人工合成抗菌肽抑制棉花黄萎病菌的机制及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是全球最大的棉花生产国,同时也是最大的消费国。棉花的生产和创收对于我国的国民经济意义重大。然而根据国家统计局提供的数据,2010年全国棉花的总产量(596.1万吨)和单产(1229k/ha)均为近五年来最低。除去人力不可控的气候灾害的影响,棉花病害的发生是限制单产的主要因子。本研究的对象就是危害棉花最严重病害之一——黄萎病,该病是海关出入境的检验检疫对象,困扰棉花产业几十年,一直未找到理想的防治对策。植物转基因抗病育种技术的不断发展,为棉花黄萎病的攻克开辟了新的途径,国内外不少学者也进行了相关的尝试。遗憾的是,截止到目前仍然没有一个抗病的转基因株系转化为品种。究其原因应该是转化的外源抗病基因不够理想,不能像苏云金芽孢杆菌内毒素基因(BT)那样强效。因此,分离和发现高效抗病的外源基因成为当前转基因抗黄萎病棉花品种选育工作中亟需解决的问题。
     为此,本文以长江和黄河流域棉花两大主产区的15种黄萎病菌为材料,精心设计并合成了20条不同类型的抗真菌多肽,通过分析抗菌肽与不同黄萎病菌、抗菌肽与动物细胞、抗菌肽与棉花原生质体间的互作,筛选出能高效抑杀黄萎病菌、低毒性的小分子多肽;探讨了抗菌肽抑制黄萎病菌的可能作用机制和在大肠杆菌生物反应器中原核表达该多肽的可行性。研究的主要结果如下:
     1.对来自长江和黄河流域两大主产棉区的15种黄萎病菌的地方小种进行了系统研究,首先,通过菌落形态学观察将不同的菌系按照其菌丝和微菌核的相对生长量分别划分到菌丝型、菌核型和中间型,为直观地初步判定不同地方小种奠定了基础;其次,利用4对特异引物对上述病菌材料进行了PCR分子鉴定,发现除枯萎病菌对照外,其他供试菌种均为大丽轮枝菌,并且部分为强致病力的落叶型菌系。苗期接种试验表明,黄萎病菌可能的致病因子——毒素(蛋白-脂-多糖复合物)对棉苗有明显的致萎活性,通过进一步比较试验发现,棉苗的抗氧化酶系统对毒素和分生孢子液的响应模式存在明显的差异,毒素处理后棉苗的反应更加迅速(特别是根部),同一处理的不同器官内的防御酶活性变化也不相同。
     2.采用温室鉴定和病圃鉴定相结合的方法,观察了黄萎病菌在棉花上的发生与危害情况,并对本课题组现有的三系杂交棉材料进行了为期2年的调查鉴定。其中,2007年8月份30℃以上的月均温度以及同期较高的旬均温度导致田间发生了黄萎病隐症的情况,直到8月底才出现较高的病情指数。2008年田间病田的发病比较严重(同期温度较2007年低很多,雨水足,适宜发病)。比较不同时期、不同材料的田间发病规律,结论是未发现免疫水平的材料。本试验用到的16个三系杂交棉材料可以划分为4个类群,海岛棉恢复系具有高抗特性,鸡脚叶恢复系和对照“湘杂棉2号”为高感病,其他多数材料均为耐病性或介于耐病与感病之间。相关性分析结果表明,各三系材料最终产量和纤维品质的表现与黄萎病的发病程度相关显著。陆地棉杂交种和海陆杂种F1组合的各项指标均有所改良,但未表现出明显的杂种优势。
     3.收集国内外各种数据库和文献报道的抗菌肽序列1500多条,找出有抗真菌特性的600条,最终选定20条为母体肽,分别利用不同的抗菌肽修饰手段,对母体肽进行加工修饰,保留其保守的抗菌核心区(或氨基酸残基),得到新型的潜在抗黄萎病菌多肽20条,体外人工合成后进行抑菌试验。结果表明,不同的抗菌肽对黄萎病菌的作用差异很大,同一抗菌肽对不同的黄萎病菌小种之间也存在差异。经过筛选得到抗菌肽0-防御素类BTD-S和杂合肽CM-S可以分别抑制全部5种或其中4种供试黄萎病菌,并且最小抑菌浓度均在5μM以下,二者均表现了很强的抑菌能力,比目前研究利用最成熟的多肽D4E1效果好(MIC=9.61μM),而且抑菌力更持久。分别用绵羊血红细胞和棉花原生质体为材料,对BTD-S和CM-S的生物安全性进行了评定,结果表明,二者仅在浓度达到200μg/ml时才会出现轻微的溶血性,对棉花原生质体在200μg/ml时未发现毒害性。
     4.通过生物信息学分析得出BTD-S为β-折叠肽,CM-S为α-螺旋肽。随后利用圆二色谱技术测定了2种多肽分子的二级结构,BTD-S在远紫外区的CD谱特征为195nm处正峰,205nm处负峰,为典型的β-折叠构象;CM-S则在190nm处正峰,222nm和208nm处出现明显的负峰,为α-螺旋构象,试验测定的数据与软件预测的结果完全一致。抗菌肽的高级结构分析表明,BTD-S分子内6个半胱氨酸结合为3对二硫键,呈梯状,整条多肽结构非常稳定,为其持久杀菌特性提供了可能;CM-S为α-螺旋,带7个净正电荷,分子具有两亲特性(有明显的疏水表面),这些特质使其更容易通过膜作用机制抑菌。
     5.在普通光学显微镜下发现,20μg/ml抗菌肽的处理会导致病菌分生孢子无法正常萌发,并出现部分小号细胞群体;利用荧光显微技术观察发现抗菌肽处理的真菌孢子细胞膜受到严重损伤,大分子碘化丙啶(P1)渗入病菌细胞内部,细胞核被染色,经荧光激发显红色;扫描电镜(SEM)观察抗菌肽对细胞形态的影响,BTD-S处理后真菌孢子不能萌发,细胞表面出现明显的外渗物,甚至发生细胞的破裂和解体,CM-S处理后也见到类似的现象,由此可见,BTD-S和CM-S都能与病原真菌细胞膜互作,改变膜的透性,进而使细胞内必需物质外渗。流式细胞仪分析表明,BTD-S处理会使病菌细胞群体中逐渐分化出一批小号细胞,并且随着BTD-S浓度的增加,该类小号细胞的群体呈明显扩大趋势,这一结果与光学镜下的发现相吻合;另一方面随着BTD-S处理剂量的加大,病菌细胞对PI的吸收显著增强,即细胞受损伤(或死亡)程度逐渐加重。
