动物源抗菌肽的分子改良及其对猪肠道上皮屏障功能的保护作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗菌肽因其广谱抗菌活性和不易产生耐药性等特点引起了人们的高度重视。本研究通过对人源抗菌肽LL-37,猪源抗菌肽Protegrin-1(PG-1), PMAP-23, Porcine Lactoferricin (LfcinP),牛源抗菌肽Bovine Lactoferricin (LfcinB), indolicidin (IN),蛇源抗菌肽Cathelicidin-BF (C-BF),蛙源抗菌肽Plastrin-OG1(P-OG1),虫源抗菌肽cceropin A (CA), cecropinP1(CP1)等十种不同动物源抗菌肽的抗菌活性、杀菌机制、对真核细胞的细胞毒性及与抗生素的协同作用进行比较研究,在此基础上通过杂合改良抗菌肽以获得具有高抗菌活性、低细胞毒性且具有不易诱导细菌产生耐药性的杀菌机制的抗菌肽;进一步利用猪小肠上皮细胞为模型研究抗菌肽对猪肠道上皮屏障功能的保护作用。围绕上述研究主要开展以下三方面试验:
     试验一不同动物源抗菌肽的抗菌活性、杀菌机制和细胞毒性的比较研究
     对不同动物源抗菌肽抗菌活性的比较中,PG-1和C-BF具有广谱抗菌活性,对革兰氏阴性菌特别是致腹泻型大肠杆菌具有较好的作用,最小抑菌浓度(MIC)在16-64μg/mL,与金霉素的抗菌活性相当;时间动态曲线结果表明C-BF在MIC浓度下5min即可有效杀灭致病菌,而金霉素则需要1-2h。另外,CP1对革兰氏阴性菌、IN对革兰氏阳性菌也具有较好的抗菌活性。同时比较了抗菌肽和饲用抗生素对益生菌的抗菌活性,所试抗菌肽对嗜酸乳杆菌和双歧杆菌不具有抑制作用,而金霉素、新霉素具有较大的抑制作用。抗菌肽与饲用抗生素的联合应用结果表明,金霉素与PG-1或C-BF对致腹泻型大肠杆菌的FIC值均小于0.5,表现为协同作用,且能有效降低金霉素的作用浓度,MIC值是金霉素单用时的1/8到1/2。
     进一步对不同动物源抗菌肽的杀菌机制进行研究,利用扫描电镜和透射电镜观察了不同动物源抗菌肽对细菌细胞膜的作用,并通过DNA结合试验、蛋白质合成抑制试验及ATP泄露试验研究了抗菌肽细胞内作用靶点。结果表明大多数抗菌肽作用后使大肠杆菌和金黄色葡萄球菌表面出现了不同程度的凸起、凹陷或破损,部分可见内容物外泄。另外,PG-1和C-BF具有与DNA结合、促进ATP泄露等胞内作用机制。抗菌肽与抗生素对肠道益生菌的作用机制比较结果表明,大多数抗菌肽对益生菌细胞膜没有影响,而金霉素、新霉素对猪嗜酸乳杆菌的细胞膜具有破坏作用,使细菌破碎,结构不完整。上述结果提示,细菌细胞膜可能是抗菌肽作用的主要靶点,同时一些抗菌肽存在细胞内作用机制。
     通过溶血率试验、细胞增殖率试验及LDH释放率试验对不同动物源抗菌肽对真核细胞毒性试验结果表明,LfcinB、LfcinP、C-BF、PMAP-23、CP1和CA对猪红细胞和外周血单个核细胞(PBMCs)具有很低的细胞毒性;而LL-37、PG-1、IN和P-OG1呈现剂量依赖效应,即在高浓度(128-256μg/mL)时具有较大的细胞毒性。结果提示,部分抗菌肽具有较高的细胞毒性,在作为新型抗菌制剂研制前应考虑其安全性。
     试验二杂合抗菌肽的分子设计及结构和生物学活性研究
     在上述研究基础上,以安全性好但抗菌活性低的CA和LfcinB,及抗菌活性好但细胞毒性高的PG-1为模板肽,在分析其理化性质、氨基酸组成和结构预测的基础上,采用“分子拼接”的设计方法,选择LfcinB活性中心序列LfcinB (4-9)和CA的N端α螺旋结构片段CA(1-8),与PG-1的β折叠主体结构进行杂合,得到两个杂合肽LfcinB (4-9)-PG-1(5-17)(简写为LB-PG)和CA (1-8)-PG-1(1-16)(简写为CA-PG),以期在保持PG-1原有抗菌活性的基础上降低其细胞毒性。通过结构预测及圆二色谱法分析杂合肽LB-PG和CA-PG在模拟细胞膜环境即在SDS和TFE溶剂中的结构特征,结果表明杂合肽LB-PG和CA-PG均为与模板肽PG-1相似的β折叠结构。
     抗菌活性和细胞毒性试验结果表明,杂合肽LB-PG对革兰氏阴性菌的抗菌活性较好,与模板肽PG-1相当,对猪红细胞和PBMCs的细胞毒性比PG-1显著降低;CA-PG扩大了对革兰氏阳性菌的抗菌谱,也显著降低了对猪红细胞和PBMCs的细胞毒性。杀菌机制试验结果表明细菌细胞膜是杂合肽作用的主要靶点,菌体表面出现不同程度的凸起或凹陷,且使大肠杆菌菌体变长;LB-PG同时具有与细菌DNA结合的胞内作用机制。
     试验三抗菌肽对仔猪肠道上皮屏障功能的保护作用及机制研究
     以试验一筛选得到的抗菌肽C-BF和试验二改良得到的杂合肽LB-PG为研究对象,以猪空肠上皮细胞系IPEC-J2为模型,利用透射电镜、Ussing chamber、免疫荧光等方法,在大肠杆菌内毒素LPS刺激下研究了抗菌肽对猪肠道上皮屏障功能的保护作用及其可能机制。透射电镜观察结果表明,自然分化21-24天的IPEC-J2细胞和细胞之间之处可见紧密连接复合物,如紧密连接,桥粒连接,细胞间空隙等。C-BF和LB-PG处理24h后对紧密连接结构没有明显影响,紧密连接结构清晰,深度约0.2-0.5μm。Ussing chamber检测表明加入C-BF和LB-PG处理后,在上样30min、60min、90min和120min后IPEC-J2的跨上皮电阻(TER)分别提高了58.2%、91.9%、86.5%、220%和55.8%、122%、79.3%、249%,即促进了肠道上皮屏障功能。
     LPS刺激后破坏了IPEC-J2的紧密连接结构,紧密连接打开;预先用C-BF和LB-PG处理24h再加入LPS,紧密连接结构保持清晰完整,说明抗菌肽能够缓解LPS对IPEC-J2紧密连接的破坏作用。Ussing chamber试验结果表明,LPS诱导在短时间(15min)内迅速降低了TER73.7%,破坏了肠上皮屏障的完整性;预先用C-BF和LB-PG处理24h再加入LPS, IPEC-J2的TER与对照组相比差异不显著。说明抗菌肽能够缓解LPS导致的IPEC-J2的屏障功能的破坏。上述结果提示抗菌肽对LPS诱导破坏的肠道上皮屏障功能具有一定的保护作用。
     在上述研究基础上,进一步探讨抗菌肽对组成紧密连接重要的成分即紧密连接蛋白表达的影响,利用实时荧光定量PCR和Western blot检测抗菌肽对紧密连接蛋白Claudin、 Occludin、ZO-1和ZO-2的表达的影响,利用激光共聚焦显微镜观察抗菌肽对紧密连接蛋白在IPEC-J2分布的影响,并通过加入MAP激酶两条级联信号通路MEK和p38的抑制剂研究抗菌肽作用的信号转导通路。qRT-PCR及Western blot结果表明,LPS刺激显著降低了IPEC-J2细胞紧密连接蛋白的表达。预先用C-BF处理24h再加入LPS,紧密连接蛋白表达水平与对照组相比差异不显著,提示抗菌肽能够缓解LPS诱导的IPEC-J2紧密连接蛋白表达下降。同时,免疫荧光结果表明,LPS刺激使紧密连接蛋白Occludin和ZO-1在IPEC-J2细胞边缘和细胞质分布异常且含量减少,预先用C-BF处理24h再加入LPS,Occludin和ZO-1在IPEC-J2细胞边缘和细胞质的分布和表达恢复到对照组水平,提示抗菌肽能够缓解LPS诱导的IPEC-J2紧密连接蛋白分布异常。MAP激酶级联信号中的两条通路MEK1/2和p38的抑制剂即U0126和SB203580均显著降低了C-BF作用后IPEC-J2中紧密连接蛋白的表达。结果提示C-BF可能通过MAP激酶信号转导通路促进IPEC-J2中紧密连接蛋白的表达,进而缓解由LPS刺激造成的应激反应,保护肠道上皮屏障功能。
     上述研究一方面为研制新型抗菌免疫制剂的研制提供了优良的候选肽,同时在了解抗菌肽对肠道屏障功能保护作用的基础上,为通过营养手段提高抗菌肽表达、改善猪的健康水平提供了研究思路,这对研发新型抗菌免疫制剂,有效替代或减少抗生素作为饲料添加剂的使用、提高畜产品安全性具有重要意义。
Antimicrobial peptides (AMPs) have attracted considerable attention for their broad-spectrum antimicrobial activity and less possibility to cause bacterial resistance. In this study, antibacterial activity, mechanisms of action and cytotoxicity of ten different animal AMPs including Protegrin-1(PG-1), PMAP-23, Porcine Lactoferricin (LfcinP) from swine, Bovine Lactoferricin (LfcinB), indolicidin (IN) from bovine, Cathelicidin-BF (C-BF) from snake, Plastrin-OG1(P-OG1) from frog, cceropin A (CA), cecropin P1(CP1) from insect were investigated, and hybrid peptides with higher antimicrobial activity and lower cytotoxicity were obtained based on above results. Furthermore, the protective effect of AMPs on swine intestinal epithelial barrier function using an epithelial cell line originating from the jejunum of pig (IPEC-J2) was studied. The main results were as follows:
