide, interleukin-6, retinoieaeid, and salmoneha enterica serovar typhimurium infection. Infection and immunity,2000,68:5552-5558
    Wu H, ZhangG, Ross CR, et al. Cathelicidin gene expressionin porcine tissues:roles in ontogeny and tissue specificity. Infection and Immunity,1999,67:439-442
    Wu H, Zhang G, Minton J, Ross CR and Blecha F. Regulation of cathelicidin gene expressin:induction by lipopolysaccharide, interleukin-6, retinoic acid, and salmonella enterica serovar typhimurium infection, Infection and immunity,2000, 68(10):5552-5558
    Wu M, Hancock REW. Improved derivatives of bactenecin, a cyclic dodeeameric antimiembial cationic peptide. Antimicmb Agents.1999,43(5):1274-1276
    Wu M, Maier E, Benz R and Hancock REW. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli, Biochemistry,1999,38:7235-7242
    Xiao Y, Dai H, Bommineni YR, et al. Structure-activity relationships of fowlicidin-1, a cathelicidin antimicrobial peptide in chicken. FEBS J,2006,273(12): 2581-2593
    Xing H, Lawrence CB, Chambers O, Davies HM, Everett NP, Li QQ. Enhanced disease resistance conferred by expression of an antimicrobial magainin analog in transgenic tobacco. Planta.2006,223:1024-1032
    Xu Q, Wu X, Hou R, et al. High-level secretory expression, purification and characterization of Ailuropoda melanoleuca growthhormone in Pichia pastoris, Protein Expres Purif,2008,60(2):182-187
    Xu X, Jin F, Yu X, et al. Expression and purification of a recombinant an tibacterial peptide, cecropin, from Escherichia coli. Protein Expres Purif,2007,53(2): 293-301
    Xu Z, Zhong, Z, Huang L, Peng L, Wang F and Cen P. High-level production of bioactive human beta-defensin-4 in Escherichia coli by soluble fusion expression. Appl. Microbiol. Biotechnol. (2006) 72,471-479
    Yams S, Rosen JM, Cole AM, et al. Production of active bovine tracheal antimicrohial peptide in milk of transgenie mice. Pros Natl Acad Sci USA.1996, (93):14118-14121
    Yang L, Harroun TA, Weiss TM, Ding L and Huang HW. Barrel-stave model or toroidal model:A case study on melittin pores, Biophys. J.2001,81:1475-1485
    Yasin B., Harwig S.L., Lehrer R.I. and Wagar E.A.,1996, Susceptibility of Chlamydia trachomatis to protegrins and defensins, Infection and Immunity,64(3):709-713
    Yevtushenko DP, Romero R, Forward BS, Hancock RE, Kay WW, Misra S. Pathogen-induced expression of a cecropin A-melittin antimicrobial peptide gene confers antifungal resistance in transgenic tobacco. J Exp Bot.2005,416: 1685-1695
    Zaiou M. Multifunctional antimierobial peptides:Therapeutic targets in several human diseases. J Mol Med,2007,85(4):317-329
    Zanetti M, Gennam R and Romeo D. Cathelicidins:a novel protein family with a common pmregion and a variable C-terminal antimicrobial domain. FEBS Lett. 1995,374:1-5
    Zanetti M, Litteri L, Gennaro R, Hotmann H and Romeo D. Bactenecins, defense polypeptides of bovine neutrophils generated from precursor molecules stored in the large granules. J. Cell Biol.1990,11:1363-1371
    Zaslof M. Antimicrobial peptides of multicellular rganisms. Nature.2002, 415(6870):389-395
    Zhang J, Zhang SQ, Wu X, et al. Expression and characterization of antimicrobial peptide ABP-CM4 in methylotrophie yeast Pichia pastoris:Process Biochem, 2006,41(2):251-256
    Zhao C, Ganz T, Lehrer RI. Structure of genes for two cathelin associated antimierobial peptides:prophenine-2 and PR-39. FEBS Lett.1995,376(3): 130-134
    Zhao CQ, Ganz T, Lehrer RI. The structure of porcine protegrin genes. FEBS Lett. 1995,368(2):197-202
    蔡宝祥.家畜传染病学(第4版)[M].北京:中国农业出版社,2001.
    陈晓生,温刘发,张辉华等.饲粮中添加抗菌肤对肉鸭生产性能及免疫器官、内脏器官的影响.畜禽业,2005,2;12-13.
    陈晓生,张辉华,罗竞彪等.饲粮中添加抗菌肤对肉鸭增重及血清尿素氮、总蛋白水平的影响[J].中国饲料,2005,10:21-23.
    顾垒,毕玉芬.转基因苜蓿研究的现状书前景.草原与草坪,2004,(1):17-21.
    韩利芳,张玉发.紫花苜蓿作为生物反应器的研究现状和应用前景,草业学报,2004,4:23-27.
    何丹林,温刘发,邓春柳.蚕抗菌肤AD-酵母制荆对粤黄鸡肠道消化酶和饲料品质的影响.中国家禽,2004,26(7):9-10.
    何茂泰,于林清.牧草生物技术的研究及实用化前景.生物工程进展,1997,17(2):63-71.