     6.根据BTD-S的氨基酸序列反译为DNA序列,将编码DNA序列插入到原核表达载体pET32a,构建了重组表达载体BTD-pET32a。在IPTG诱导下,检测到目的蛋白明显地过量表达,并且融合蛋白主要以可溶性形式表达,镍柱纯化可得到高纯度的目标蛋白。
Cotton production occupies a central position in national economy of China contributed from agriculture sector. According to the data provided by the National Bureau of Statistics of China, the average yield (1229kg/ha) of cotton from2010is declined as compared to last five years. This reduction in the cotton yield is mainly due to the occurrence of a devasting pathogen Verticillium dahliae in cotton growing areas and caused a severe disease known as Verticillium wilt. For so long time, scientists are engaged for identifying resistant resources against this pathogen but could not find any one in commercially grown tetraploid cotton(Gossypium hirsutum). However biotechnology and genetic engineering as new emerging sciences set up new avenues for combating Verticillium wilt in cotton by transferring resistant genes from sources other than plants.
     Yangtze River and Yellow River are the two main cotton growing areas in China. About15different isolates of Verticillium dahliae, were collected from these two places and maintained in our laboratory for future work. The isolates were characterized into hyphae, sclerotia and intermediate-type on the basis of colony morphology. Further molecular identification of these isolates using four pairs of specific primers indicated that, except Fusarium oxysporum and Zhengzhou strain of Verticillium dahliae, all the other tested strains belong to Verticillium daliae including some virulent defoliating strains. To understand the interaction between cotton and Verticillium dahliae, seedling bioassays were performed using VD(Verticillium dahliae) toxin (protein-lipids-polysaccharide complexes, PLPs) and spore suspension following root dip method. The VD-toxin caused the cotton seedlings to wilt immediately while symptoms appearance with spore suspension was little delayed. Moreover, antioxidant activity in different organs of the same treatment was not the same.