     1Comparative study of the antibacterial activity, mechanism of action and cytotoxicity of animal AMPs
     PG-1and C-BF were the most active peptides not only against Gram-positive bacteria, but also Gram-negative bacteria, especially Enteropathogenic Escherichia coli strains isolated from fecal samples of weaning piglets with diarrhea. In addition, the bactericidal activity of these two peptides was almost equal to aureomycin. Killing kinetics showed that PG-1and C-BF were more rapid and efficient bactericide than aureomycin. Besides, CP1and IN demonstrated high inhibitor activity towards Gram-negative and Gram-positive bacteria, respectively. We also tested the inhibitor action of these peptides and antibiotics to intestine beneficial bacteria. Most tested peptides showed no adverse effects on Bifidobacterium suis and Lactobacillus acidophilus, while aureomycin and neomycin showed a marked inhibitory effect. Combination effect of AMPs and antibiotics showed synergistic effects between PG-1and aureomycin and C-BF and aureomycin against EPEC E. coli078:K80and the MICs of the antibiotics obviously decrease while the peptides were added.
     The permeabilize effect of AMPs on bacteria cell membrane was studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the potential intracellular targets of AMPs were investigated by DNA binding, protein synthesis inhibition and ATP release assays. Most of the tested AMPs were found to permeabilize bacterial membranes, and cytoplasmic contents were leaking out of the cells in some cases. Furthermore, intracellular targets such as binding to DNA and increasing ATP release maybe exist for PG-1and C-BF. Meanwhile, we compared the mechanism of AMPs and antibiotics on beneficial bacteria. Most AMPs were not disrupting membrane of Bifidobacterium suis and Lactobacillus acidophilus, while aureomycin and neomycin kill Bifidobacterium suis by lysing the cell membrane. From the data above, it is concluded that membrane permeability and damage should be considered as the principal step, intracellular targets were also important for AMPs.
     Cytotoxicity tests showed that LfcinB, LfcinP, C-BF, PMAP-23, CP1and CA exhibited the lower cytotoxic effects, while LL-37, PG-1, indolicidin and OG1displayed higher cytotoxic activity among128-256μg/mL. Such cytotoxicity of some AMPs should be decreased before they are used as new antibacterial agents.
     2Design of novel hybrid β-sheet peptides with enhanced cell specificity and analysis their structures and biological activities
     Since PG-1had considerable antimicrobial activity but high cytotoxicitiy, while LfcinB and CA had lower cytotoxicity as described above, we designed novel hybrid peptides LB-PG and CA-PG, according to the combination the P-fold fragment of protegrin-1(1-16) or (5-17) with active center of bovine lactoferricin (4-9) or N-terminal of cecropin A (1-8) in order to reduce cytotoxicity of PG-1as bactericidal capacity can be better saved. The structure analysis of hybrid peptides was performed by bioinformatics programs and circular dichroism (CD) in the membrane-mimicking environment, such as SDS and TFE. Results showed LB-PG and CA-PG still adopted the predominant β-sheet conformation as PG-1.
     The antimicrobial and cytotoxicity assays demonstrated that LB-PG displayed similar antimicrobial activities compared to the natural peptide PG-1and relatively low hemolytic activity, showing a2-4fold decrease at each concentration when compared to PG-1. CA-PG showed higher inhibitory effect than CA and extended antibacterial spectra, especially against Gram-positive bacteria, and also decreased cytotoxicity significantly. Mechanism study elucidated that these peptides killed microbial cells by penetrating the cell membrane. Gel retardation study revealed the LB-PG had higher affinity to DNA, indicating one possible intracellular bactericidal mechanism.
     3Study of the protective effect of AMPs on intestinal epithelial barrier function and potential mechanism
     In this work, we evaluated the ability of C-BF and LB-PG in upregulating tight junction (TJ) protein expression and improving the epithelial permeability of porcine intestinal epithelial cell line (IPEC-J2) under normal condition and LPS stimulation, using TEM, Ussing Chamber and immunofluorescence. The selective MEK1/2and p38inhibitors were applied in determining the signaling pathway.