    黄大年,朱冰,杨炜,薛锐,肖晗,田文忠,李良材,戴顺洪.家蚕抗菌肽抑制水稻白叶枯病的初步研究中国水稻科学,1993,7:183-186.
    贾士荣,屈贤铭,冯兰香,唐惕,唐益雄,刘坤,赵艳丽,白永延,蔡敏莺.转抗菌肽基因提高马铃薯对青枯病的抗性中国农业科学,1998,31:5-12.
    黎万奎,陈幼竹,周宇等.肝片吸虫抗原基因转基因苜蓿再生的研究.四川大学学报(自然科学版),2003,2:144-147.
    李华,董婉维,孙强,等.抗菌肽转基因小鼠模型的建立中国医科大学学报,
    2005,34(1):4-5.
    李颖,余小林,李乃坚,王恒明,黄自然.转抗菌肽基因辣椒株系的青枯病抗性鉴定及系统选育分子植物育种,2005.3:217-221.
    凌华,黄惠琴,鲍时翔.植物生物反应器研究进展田.中国生物工程杂志。2002。10:21-26.
    刘庆忠,赵红军,刘鹏,Mong Rengong, Freddi A, Hammerschlag.抗菌肽MB39基因导入‘皇家嘎啦’苹果及其四倍体植株的培育园艺学报,2001,28:392-398.
    吕德扬,范云六,俞梅敏.苜蓿高含硫氨基酸蛋白转基因植株再生.遗传学报,2000,27(4):331-337
    马卫明,余锐萍,胡艳欣.猪小肠抗菌肤对雏鸡的促生长作用及其机理初探.中国农业科学,2006,39(8):1723-1728.
    牛明福,李翔,曹瑞兵,周兵,陈德胜,陈溥言.复合抗菌肽PL在毕赤酵母中的分泌表达及其活性研究.生物工程学报,2007,23:418-422
    邱芳萍,周杰,李向晖等.天然食品保鲜防腐荆—林蛙皮抗菌肤.食品科学,2002,23(8):1279-282.
    屈军梅,陈平洁,李文平等.莫家蝇抗菌肤提取及对鸡大肠杆菌病药效试验.中国畜牧兽医,2006,33(3):56-58.
    任志强,刘惠民,李润植等.转基因植物作为生物反应器在疫苗生产中的应用田.中国生物工程杂志,2003,6:31-35.
    田长恩,王正询,陈韬,周玉萍,黄自然,黄亚东.抗菌肽D基因导入番茄及转基因植株的鉴定,遗传,2002,22:86-89.
    万遂如.抗菌肤在猪病防治中的应用.吉林畜牧兽医,2007。51:24-25.
    汪以真,王中强,许梓荣.抗菌肽与抗生素的体外抗菌效果比较.中国兽医学报,2004,24(3):270-273.
    汪以真.猪乳铁蛋白基因的克降、表达及其产物对断奶仔诸生长、免疫和抗菌肽基因表达影响的研究[D]杭州:浙江大学.2004
    王成章,王恬.饲料学北京:中国农业出版社,2003.
    王鑫,马永祥,李娟紫.花苜蓿营养成分及主要生物学特性草业科学,2003,10: 39-41.
    王勇,贾士荣,陈爱玉,唐益雄,夏志松,王晓峰.抗菌肽基因导入桑树获得抗病转基因植株蚕业科学,1998,24:135-140.
    文加才,秦永忠,宋爱刚.阳离子抗菌肽的研究进展.国外医药:抗生素分册,2002,23(6):269-270.
    谢建英,李洪波,丰锋.芦荟组织培养中试管苗玻璃化的发生与防止.西南农业大学学报,2001,23:449-451.
    谢明权,李国清.现代寄生虫学嗍.广州:广东科技出版社,2003.
    金宁一,王罡等.植物基因工程疫苗高效表达载体的构建.吉林农业大学学报,2003,25(37):253-256.
    杨振国,孟庆繁,唐晓杰,高文韬.酸樱桃组织培养中试管苗玻璃化的发生与防止.经济林研究,2004,22:47-48
    余云舟,王罡,金宁一.植物基因工程疫苗的研究进展.沈阳农业大学学报2003,34(3):236-240.
    余祖华,王红宁.用植物生物反应器研制基因工程疫苗的进展.生物技术,2004,14(4):78-80.
    张才喜,陈火英.转基因蔬菜与食用疫苗.生物学通报,1998,33(9):18-19.
    张素芳,曹瑞兵,贾赞,等.杂合抗菌肽CecA-mil的改造及在毕赤酵母中的分泌表达.微生物学报,2005,45(02):219-222.
    朱国萍,徐冲.植物生物反应器生产绿色疫苗研究进展.生物工程进展,2002,22(2):70-73.
    朱会荚,吴存祥,胡宝忠等.利用植物生物反应器生产口服疫苗的进展,分子植物育种,2004,3:443-448.
    邹克琴,张银东,王金宇,吴代飞,曾宪松.几丁质酶和抗菌肽D双价基因转化茄子的研究. 热带作物学报,2001.22:57-61.
    魏艳彬,王洪法.抗菌肽研究进展.中国现代医生.2009,47(15):76-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700