     In addition to greenhouse screening, field screening against Verticillium dahliae was also during2007and2008conducted using16CMS-based hybrid cotton developed by our lab. In august2007, monthly average temperature was above30℃and no wilting was recorded. However at the end of august the high disease index was observed. Whereas in2008due to low temperature and frequent rainfall, which are suitable factors for the growth of Verticillium dahliae, the incidence of field disease reached at peak in August. Moreover at different time period, cotton materials exhibited different disease index for Verticillium wilt and according to their performance,16CMS-based hybrid cotton can be divided into four groups, highly resistant sea island cotton restorer line, highly susceptible chicken leaf recovery line and 'Xiangzamian2'while other materials were either tolerant to disease or between tolerant and susceptible. The correlation analysis results showed that the final yield and fiber quality performance of the CMS-based materials were significantly correlated with the disease severity. In order to utilize the phenomenon of heterosis, F1intraspecific hybrids of upland cotton and interspecific hybrids between sea and upland cotton were developed. Hybrids though exhibited some resistance but it was not as high as that of sea iseland cotton.
     From already available database having more than1500antimicrobial peptide sequences,600were identified to possess antifungal properties. Out of these, finally20different types of anti-fungal peptides were selected as a parent peptide and modified for high resistance against Verticillium dahliae and low toxicity to other organisms. However, their conservative antibacterial core domain (or amino acid residues) was retained. The interaction of these antimicrobial peptides with fungal, animal, bacterial cells and cotton protoplast was studied. Results revealed that these antimicrobial peptides efficiently inhibited the growth of Verticillium dahliae, low toxicity to animal red blood cells and cotton protoplast. The interaction between fungus isolate and antimicrobial peptide was highly significant and0-defensin BTD-S can inhibit five different isolates while hybrid peptide CM-S can inhibit four kinds of Verticillium dahliae. The minimum inhibitory concentration (MIC) for these two peptides was less than5μM and possessed stronger antimicrobial activity as compared to synthetic peptide D4E1(MIC=9.61μM). No hemolytic activities were observed to sheep red blood cells and cotton protoplast even at concentration level up to200μg/ml. These qualities make these two antimicrobial peptides more demanding for using them in developing wilt resistant cultivars.
     Circular dichroism (CD) spectra of BTD-S in the far UV wavelength displayed a characteristic positive peak is195nm and205nm negative peak, indicating a typical β-sheet conformation of BTD-S. Similarly a positive peak at190nm and the negative peak at222nm and208nm for CM-S indicated a a-helix conformation and match well with the prediction from bioinformatics softwares. The advanced structural analysis of antimicrobial peptides showed that the six cysteins amino acid residues within the molecule of the BTD-S formed three disulfide bonds (like a ladder) making it more stable with durable microbicidal properties. Wherease CM-S with a-helix structure having seven net positive charge and amphiphilic properties (hydrophobic surface) make it easier to interact with the membrane of Verticillium dahliae.
     Under the optical microscope, antimicrobial peptides concentration (20μg/ml) leads to the significant inhibition of conidial germination. Cell membrane permeation of fungal spores was also observed using fluorescence microscopy technique and severe cell injury was observed in response to treatment with antimicrobial peptides. This injury can be visualized from permeation of large molecules of propidium iodide (PI) into the fungus cells which then stained the nucleus and emitted red fluorescence after excitation. Similarly scanning electron microscopy (SEM) also revealed retarded growth of fungal spores with some extravasations on the cell surface and rupturing of the cell. Whereas flow cytometric analysis (FCA) showed that BTD-S treatment differentiated fungal cells into a new group of small sized cells (mini cells) and their number increased continuosly upon increasing the concentration of the BTD-S. These findings were inconsistent to that of optical microscopy, florescence microscopy and scanning electron microscopy. Therefore it can be concluded from this study that the BTD-S and CM-S interacted with pathogenic fungal cell membranes, changed the membrane permeability and thus disturbing the normal metabolism of the cells.