     TEM revealed that from day21onwards, well formed junctional complexes in IPEC-J2such as tight junctions, desmosomes, zonula adherens and intercellular spaces. After co-culture with C-BF and LB-PG for24h, these junctional complexes seem similar to those seen in untreated IPEC-J2cells. Meanwhile, compared with IPEC-J2monolayers alone, incubation with C-BF or LB-PG for24h significantly increased the TER. Exposed to LPS markedly opened the TJ structure of IPEC-J2. In addition, LPS treatment also decreased of TER in a short time. While, C-BF and LB-PG treatment markedly attenuated the tight junction structural abnormalities induced by LPS and significantly relieved the decreased of TER in IPEC-J2monolayer. The results above confirm that AMPs could improve or protect intestinal epithelial barrier function.
     Incubation with C-BF for24h significantly increased the expression of Occludin and ZO-1of IPEC-J2at mRNA and protein levels. Although basolateral LPS stimulation markedly inhibited the expression of TJ proteins, co-culture with C-BF significantly restored the expression of Occludin and ZO-1at the mRNA and protein levels. TJ proteins Occludin and ZO-1were typically expressed around the cell border and developed relatively tidy network when cells reached confluence using Immunofluorescence. Compared with the IPEC-J2cells alone adding C-BF significantly increased the expression of Occludin and ZO-1around IPEC-J2border. LPS markedly disrupted the TJ network of IPEC-J2and the normal distribution of Occludin and ZO-1was replaced by an aberrant pericellular location. C-BF treatment markedly attenuated the tight junctional abnormality induced by LPS. In order to investigate the potential signaling pathway, selective MEK1/2and p38inhibitors were used to detect the activated and basal forms of MAP kinase. Both inhibitors pretreatment could completely abolish the stimulatory effect of C-BF on TJ protein expression. Results indicated C-BF protects the intestinal epithelial barrier function throuth upregulating TJ mRNA and protein expression and maybe regulated by MAP kinase signaling pathway.
     In conclusion, our research implicated that piglet immunity could be improved by upregulation of secretory expression of porcine AMPs, and some AMPs have potential for development as antimicrobial agents for substitution of feed antibiotics in pig diets.
引文
Adessi C, Soto C. Converting a peptide into a drug:strategies to improve stability and bioavailability. Curr Med Chem 2002,9:963-78.
    Ando S, Mitsuyasu K, Sodea Y, Hidaka M, Ito Y, Matsubara K, Shindo M, Uchida Y, Aoyagi H. Structure-activity relationship of indolicidin, a Trp-rich antibacterial peptide. J Pept Sci 2010, 16:171-7.
    Albin DM, Wubben JE, Rowlett JM, Tappenden KA, Nowak RA. Changes in small intestinal nutrient transport and barrier function after lipopolysaccharide exposure in two pig breeds. J Anim Sci 2007,85:2517-23.
    Angelova A, Ionov R, Koch MH, Rapp G. Interaction of the peptide antibiotic alamethicin with bilayer-and non-bilayerforming lipids:influence of increasing alamethicin concentration on the lipids supramolecular structures. Arch Biochem Biophys 2000,378:93-106.
    Antonetti DA, Wolpert EB, DeMaio L, Harhaj NS, Scaduto RC. Hydrocortisone decreases retinal endothelial cell water and solute flux coincident with increased content and decreased phosphorylation of Occludin. J Neurochem 2002,80:667-77.
    Aurrand-Lions M, Duncan L, Ballestrem C, Imhof BA. JAM-2. a novel immunoglobin superfamily molecule, expressed by endothelial and lymphatic cells. J Biol Chem 2001,276: 2733-41.
    Auvynet C, Rosenstein Y. Multifunctional host defense peptides:antimicrobial peptides, the small yet big players in innate and adaptive immunity. FEBS J 2009,276:6497-508.
    Bals R, Weiner DJ, Moscioni AD, Meegalla RL, Wilson JM. Augmentation of innate host defense by expression of a cathelicidin antimicrobial peptide. Infect Immun 1999,67: 6084-9.
    Banerjee A, Pramanik A, Bhattacharjya S, Balaram P. Omega amino acids in peptide design: incorporation into helices. Biopolymers 1996,39:769-77.
    Benincasa M, Scocchi M, Pacor S, Tossi A, Nobili D, Basaqlia G, Busetti M, Gennaro R. Fungicidal activity of five cathelicidin peptides against clinically isolated yeasts. J Antimicrob Chemother 2006,58:950-9.
    Bhutia SK, Maiti TK. Targeting tumors with peptides from natural sources. Trends Biotechnol 2008,26:210-7.
    Blum MS, Toninelli E, Anderson JM, Balda MS, Zhou J, O'Donnell L, Pardi R, Bender JR. Cytoskeletal rearrangement mediates human microvascular endothelial tight junction modulation by cytokines. Am J Physiol 1997,273:H286-94.
    Bolton SJ, Anthony DC, Perry VH. Loss of the tight junction protein Occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood-brain barrier breakdown in vivo. Neuroscience 1998,86:1245-57.
    Boman HG, Agerberth B, Boman A. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun 1993,61:2978-84.
    Boman HG, Nilsson Ⅰ, Rasmuson B. Inducible antibacterial defence system in Drosophila. Nature 1972,237:232-5.
    Boman HG. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol 1995, 13:61-92.
    Bowdish DM, Davidson DJ, Scott MG, Hancock RE. Immunomodulatory activities of small host defense peptides. Antimicrob Agents Chemother 2005,49:1727-32.
    Breukink E and de KruijffB. Lipid Ⅱ as a target for antibiotics. Nat Rev Drug Discov 2006,5: 321-32.
    Breukink E, Wiedemann Ⅰ, van Kraaij C, Kuipers OP, Sahl H, de Kruijff B. Use of the cell wall precursor lipid Ⅱ by a pore-forming peptide antibiotic. Science 1999,286:2361-4.
    Brumfitt W, Salton MR, Hamilton-Miller JM. Nisin, alone and combined with peptidoglycan-modulating antibiotics:activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. J Antimicrob Chemother 2002,50:731-4.
    Capone R, Mustata M, Jang H, Arce FT, Nussinov R, Lai R. Antimicrobial Protegrin-1 forms ion channels:molecular dynamic simulation, atomic force microscopy, and electrical conductance studies. Biophys J 2010,98:2644-52.
    Carlsson A, Engstrom P, Palva ET, Bennich H. Attacin, an antibacterial protein from Hyalophora cecropia, inhibits synthesis of outer membrane proteins in Escherichia coli by interfering with omp gene transcription. Infect Immun 1991,59:3040-5.
    Cassone M, Otvos L Jr. Synergy among antibacterial peptides and between peptides and small-molecule antibiotics. Expert Rev Anti Infect Ther 2000,8:703-16.
    Chen HL, Yen CC, Lu CY, Yu CH, Chen CM. Synthetic porcine lactoferricin with a 20-residue peptide exhibits antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Candida albicans. J Agric Food Chem 2006,54:3277-82.
    Chen J, Falla TJ, Liu H, Hurst MA, Fujii CA, Mosca DA, Embree JR, Loury DJ, Radel PA, Cheng Chang C, Gu L, Fiddes JC. Development of protegrins for the treatment and prevention of oral mucositis:structure-activity relationships of synthetic protegrin analogues. Biopolymers 2000,55:88-98.