     Using bioinformatics tools, amino acid sequence of the BTD-S was translated into coding nucleotide sequence and then inserted into the prokaryotic expression vector pET32a to construct the recombinant expression vector of the BTD-pET32a. This recombinant vector was then transferred into Escherichia coli BL21(DE3) and after IPTG induction a significant overexpression of the target protein was detected. The study provided a comprehend mechanisim of antimicrobial peptide interaction with Verticillium dahliae and laid a basis for utilizing the coding sequences of these peptides to transfer into cotton for developing transgenic wilt resistant cultivars.
引文
曹阳,严玉萍,王清和,何建军,杨治明,冯振秀,朱波(2005)黄萎病不同危害程度对棉花影响效应调查分析,中国棉花32:8-9.
    陈兴勇(2009)中华眼镜蛇细胞毒素基因克隆、表达及对肿瘤细胞作用机理的研究.中国科学技术大学.
    陈旭升,陈永萱,黄骏麒(1998)棉花黄萎病菌株VD8外泌毒蛋白的生化特性.江苏农业学报14:126-128.
    陈旭升,黄骏麒(2000)棉花黄萎病菌致萎峰蛋白氨基酸组分及其有关生化特性分析.江苏农业学报16:10-14.
    戴广辉,刘俊芳(1989)棉花黄萎病抗病性鉴定新方法探讨.华北农学报4(4):92-97.
    狄佳春,陈旭升,刘剑光,肖松华,许乃银(2004)黄萎病发病级别对高品质棉渝棉1号的影响.江苏农业科学(1):32-34.
    窦非,谢维,董雪吟,徐贤秀(2000)抗菌肽CMIV末端结构对其活性的影响.中国科学C辑(生命科学)30(1):59-64.
    冯洁,陈其煐(1991)棉株体内几种生化物质与抗枯萎病之间关系的初步研究.植物病理学报21(4):291-297.
    顾本康,马存(1996)中国棉花抗病育种.江苏科学技术出版社.
    郭海军,黄国存(1995)黄萎病对棉花叶片SOD,POD酶活性和光合特性的影响.中国农业科学28:40-45.
    郝刚,施用晖,唐亚丽,乐国伟(2010)抗菌肽Buforin Ⅱ衍生物与大肠杆菌基因组DNA的作用机制.微生物学报50(3):328-333.
    简桂良,孙文姬,马存(2001)棉花黄萎病抗性鉴定新方法—无底塑钵菌液浇根法.棉花学报13:67-69.
    姜新(2007)两种杂合抗菌肽在毕赤酵母中的表达及活性测定.四川大学学报(自然科学版)44(3):673-678.
    蒋玉蓉,房卫平,祝水金,季道藩(2005)陆地棉植株组织结构和生化代谢与黄萎病抗性的关系.作物学报31:337-341.
    金莉莉(2009)东北林蛙皮抗菌肽及其生物学特性.中国医科大学.
    孔令甲,顾卫东(1996)湖北省棉花枯,黄萎病发生为害现状及防治对策.湖北植保(6):7-8.
    孔令甲.毛德新,李明福(1990)棉花黄萎病的发病程度与旬气温的关系.棉花病虫害综合防治及研究进展381-385.
    李国栋,钱承军,陆敏,孙睿华,黄青山(2006)一组人工合成抗菌肽的研究.微生物学报46(3):496-499.
    李妙,徐荣旗(1995)不同黄萎病级对棉花产量及纤维品质的影响.棉花学报7:189-192.
    李正理,李荣敖(1980)棉花黄萎病病叶解剖.植物学报22(1):11-15.
    刘凤权,胡白石(2005)棉花黄萎病菌毒素结合位点初探.棉花学报17:29-32.
    刘正坪,赵明敏,赵金焕,田维平,塔娜(2003)茄子黄萎病菌毒素对茄子叶片及愈伤组织细胞膜透性的影响.内蒙古农业大学学报24:1-4.
    刘正坪,赵明敏,周洪友(2003)茄子黄萎病菌毒素对茄子愈伤组织几种酶活性的影响.植物病理学报33:381-382.
    陆郝胜,胡念慈,吴龙元(1985)黄萎病发病时间对棉花产量的影响.中国棉花(4):45-47.