    Chen ML, Ge Z, Fox JG, and Schauer DB. Disruption of tight junctions and induction of proinflammatory cytokine responses in colonic epithelial cells by Campylobacter jejuni. Infect Immu 2006,74:6581-9.
    Chen X, Niyonsaba F, Ushio H, Hara M, Yokoi H, Matsumoto K, Saito H, Nagaoka I, Ikeda S, Okumura K, Ogawa H. Antimicrobial peptides human beta-defensin (hBD)-3 and hBD-4 activate mast cells and increase skin vascular permeability. Eur J Immunol 2007,37:434-44.
    Chen Y, Lu Q, Schneeberger EE, Goodenough DA, Restoration of tight junction structure and barrier function by down-regulation of the mitogen-activated protein kinase pathway in ras-transformed Madin-Darby canine kidney cells, Mol Biol Cell 2000,11:849-62.
    Chin AC, Flynn AN, Fedwick JP, Buret AG, The role of caspase-3 in lipopolysaccharide-mediated disruption of intestinal epithelial tight junctions. Can. J. Physiol. Pharm 2006,84:1043-50.
    Clayburgh DR, Shen L, Turner JR. A porous defense:the leaky epithelial barrier in intestinal disease. Laboratory Investigation 2004,84:282-91.
    Colegio OR, Van Itallie CM, McCrea H, Rahner C, Anderson JM. Claudins create charge-selective channels in the paracellular pathway between epithelial cells. AM J Physiol 2002,283:C142-7.
    Conlon JM, Al-Ghaferi N, Abraham B, Jiansheng H, Leprince P, Jouenne T. Antimicrobial peptides from diverse families isolated from the skin of the Asian frog, Rana grahami. Peptides 2006,27:2111-7.
    Cronan JE. Bacterial membrane lipids:where do we stand? Annu Rev Microbiol 2003,57: 203-24.
    Dathe M, Nikolenko H, Meyer J, Beyermann M, Bienert M. Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett 2001,501:146-50.
    Dathe M, Wieprecht T, Nikolenko H, Handel L, Maloy WL, MacDonald DL, Beyermann M, Bienert M. Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides. FEBS Lett 1997,403:208-12.
    D'Atri F, Nadalutti F, Citi S. Evidence for a functional interaction between cingulin and ZO-1 in cultured cells. J Biol Chem 2002,277:27757-64.
    De Smet K, Contreras R. Human antimicrobial peptides:defensins, cathelicidins and histatins. Biotechnol Lett 2005,27:1337-47.
    Dennison SR, Harris F, Phoenix DA. Are oblique orientated alpha-helices used by antimicrobial peptides for membrane invasion? Protein Pept Lett 2005a,12:27-9.
    Dennison SR, Wallace J, Harris F, Phoenix DA. Amphiphilic alpha-helical antimicrobial peptides and their structure/function relationships. Protein Pept Lett 2005b,12:31-9.
    Dodd GT, Mancini G. Lutz B. Luckman SM. The peptide hemopressin acts through CB1 cannabinoid receptors to reduce food intake in rats and mice. J Neurosci 2010,30:7369-76.
    Durr UH, Sudheendra US, Ramamoorthy A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta 2006,1758:1408-25.
    Ebnet K, Schulz CU, Brickwedde MKMZ, Pendl GG, Vestweber D. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J Biol Chem 2000,275:27979-88.
    Ebnet K, Suzuki A, Horikoshi Y, Hirose T, Meyer Zu Brickwedde MK, Ohno S. Vestweber D. The cell polarity protein ASIP/PAR-3 directly associates with the junctional adhesion molecule (JAM). EMBO J 2001,20:3738-48.
    Epand RF, Epand RM, Monaco V, Stoia S, Formaggio F, Crisma M, Toniolo C. The antimicrobial peptide trichogin and its interaction with phospholipid membranes. Eur J Biochem 1999.266:1021-8.
    Epand RM, Epand RF. Lipid domains in bacterial membranes and the action of antimicrobial agents. Biochim Biophys Acta 2009,1788:289-94.
    Erridge C, Bennett-Guerrero, Poxton IR. Structure and function of lipopolysaccharides. Microbes and Infection 2002,4:837-51.
    Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM. The tight junction protein ZO-1 establishes a link between the transmembrane protein Occludin and the actin cytoskeleton. J Biol Chem 1998,273:29745-53.
    Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM. The tight junction protein ZO-1 establishes a link between the transmembrane protein Occludin and the actin cytoskeleton. J Biol Chem 1998,273:29745-53.
    Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM. The tight junction protein ZO-1 establishes a link between the transmembrane protein Occludin and the actin cytoskeleton. J Cell Biol 1998,273:29745-53
    Frecer V. QSAR analysis of antimicrobial and haemolytic effects of cyclic cationic antimicrobial peptides derived from protegrin-1.Bioorg Med Chem 2006,14:6065-74.
    Furuse M, Furuse K, Sasaki H, Tsukita S. Conversion of zonulae occludentes from tight to leaky strand type by introducing Claudin-2 into Madin-Dardy canine kidney I cells. J Cell Biol 2001,153:263-72.
    Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, Noda T, Kubo A, Tsukita S: Claudin-based tight junctions are crucial for the mammalian epidermal barrier:a lesson from Claudin-1-deficient mice. J Cell Biol 2002,156:1099-111.
    Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S. Occludin:A novel integral membrane protein localizing at tight junctions. J Cell Biol 1993,123:1777-88.
    Ganz T, Lehrer RI. Defensins. Pharmacol Ther 1995,66:191-205.
    Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF, Lehrer RI. Defensins, Natural peptide antibiotics of human neutrophils. J Clin Invest 1985,76:1427-35.
    Geens MM, Niewold TA. Optimizing culture conditions of a porcine epithelial cell line IPEC-J2 through a histological and physiological characterization. Cytothchnology 2011,63:415-23.
    Gesell J, Zasloff M, Opella SJ. Two-dimensional 1H NMR experiments show that the 23-residue magainin antibiotic peptide is an alpha-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution. J Biomol NMR 1997,9: 127-135.
    Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL, Cutting edge bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 2001,167:1882-5.
    Giangaspero A, Sandri L, Tossi A. Amphipathic alpha helical antimicrobial peptides. Eur J Biochem 2001,268:5589-600.
    Gimenez D, Andreu C, del Olmo M, Varea T, Diaz D, Asensio G. The introduction of fluorine atoms or trifluoromethyl group in short cationic peptides enhances their antimicrobial activity. Bioorg Med Chem 2006,14:6971-8.
    Giuliani A, Pirri G, Nicoletto SF. Antimicrobial peptides:an overview of a promising class of therapeutics. Central European Journal of Biology 2007,2:1-33.
    Glukhov E, Stark M, Burrows LL, Deber CM. Basis for selectivity of cationic antimicrobial peptides for bacterial versus mammalian membranes. J Biol Chem 2005,280:33960-7.
    Gonzalez-Mariscal L, Tapia R, Chamorro D. Crosstalk of tight junction components with signaling pathways. Biochim Biophys Acta 2008,1778:729-56.
    Groschwitz KR and Hogan SP. Intestinal barrier function:molecular regulation and disease pathogenesis. J Allergy Clin Immunol 2009,124:3-20.
    Grutkoski PS, Graeber CT, Lim YP, Ayala A, Simms HH. Alphadefensin 1 (human neutrophil protein 1) as an antichemotactic agent for human polymorphonuclear leukocytes. Antimicrob Agents Chemother 2003,47:2666-8.
    Haest CW, de Gier J, den Kamp JO, Bartels P, van Deenen LL. Chages in permeability of Staphylococcus aureus and derived liposomes with varying lipid composition. Biochim Biophys Acta 1972,255:720-33.
    Hale JD, Hancock RE. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther 2007,5:951-9.
    Hancock RE, Sahl HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 2006,24:1551-7.
    Hancock RE. Cationic peptides:effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 2001,1:156-64.
    Hancock RE. Cationic peptides:effectors in innate immunity and novel antimicrobials. Lancet Infect Dis 2001,1:156-164.
    Hancock RE. Mechanisms of action of newer antibiotics for Gram-positive pathogens. Lancet Infect Dis 2005,5:209-18.
    Harhaj NS and Antonetti DA. Regulation of tight junctions and loss of barrier function in pathophysiology. Int J Biochem Cell Biol 2004,36:1206-37.
    Harhaj NS, Barber AJ, Antonetti DA. Plateletderived growth factor mediates tight junction redistribution and increases permeability in MDCK cells. J Cell Physiol 2002,193:349-64.
    Harwig SS, Waring A, Yang HJ, Cho Y, Tan L, Lehrer RI. Intramolecular disulfide bonds enhance the antimicrobial and lytic activities of protegrins at physiological sodium chloride concentrations. Eur J Biochem 1996,240:352-7.
    Hirase T, Kawashima S, Wong EYM, Ueyama T, Rikitake Y, Tsukita S, Yokoyama M. Regulation of tight junction permeability and ccludin phosphorylayion by RhoA-pl60ROCK-dependent and independent mechanisms. J Biol Chem 2001,76: 10423-31.
    Hornef MW. Normark BH, Vandewalle A, and Normark S. Intracellular recognition of lipopolysaccharide by toll-like receptor 4 in intestinal epithelial cells. J Exp Med 2003, 198:1225-35.
    Huang HW. Free energies of molecular bound states in lipid bilayers:lethal concentrations of antimicrobial peptides. Biophys J 2009,96:3263-72.
    Huang HW. Molecular mechanism of antimicrobial peptides:the origin of cooperativity. Biochim Biophys Acta 2006,1758:1292-302.
    Inai T, Kobayashi J, Shibata Y. Claudin-1 contributes to the epithelial barrier function in MDCK cells. Eur J Cell Biol 1999,78:849-55.
    Islas S, Vega J, Ponce L, Gonzales-Mariscal L. Nuclear localization of the tight junction protein ZO-2 in epithelial cells. Exp Cell Res 2002,274:138-148.
    Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-1, and ZO-3, with the COOH termini of Claudins. J Cell Bio 1999,147:1351-63
    Jenssen H, Fjell CD, Cherkasov A, Hancock RE. QSAR modeling and computer-aided design of antimicrobial peptides. J Pept Sci 2008,14:110-4.
    Jernberg C, Lo"fmark S, Edlund C, Jansson JK. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 2010,156:3216-23.
    Jiang WG, Bryce RP, Horrobin DF, Mansel RE. Regulation of tight junction permeability and occludin expression by polyunsaturated fatty acids. Biochem Biophys Res Commu 1998,244: 414-20.
    Jiang Z, Kullberg BJ, van der Lee H, Vasil AI, Hale JD, Mant CT, Hancock RE, Vasil ML, Netea MG, Hodges RS. Effects of hydrophobicity on the antifungal activity of alpha-helical antimicrobial peptides. Chem Biol Drug Des 2008,72:483-95.
    Johnson RW. Inhibition of growth by pro-inflammatory cytokines:An integrated view. J Anim Sci 1999,75:1244-55.
    Juretic D, Vukicevic D, Petrov D, Novkovic M, Bojovic V, Lucic B, Ilic N, Tossi A. Knowledge-based computational methods for identifying or designing novel, non-homologous antimicrobial peptides. Eur Biophys J 2011,40:371-85.
    Kalfa, VC, Jia HP, Kunkle RA, Jr. McCray PB, Tack BF, Brogden KA. Congeners of SMAP29 kill ovine pathogens and induce ultrastructural damage in bacterial cells. Antimicrob Agents Chemother 2001.45:3256-61.
    Kavanagh K, Dowd S. Histatins:antimicrobial peptides with therapeutic potential. J Pharm Pharmacol 2004,56:285-289.
    Kevil CG, Okayama N, Trocha SD, Kalogeris T., Coe LL, Specian RD, Davis CP, Alexander JS. Expression of zonula occludens and adherens junctional proteins in human venous and arterial endothelial cells:Role of Occluding in endothelial solute barriers. Microcirculation 1998,5:197-210.
    Khandelia H, Ipsen JH, Mouritsen OG. The impact of peptides on lipid membranes. Biochim Biophys Acta 2008,1778:1528-36.
    Kimball SR, Orellana RA, O'Connor PM, Suryawan A, Bush JA, Nguyen HV, Thivierge MC, Jefferson LS, Davis TA. Endotoxin induces differential regulation of mTOR-dependent signaling in skeletal muscle and liver of neonatal pigs. Am J Physiol 2003,85:E637-E44.
    Kimura H, Sawada N, Tobioka H, Isomura H, Kokai Y, Hirata K, Mori M. Bacterial lipopolysaccharide reduced intestinal barrier function and altered localization of 7H6 antigen in IEC-6 rat intestinal crypt cells. J cell physiol 1997,171:284-290.
    Koczulla AR, Bals R. Antimicrobial peptides:current status and therapeutic potential. Drugs 2003,63:389-106.
    Kogut M., He H, Kaiser P. Lipopolysaccharide binding protein/CD 14/TLR4-dependent recognition of salmonella LPS induces the functional activation of chicken heterophils and upregulation of pro-inflammatory cytokine and chemokine gene expression in these cells. Ani Biotechnol 2005,16:165-81.
    Kohler H, Rodrigues SP, McCormick BA. Shigella flexneri interactions with the basolateral membrane domain of polarized model intestinal epithelium:role of lipopolysaccharide in cell invasion and in activation of the mitogen-activated protein kinase ERK. Infect Immun 2002, 70:1150-118.
    Kokryakov VN, Harwig SS, Panyutich EA, Shevchenko AA, Aleshina GM, Shamova OV, Korneva HA, Lehrer RI. Protegrins:leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett 1993,327:231-6.
    Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L, Jr. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 2001,40:3016-3026.
    Kucharzik T, Walsh SV, Chen J, Parkos CA, Nusrat A:Neutrophil transmigration in inflammatory bowel disease is associated with differential expression of epithelial intercellular junction proteins. Am J Pathol 2001,159:2001-9
    Lai Y, Gallo RL. AMPed up immunity:how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 2009,30:131-41.
    Lugtenberg EJ, Peters R. Distribution of lipids in cytoplasmic and outer membranes of Escherichia coli K12. Biochim Biophys Acta 1976,441:38-47.