    陆家云(2001)植物病原真菌学.中国农业出版社.
    陆家云,佘长夫,鞠理红,方中达(1983)江苏省棉花黄萎病菌(Verticillium dahliae)致病力的分化.南京农业大学学报(1):36-43.
    吕金殿,甘莉,牛淑贞(1981)抗枯萎病棉花品种氨基酸分析.植物病理学报11(3):63-64.
    吕金殿,甘莉,牛淑贞,郭西风(1988)棉花黄萎病菌致萎毒素的初步研究.西北农业大学学报16:17-20.
    马存(2007)棉花枯萎病和黄萎病的研究.中国农业出版社.
    马平(2004)一种新的棉花黄萎病快速接种技术及其在病原菌致病力和寄主抗病性鉴定上的应用.植物病理学报34(6):536-541.
    马峙英,刘叔倩,王省芬,张桂寅,孙济中,刘金兰(2000)过氧化物酶同工酶与棉花黄萎病抗性的相关研究.作物学报26:431-437.
    潘凌子,方宏筠,李大力,王关林(2006)毒性小分子蜂毒肽基因的克隆修饰、融合载体构建及表达研究.辽宁师范大学学报(自然科学版)(3):340-343.
    石磊岩,孙文姬(1987)棉花抗黄萎病苗期鉴定方法.植物保护(1):42.
    田秀明(1995)山西棉花黄萎病菌致病力分化与其类型和生理的关系.植物保护21:8-10.
    吐尔逊江,李雪源,秦文斌,孙国清,莫明,艾仙涛(2006)新疆枯黄萎病重病田对棉花产量性状和品质的影响研究.中国棉花33:12-13.
    王关林,李大力,方宏筠(2001)蜂毒溶血肽前体蛋白cDNA的克隆及其融合蛋白的表达.微生物学报41:181-185.
    王建华,田子罡,杨雅麟,滕达(2007)具有高抑菌活性的新抗菌肽设计与合成.中国发明专利CN101319007.
    王省芬,马峙英(2002)一种新的棉花黄萎病抗性鉴定方法.棉花学报14:231-233.
    王秀青,苏春霞,周斌,曹瑞兵,陈溥言(2007)杂合抗菌肽CecA-Mag的人工合成及其在Pichia pastoris中的分泌表达.微生物学报47(1):75-78.
    王学德(2011)三系杂交棉——棉花细胞质雄性不育的研究与应用.科学出版社北京.
    吴也文,孙善康(1990)黄枯萎病对棉花种子品质的影响.棉花学报2(1):75-80.
    夏正俊,陈轶林(1994)棉花品种抗黄萎病性与体内生化成分相关分析.植物保护学报21:305-310.
    徐显(2004)棉花抗黄萎病育种研究现状及对策.河北农业科学8:95-97.
    杨之为,李君彦(1990)棉花黄萎病的产量损失和模型建立.植物病理学报20(1):73-78.
    杨之为,王汝贤(1993)棉花估黄萎病混生病田损失初步研究.中国棉花20:27-29.
    叶鹏盛,曾华兰,李琼芒,何炼(2005)棉花品种对枯黄萎病的抗性鉴定研究.中国棉花32:16-17.
    殷安亮,陆立华(2009)2007年棉花落叶型黄萎病在江苏射阳暴发原因分析.中国棉花35(12):13-15.
    张冬冬,王世英,郭晓军,姜军坡,刘慧娟,朱宝成(2009)一个棉花黄萎病抗菌肽基因25a2的克隆与表达.棉花学报21(5):346-350.
    张久刚,朱学范(1992)黄萎病对棉花产量损失的试验.山西农业科学(9):19-20.
    章如意(2010)江苏省棉花黄萎病菌致病力分化和分子检测.扬州大学.
    张绪振,张树琴,陈言棣,李庆基,陈壁,姚跃文(1981)我国棉花黄萎病菌“种”的鉴定.植物病理学报11:13-18.
    章元寿,顾本康(1991a)用棉花萎病菌毒素检测棉花抗病性的研究.植物保护17:2-4.
    章元寿,王建新(1984)棉花黄萎病菌毒素对棉花作用机理的初探.植物病理学报11:223-232.