    Maher S, Feighery L, Brayden DJ, McClean S. Melittin as an epithelial permeability enhancer I: investigation of its mechanism of action in Caco-2 monolayers. Pharm Res 2007,24:1336-45.
    Mangoni ME, Aumelas A, Charnet P, Roumestand C, Chiche L, Despaux E, Grassy G, Calas B, Chavanieu A. Change in membrane permeability induced by protegrin 1:implication of disuplide bridges for pore formation. FEBS Lett 1996,383:93-8.
    Manichanh C, Reeder J, Gibert P, Varela E, Llopis M, Antolin M. Reshaping the gut microbiome with bacterial transplantation and antibiotic intake. Genome Res 2010, 20:1411-9.
    Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzer C, Stoppacciaro A, Ruco L, Villa A, Simmons D, Dejana E. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 1998,142:117-27.
    Matsuzaki K, Harada M, Funakoshi S, Fujii N, Miyajima K. Physicochemical determinants for the interactions of magainins 1 and 2 with acidic lipid bilayers. Biochim Biophys Acta 1991, 1063:162-70.
    Matsuzaki K. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta 1999,1462:1-10.
    McDermott AM. The role of antimicrobial peptides at the ocular surface. Ophthalmic Res 2009, 41:60-75.
    Melo MN, Ferre R, Castanho MA. Antimicrobial peptides:linking partition, activity and high membrane-bound concentrations. Nat Rev Microbiol 2009,7:245-250.
    Mihajlovic M, Lazaridis T. Antimicrobial peptides bind more strongly to membrane pores. Biochim Biophys Acta 2010a,1798:1494-502.
    Mihajlovic M, Lazaridis T. Antimicrobial peptides in toroidal and cylindrical pores. Biochim Biophys Acta 2010b,1798:1485-93.
    Moal VL and Servin AL. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms:mucins, antimicrobial peptides, and microbiota. Clinical Microbiology Reviews 2006,19:315-37.
    Mookherjee N, Wilson HL, Doria S, Popowych Y, Falsafi R, Yu JJ, Li Y, Veatch S, Roche FM, Brown KL, Brinkman FS, Hokamp K, Potter A, Babiuk LA, Griebel PJ, Hancock RE. Bovine and human cathelicidin cationic host defense peptides similarly suppress transcriptional responses to bacterial lipopolysaccharide. J Leukoc Biol 2006,80:1563-74.
    Morita K, Furuse M, Fujimoto K, Tsukita S. Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Nati Acad Sci U S A 1999,96:511-6.
    Mullin JM, Leatherman JM, Valenzano MC, Huerta ER, Verrechio J, Smith DM, Snetselaar K, Liu M, Francis MK, Sell C. Ras mutation impairs epithelial barrier function to a wide range of nonelectrolytes, Mol Biol Cell 2005,16:5538-50.
    Munford RS. Detoxifying endotoxin:Time, place and person. J Endotoxin Res 2005,11:69-84.
    Nagaoka I, Hirota S, Niyonsaba F, Hirata M, Adachi Y, Tamura H, Heumann D. Cathelicidin family of antibacterial peptides CAP 18 and CAP 11 inhibit the expression of TNF-alpha by blocking the binding of LPS to CD14(+) cells. J Immunol 2001,167:3329-38.
    Neal MD, Leaphart C, Prince J, Billiar TR, Watkins S, Li J, Cetin S, Ford H, Schreiber A, Hackam DJ. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier. J Immunol 2006,176:3070-9.
    Nguyen LT, Chau JK, Perry NA, de Boer L, Zaat SA, Vogel HJ. Serum stabilities of short tryptophan-and arginine-rich antimicrobial peptides analogs. Plos One 5:e12684.
    Niyonsaba F, Nagaoka I, Ogawa H. Human defensins and cathelicidins in the skin:beyond direct antimicrobial properties. Crit Rev Immunol 2006,26:545-76.
    Ostberg N, Kaznessis Y. Protegrin structure-activity relationships:using homology models of synthetic sequences to determine structural characteristics important for activity. Peptides 2005,26:197-206.
    Ostresh JM, Blondelle SE, Dorner B, Houghten RA. Generation and use of nonsupport-bound peptide and peptidomimetic combinatorial libraries. Methods Enzymol 1996,267:220-34
    Otte JM, Werner I, Brand S, Chromik AM, Schmitz F, Kleine M, Schmidt WE. Human beta defensin 2 promotes intestinal wound healing in vitro. J Cell Biochem 2008,104:2286-97.
    Otvos L, Jr., O I, Rogers ME, Consolvo PJ, Condie BA, Lovas S, Bulet P, Blaszczyk-Thurin M. Interaction between heat shock proteins and antimicrobial peptides. Biochemistry 2000,39: 14150-9.
    Pandey BK, Ahmad A, Asthana N, Azmi S, Srivastava RM, Srivastava S. Cell-selective lysis by novel analogues of melittin against human red blood cells and Escherichia coli. Biochemistry 2010,49:7920-9
    Park CB, Kim HS, Kim SC. Mechanism of action of the antimicrobial peptide buforin Ⅱ: buforin Ⅱ kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 1998,244:253-7.
    Park IY, Cho JH, Kim KS, Kim YB, Kim MS, Kim SC. Helix stability confers salt resistance upon helical antimicrobial peptides. J Biol Chem 2004,279:13896-901.
    Pastor A, and Canton E. Interactions between bacteria and antimicrobials during the postantibiotic effect phase. Rev Esp Quimioter 1999,12:294-9.
    Pasupuleti M, Schmidtchen A, and Malmsten M. Antimicrobial peptides:Key components of the innate immune system. Crit Rev Biotechnol 2011, Nov 11. [Epub ahead of print].
    Pasupuleti M, Walse B, Svensson B, Malmsten M, Schmidtchen A. Rational design of antimicrobial C3a analogues with enhanced effects against Staphylococci using an integrated structure and function-based approach. Biochemistry 2008,47:9057-70.
    Pasupuleti M, Walse B, Svensson B, Malmsten M, Schmidtchen A. Rational design of antimicrobial C3a analogues with enhanced effects against Staphylococci using an integrated structure and function-based approach. Biochemistry 2008,47:9057-70.
    Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock RE. Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 2002,46:605-14.
    Peschel A, Sahl HG. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 2006,4:529-36.
    Pokorny A, Almeida PF. Kinetics of dye efflux and lipid flipflop induced by delta-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, alpha-helical peptides. Biochemistry 2004,43:8846-57.
    Powers JP, Hancock RE. The relationship between peptide structure and antibacterial activity. Peptides 2003,24:1681-91.
    Qian S, Wang W, Yang L, Huang HW. Structure of the alamethicin pore reconstructed by x-ray diffraction analysis. Biophys J 2008,94:3512-22.
    Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem 2002,71:635-700.
    Rao AG. Conformation and antimicrobial activity of linear derivatives of tachyplesin lacking disulfide bonds. Arch Biochem Biophys 1999,361:127-34.
    Reddy KV, Yedery RD, Aranha C. Antimicrobial peptides:premises and promises. Int J Antimicrob Agents 2004,24:536-47.
    Ringstad L, Protopapa E, Lindholm-Sethson B, Schmidtchen A, Nelson A, Malmsten M. An electrochemical study into the interaction between complement-derived peptides and DOPC mono-and bilayers. Langmuir 2008,24:208-16.
    Rothstein DM, Spacciapoli P, Tran LT, Xu T, Roberts FD, Dalla Serra M, Buxton DK, Oppenheim FG, Friden P. Anticandida activity is retained in P-113, a 12-amino-acid fragment of histatin 5. Antimicrob Agents Chemother 2001,45:1367-73.
    Rozek A, Powers JP, Friedrich CL, Hancock RE. Structure-based design of an indolicidin peptide analogue with increased protease stability. Biochemistry 2003,42:14130-8.
    Sakakibara A, Furuse M, Saitou M, Ando-Akatsuka Y, Tsukita S.. Possible involvement of phosphorylation of Occludin in tight junction formation. J Cell Biol 2002,137:1393-401.
    Sawa T, Kurahashi K, Ohara M, Gropper MA, Doshi V, Larrick JW, Wiener-Kronish JP. Evaluation of antimicrobial and lipopolysaccharide-neutralizing effects of a synthetic CAP 18 fragment against Pseudomonas aeruginosa in a mouse model. Antimicrob Agents Chemother 1998,42:3269-75.
    Schmidtchen A, Pasupuleti M, Morgelin M, Davoudi M, Alenfall J, Chalupka A, Malmsten M. Boosting antimicrobial peptides by hydrophobic oligopeptide end tags. J Biol Chem 2009, 284:17584-94.
    Schmidtchen A, Pasupuleti M, Morgelin M, Davoudi M, Alenfall J, Chalupka A, Malmsten M. Boosting antimicrobial peptides by hydrophobic oligopeptide end tags. J Biol Chem 2009, 284:17584-94.
    Schmidtchen A, Pasupuleti M, Morgelin M, Davoudi M, Alenfall J, Chalupka A, Malmsten M. Boosting antimicrobial peptides by hydrophobic oligopeptide end tags. J Biol Chem 2009, 284:17584-94.
    Schneider T, Kruse T, Wimmer R, Wiedemann Ⅰ, Sass V, Paq U, Jansen A, Nielsen AK, Myqind PH, Raventos DS, Neve S, Ravn B, Bonvin AM, De Maria L, Andersen AS, Gammelgaard LK, Sahl HG, Kristensen HH. Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid Ⅱ. Science 2010,328:1168-72.
    Schneider T and Sahl HG. Lipid Ⅱ and other bactoprenol-bound cell wall precursors as drug targets. Curr Opin Investig Drugs 2010,11:157-64.
    Schulzke JD, Ploeger S, Amasheh M, Fromm A, Zeissiq S, Troeger H, Richter J, Bojarski C, Schumann M, Fromm M. Epithelial tight junctions in intestinal inflammation. Ann N Y Acad Sci 2009,1165:294-300
    Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE. The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol 2002,169: 3883-91.
    Scott MG, Hancock RE. Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit Rev Immunol 2000,20:407-31.
    Scott MG, Rosenberger CM, Gold MR, Finlay BB, Hancock RE. An alpha-helical cationic antimicrobial peptide selectively modulates macrophage responses to lipopolysaccharide and directly alters macrophage gene expression. J Immunol 2000,165:3358-65.
    Selsted ME and Ouellette AJ. Mammalian defensins in the antimicrobial immune response. Nat. Immunol 6:551-7.
    Shai Y. Mode of action of membrane active antimicrobial peptides. Biopolymers 2002,66: 236-48.
    Shaykhiev R, Beisswenger C, Kandler K, Senske J, Puchner A, Damm T, Behr J, Bals R. Human endogenous antibiotic LL-37 stimulates airway epithelial cell proliferation and wound closure. Am J Physiol Lung Cell Mol Physiol 2005,289:L842-8.
    Shen L, Weber CR, Raleigh DR, Yu D, Turner JR. Tight junction pore and leak pathways:a dynamic duo. Annu Rev Physiol 2011,73:283-309.
    Sheth P, Samak G, Shull JA, Seth A, and Rao R. Protein phosphatase 2A plays a role in hydrogen peroxide-induced disruption of tight junctions in Caco-2 cell monolayers. Biochem J 2009,421:59-70.
    Shibl AM, Pechere JC, Ramadan MA. Postantibiotic effect and host-bacteria interactions. J Antimicrob Chemother 1995,36:885-7.
    Shin SY, Kang JH, Lee MK, Kim SY, Kim Y, Hahm KS. Cecropin A-magainin 2 hybrid peptides having potent antimicrobial activity with low hemolytic effect. Biochem Mol Biol Int 1998,44:1119-26.
    Smith RA. Impact of disease on feedlot performance:A review. J Anim Sci 1998.76:272-4.
    Sonada N, Furuse M, Sasaki H, Yonemura S, Katahira J, Horiguchi Y, Tsukita S. Clostridium perfringens enterotoxin fragment removes specific Claudins from tight junction strands: Evidence for direct involvement of Claudins in tight junction barrier. J Cell Biol 1999,147: 195-204.
    Spurlock ME. Regulation of metabolism and growth during immune challenge:An overview of cytokine function. J Anim Sci 1997,75:1773-83.
    Steiner H, Hultmark D, Engstr A, Bennich H, Boman HG. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 1981,292:246-8.
    Stelwagen K, McFadden HA, Demmer J. Prolactin, alone or in combination with glucocorticoids, enhances tight junction formation and expression of the tight junction protein Occludin in mammary cells. Mol Cell Endocrinol 1999,156:55-61.
    Stromstedt AA, Pasupuleti M, Schmidtchen A, Malmsten M. Evaluation of strategies for improving proteolytic resistance of antimicrobial peptides by using variants of EFK17, an internal segment of LL-37. Antimicrob Agents Chemother 2009,53:593-602.
    Subbalakshmi C. Sitaram N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett 1998,160:91-6.
    Subbalakshmi C, Krishnakumari V, Nagaraj R, Sitaram N. Requirements for antibacterial and hemolytic activities in the bovine neutrophil derived 13-residue peptide indolicidin. FEBS Lett 1996,395:48-52.
    Sykes BW. Equine endotoxemia-a state-of-the-art review of therapy. Aust Vet J 2005,83:45-50.
    Tai EK, Wong HP, Lam EK, Wu WK, Yu L, Koo MW, Cho CH. Cathelicidin stimulates colonic mucus synthesis by up-regulating MUC1 and MUC2 expression through a mitogen-activated protein kinase pathway. J Cell Biochem 2008,104:251-8.
    Thomas S, Karnik S, Barai RS, Jayaraman VK, Idicula-Thomas S. CAMP:a useful resource for research on antimicrobial peptides. Nucleic Acids Res 2010,38:D774-80.
    Tian ZG, Dong TT, Teng D, Yang YL, Wang JH. Design and characterization of novel hybrid peptides from LFB15(W4,10), HP(2-20), and cecropin A based on structure parameters by computer-aided method. Appl Microbiol Biotechnol 2009; 82:1097-103.