    章元寿,王建新(1988)棉花黄萎病菌毒素产生条件的研究.南京农业大学学报11:57-61.
    章元寿,王建新,周明国(1991b)大丽轮枝菌毒素的多糖组份对棉花致萎作用的研究.菌物学报10(2):155-158.
    章元寿,王建新,周明国,刘经芬,方中达(1992)棉花黄萎病菌毒素对棉花作用机制的初步探讨.22(1):42.
    章元寿,王建新,方中达(1992)大丽轮枝菌毒素的脂肪组分对棉花致萎活性研究.菌物学报3:229-233.
    朱荷琴,宋晓轩(1994)不同抗性品种抗氧化系统对棉花黄萎病的反应.棉花学报6:256.
    朱荷琴-宋晓轩 (1999)棉花黄萎病菌安阳蓖系致病类型变异研究.棉花学报11(6):312-317.
    朱有勇, Lyon B (1999)大丽轮枝菌核糖体基因ITS区段的特异扩增.植物病理学报29:250-255.
    邹亚飞,简桂良,马存,石磊岩,王立平,刘慧君(2003)棉花黄萎病菌致病型的AFLP分析.植物病理学报33:135-141.
    邹亚飞,李荣华(2001)棉花黄萎病菌分子生物学研究新进展.棉花学报13:254-256.
    庄生仁.任福成(1999)黄萎病发病程度对棉花产量及其构成因素的影响效应.中国棉花26(3):19-22.
    左田夫(1995)棉花不同熟性品种黄萎病危害严重期对产量构成因子的影响.西北农业学报4:26-29.
    Aerts AM, Thevissen K, Bresseleers SM. Sels J, Wouters P, Cammue BP, Francois IE (2007) Arabidopsis thaliana plants expressing human beta-defensin-2 are more resistant to fungal attack:functional homology between plant and human defensins. Plant Cell Rep 26:1391-1398.
    Ajesh K, Sreejith K (2009) Peptide antibiotics:An alternative and effective antimicrobial strategy to circumvent fungal infections. Peptides 30:999-1006.
    Alan AR, Blowers A, Earle ED (2004) Expression of a magainin-type antimicrobial peptide gene (MSI-99) in tomato enhances resistance to bacterial speck disease. Plant Cell Rep 22:388-396.
    Andreu D, Ubach J, Boman A, Wahlin B, Wade D, Merrifield RB Boman HG. (1992) Shortened cecropin A-melittin hybrids significant size reduction retains potent antibiotic activity. FEBS Letters 296(2):190-194.
    Arce P, Moreno M, Gutierrez M, Gebauer M, Orto PD, Torres H, Acuna I, Oliger P, Venegas A, Jordana X, Kalazich J, Holuigue L (1999) Enhanced resistance to bacterial infection by Erwinia carotovora subsp. atroseptica in transgenic potato plants expressing the attacin or the cecropin SB-37 genes. Am J Potato Res 76:169-177.
    Tjamos EC, Beckman CH (1989) Vascular wilt diseases of plants:Basic studies and control. Springer-Verlag, Germany.
    Bejarano-alcazar J, Blanco-lopez MA, Melero-vara JM, Enez-diaz JRM (1997) The influence of Verticillium wilt epidemics on cotton yield in southern Spain. Plant Pathol 46:168-178.
    BELL AA (1967) Formation of gossypol in infected or chemically irritated tissues of Gossypium species. Phytopathology 57:759-764.
    Bradford M.M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254.
    Breukink E, de Kruijff B (2006) Lipid II as a target for antibiotics. Nat Rev Drug Discov 5(4): 321-332.
    Brogden KA (2005) Antimicrobial peptides:pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238-250.
    Brotman Y, Makovitzki A, Shai Y, Chet I, Viterbo A (2009) Synthetic ultrashort cationic lipopeptides induce systemic plant defense responses against bacterial and fungal pathogens. App1 Environ Microb 75:5373-5379.
    Bugbee WM, Sappenfield WP (1970) Effect of Verticillium wilt on cotton yield, fiber properties and seed quality. Crop Sci 10:649-653.