    Tokumaru S, Sayama K, Shirakata Y, Komatsuzawa H, Ouhara K, Hanakawa Y, Yahata Y, Dai X, Tohyama M, Nagai H, Yang L, Higashiyama S. Yoshimura A, Sugai M, Hashimoto K. Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37. J Immunol 2005,175:4662-8.
    Torrent M, Andreu D. Nogues VM, Boix E. Connecting peptide physicochemical and antimicrobial properties by a rational prediction model. PLoS ONE 2011,6:el6968.
    Tossi A, Sandri L. Giangaspero A. Amphipathic, alpha-helical antimicrobial peptides. Biopolymers 2000.55:4-30.
    Tossi A, Scocchi M, Skerlavaj B, Gennaro R. Identification and characterization of a primary antibacterial domain in CAP18. a lipopolysaccharide binding protein from rabbit leukocytes. FEBS Lett 1994.339:108-12.
    Traweger A, Fang D. Liu YC, Stelzhammer W, Krizbai IA, Fresser F, Bauer HC, Bauer H. The t ight junction-specific protein Occludin is a functional target of the E3 ubiquitin protein ligase itch. J Cell Biol 2002,277:10201-8.
    Tsai H, Bobek LA. (1998). Human salivary histatins:promising antifungal therapeutic agents. Crit Rev Oral Biol Med,9,480-97.
    Tsukita S, Furuse M. Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2001,2:285-93.
    Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 2009, 9:799-809.
    Tytler EM, Anantharamaiah GM, Walker DE, Mishra VK, Palgunachari MN, Segrest JP. Molecular basis for prokaryotic specificity of magainin-induced lysis. Biochemistry 1995,34: 4393-401.
    Uematsu N, Matsuzaki K. Polar angle as a determinant of amphipathic alpha-helix-lipid interactions:a model peptide study. Biophys J 2000,79:2075-83.
    Ulvatne H, Samuelsen 0, Haukland HH, Kramer M, Vorland LH. Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis. FEMS Microbiol Lett 2004,237:377-84.
    Uteng M, Hauge HH, Markwick PR, Fimland G, Mantzilas D, Nissen-Meyer J, Muhle-Goll C. Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P and a sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridge. Biochemistry 2003,42,11417-26.
    Van't Hof W, Veerman EC, Helmerhorst EJ, Amerongen AV. Antimicrobial peptides: properties and applicability. Biol Chem 2001,382:597-619.
    Van-Itallie CM and Anderson JM. The molecular physiology of tight junction pores. Physiology 2004,19:331-8.
    Vorland L H, Osbakk S A, Perstolen T, Ulvatne H, Rekdal O, Svendsen JS, Gutteberg TJ. Interference of the antimicrobial peptide lactoferricin B with the action of various antibiotics against Escherichia coli and Staphylococcus aureus. Scand J Infect Dis 1999,31:173-7.
    Wakabayashi H, Teraguchi S, Tamura Y. Increased staphylococcus-killing activity of an antimicrobial peptide, lactoferricin B, with minocycline and monoacylglycerol. Biosci Biotechnol Biochem 2002,66:2161-7.
    Wan H, Winton HL, Soeller C, Tovey ER, Gruenert DC, Thompson PJ, Stewart GA, Taylor GW, Garrod D., Cannell MB, Robinson C. Der p 1 facilitates transepithelial allergen deliver}' by disruption of tight junctions. J Clin Invest 1999,104:123-33.
    Wang G, Li X, Wang Z. APD2:the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 2009,37:D933-7.
    Welling MM, Hiemstra PS, van den Barselaar MT, Paulusma-Annema A, Nibbering PH, Pauwels EK, Calame W. Antibacterial activity of human neutrophil defensins in experimental infections in mice is accompanied by increased leukocyte accumulation. J Clin Invest 1998, 102:1583-90.
    Werners AH, Bull S, Fink-Gremmels J. Endotoxemia:A review with implications for the horse. Equine Vet J 2005,37:371-83.
    W Hongbiao, N Baolong, X Mengkui, H lihua, S weifeng, M Zhiqi. Biological activities of cecropin B-thanatin hybrid peptides. J Pept Res 2005,66:382-6.
    Wessolowski A, Bienert M, Dathe M. Antimicrobial activity of arginine-and tryptophan-rich hexapeptides:the effects of aromatic clusters, D-amino acid substitution and cyclization. J Pept Res 2004,64:159-69.
    Westerhoff HV, Zasloff M, Rosner JL, Hendler RW, De Waal A, Vaz Gomes A, Jonqsma PM, Riethorst A, Juretic D. Functional synergism of the magainins PGLa and magainin-2 in Escherichia coli, tumor cells and liposomes. Eur J Biochem 1995,228:257-64.
    Wieprecht T, Dathe M, Epand RM, Beyermann M, Krause E, Maloy WL, MacDonald DL, Bienert M. Influence of the angle subtended by the positively charged helix face on the membrane activity of amphipathic, antibacterial peptides. Biochemistry 1997,36:12869-80.
    Willing BP, Russell SL, Finlay BB. Shifting the balance:antibiotic effects on host-microbiota mutualism. Nat Rev Microbial 2011.9:233-43.
    Wlodarska M and Finlay BB. Host immune response to antibiotic perturbation of the microbiota. Mucosal Immunol 2010.3:100-3.
    Wong V. Phosphorylation of Occludin correlates with Occludin localization and function at the tight junction. Am J Physiol 1997,273:C1859-67.
    Woods DF, Bryant PJ. ZO-1, DlgA, and PSD-95/SAP90:Homologous proteins in tight, septate, and synaptic cell junctions. Mech Dev 1993,45:155-62.
    Xiao WD, Chen W, Sun LH, Wang WS, Zhou SW, Yang H. The protective effect of enteric glial cells on intestinal epithelial barrier function is enhanced by inhibiting inducible nitric oxide synthase activity under lipopolysaccharide stimulation. Molecular and cellular neuroscience 2011,46:527-534.
    Yang L, Weiss TM, Lehrer RI, Huang HW. Crystallization of antimicrobial pores in membranes: magainin and protegrin. Biophys J 2000,79:2002-9.
    Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 2003,55:27-55.
    Yount NY, Bayer AS, Xiong YQ, Yeaman MR. Advances in antimicrobial peptide immunobiology. Biopolymers 2006,84:435-58.
    Yount NY, Yeaman MR. Immunocontinuum:perspectives in antimicrobial peptide mechanisms of action and resistance. Protein Pept Lett 2005,12:49-67.
    Yount NY, Yeaman MR. Structural congruence among membrane-active host defense polypeptides of diverse phylogeny. Biochim Biophys Acta 2006,1758:1373-86.
    Yuhan R, Koutsouris A, Savkovic SD, et al. Enteropathogenic Escherichia coli-induced myosin light chain phosphorylation alters intestinal epithelial permeability. Gastroenterology 1997, 113:1873-1882.
    Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002,415:389-95.
    Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin:isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 1987,84:5449-53.
    Zhang L, Rozek A, Hancock RE. Interaction of cationic antimicrobial peptides with model membranes. J Biol Chem 2001,276:35714-22.
    刘忠渊,徐涛,郑树涛,张兰廷,张富春.新疆家蚕抗菌肽Cecropin XJ与细菌DNA相互作用的光谱研究.光谱学与光谱分析2008,28:867-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700