    Carder JH, Barbara DJ (1991) Molecular variation and restriction-fragment-length-polymorphisms (RFLPs) within and between 6 species of Verticillium, Mycol Res 95:935-942.
    Cary JW, Rajasekaran K. Jaynes JM, Cleveland TE (2000) Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. Plant Sci 154:171-181.
    Castro MS, Ferreira T, Cilli EM, Crusca E, Mendes-Giannini M, Sebben A, Ricart CA, Sousa MV, Fontes W (2009) Hylin al, the first cytolytic peptide isolated from the arboreal South American frog Hypsiboas albopunctatus ("spotted treefrog"). Peptides 30:291-296.
    Chakrabarti A, Ganapathi TR, Mukherjee PK, Bapat VA (2003) MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta 216:587-596.
    Coca M, Penas G, Gomez J, Campo S, Bortolotti C, Messeguer J, San Segundo B (2006) Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta 223:392-406.
    Cole AM, Hong T, Boo LM,Nguyen T, Zhao CQ, Bristol G, Zack JA, Waring AJ, Yang OO, Lehrer RI (2002) Retrocyclin:A primate peptide that protects cells from infection by T- and M-tropic strains of HIV-1. PNatl Acad Sci USA 9(4):1813-1818.
    Collado-Romero M, Berbegal M, Jimenez-Diaz RM, Armengol J, Mercado-Blanco J (2009) A PCR-based 'molecular tool box'for in planta differential detection of Verticillium dahliae vegetative compatibility groups infecting artichoke. Plant Pathol 58:515-526.
    Dan H. Ali-Khan ST, Robb J (2001) Use of quantitative PCR diagnostics to identify tolerance and resistance to Verticillium dahliae in potato. Plant Dis 85:700-705.
    Dang XL, Tian JH. Yang WY, Wang WX, Ishibashi J, Asaoka A. Yi HY, Li YF, Cao Y, Yamakawa M, Wen SY (2009) Bactrocerin-1:a novel inducible antimicrobial peptide from pupae of oriental fruit fly Bactrocera dorsalis Hendel. Arch Insect Biochem Physiol 71:117-129.
    Devay JE, Forreste LL, Garber RH. Butterfield EJ (1974) Characteristics and concentration of propagules of Verticillium dahliae in air-dried field soils in relation to prevalence of Verticillium wilt in cotton. Phytopathology 64(1):22-29.
    DeGray G, Rajasekaran K, Smith F. San ford J, Daniel1 H (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127:852-862.
    de Beer A, Vivier MA (2008) Vv-AMP1, a ripening induced peptide from Vitis vinifera shows strong antifungal activity. BMC Plant Biol 8:1-16.
    de Vendomois JS, Roullier F, Cellier D, Seralini GE (2010) Debate on GMOs health risks after statistical findings in regulatory tests. Int J Biol Sci 6(6):590.
    Du T, Wang Y, Hu QX, Chen J, Liu S, Huang WJ, Lin ML (2005) Transgenic Paulownia expressing shiva-1 gene has increased resistance to Paulownia witches'broom disease. J Integr Plant Biol 47:1500-1506.
    Dubery IA, Meyer R (1996) Specific binding of a Verticillium dahliae phytotoxin to protoplasts of cotton, Gossypium hirsutum. Plant Cell Rep 15:777-780.
    El-Zik KM (1985) Integrated control of Verticillium wilt of cotton. Plant Dis 69:1025-1032.
    Emani C, Garcia JM, Lopata-Finch E, Pozo MJ, Uribe P, Kim DJ, Sunilkumar G, Cook DR. Kenerley CM, Rathore KS (2003) Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnol J 1(5):321-336.
    Fahleson J, Hu Q, Dixelius C (2004) Phylogenetic analysis of Verticillium species based on nuclear and mitochondrial sequences. Arch Microbiol 181:435-442.
    Ferre R, Badosa E, Feliu L, Planas M, Montesinos E, Bardaji E (2006) Inhibition of plant-pathogenic bacteria by short synthetic cecropin a-melittin hybrid peptides. Appl Environ Microb 72:3302-3308.
    Fontana R, Mendes MA, de Souza BM, Konno K, Cesar LM, Malaspina O, Palma MS (2004) Jelleines:a family of antimicrobial peptides from the Royal Jelly of honeybees (Apis mellifera). Peptides 25(6):919-928.
    Gaunt RE (1995) The relationship between plant disease severity and yield. Annu Rev Phytopathol 33:119-144.
    Gopal R, Park SC, Ha KJ, Cho SJ, Kim SW, Song PI, Nah JW, Park YK, Hahm KS (2009) Effect of Leucine and Lysine substitution on the antimicrobial activity and evaluation of the mechanism of the HPA3NT3 analog peptide. J Peptide Sci 15:589-594.
    Gottler LM, Ramamoorthy A (2009) Structure, membrane orientation, mechanism, and function of pexiganan--a highly potent antimicrobial peptide designed from magainin. Biochim Biophys Acta 1788(8):1680-1686.
    Hawes MC (1983) Technique for using isolated corn root cap cells in a simple, quantitative assay for the pathotoxin produced by Helminthosporium-Maydis race-t. Phytopathology 73(8):1184-1187.
    Higgins JA, Nasarabadi S, Karns JS, Shelton DR, Cooper M, Gbakima A, Koopman RP (2003) A handheld real time thermal cycler for bacterial pathogen detection. Biosensors and Bioelectronics 18:1115-1123.
    Hu X, Nazar RN, Robb J (1993) Quantification of Verticillium biomass in wilt disease development. Physiol Mol Plant P 42:23-36.
    Hultmark D, Engstrom A, Bennich H, Kapur R, Boman HG (1982) Insect immunity-isolation and structure of cecropin-d and 4 minor antibacterial components from cecropia pupae. Eur J Biochem 127:207-217.
    Inderbitzin P, Davis RM, Bostock RM, Subbarao KV (2011) The ascomycete Verticillium longisporum is a hybrid and a plant pathogen with an expanded host range. PLoS One 6:e18260.
    Isaac I (1967) Speciation in Verticillium. Annu Rev Phytopathol 5:201.
    Jang WS, Kim HK. Lee KY (2006) Antifungal activity of synthetic peptide derived from halocidin. antimicrobial peptide from the tunicate, Halocynthia aurantium. FEBS Lett 580(5): 1490-1496.
    Jiang Z, Kullberg BJ, van der Lee H, Vasil AI, Hale JD, Mant CT, Hancock REW, Vasil ML, Netea MG, Hodges RS (2008) Effects of hydrophobicity on the antifungal activity of alpha-helical antimicrobial peptides. Chem Biol Drug Des 72(6):483-495.
    Jirgensons B (1976) Conformational transitions of non-helical proteins effected by dodecyl sulfate. Circular dichroism of alphal-acid glycoprotein, Bence Jones protein, carbonic anhydrase B, deoxyribo-nuelease, pepsinogen, and plasminogen. BBA-Proteins Proteom 434:58-68.
    Jung HH, Chae SW, Jung SK (2003) Expression of a cathelicidin antimicrobial peptide is augmented in cholesteatoma. Laryngoscope 113(3):432-435.
    Kawchuk LM. Hachey J, Lynch DR, Kulcsar Frank, van Rooijen G, Waterer DR. Robertson A. Kokko E, Byers R, Howard RJ, Fischer R, Prufer D (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. PNatl Acad Sci USA 98(11):6511-6515.
    Keen NT, Long M, Erwin DC (1972) Possible involvement of a pathogen-produced protein-lipopolysaccharide complex in Verticillium wilt of cotton. Physiol Plant Pathol 2:317-331.
    Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. BBA-Proteins Proteom 1751:119-139.
    Kim S, Kim SS, Lee BJ (2005) Correlation between the activities of alpha-helical antimicrobial peptides and hydrophobicities represented as RP HPLC retention times. Peptides 26(11): 2050-2056.
    Klosterman SJ, Atallah ZK. Vallad GE. Subbarao KV (2009) Diversity, pathogenicity, and management of Verticillium species. Annu Rev Phytopathol 47:39-62.
    Klosterman SJ, Subbarao KV, Kang S, Veronese P, Gold SE, Thomma BPHJ, Chen ZH, Henrissat B, Lee YH, Park J, Garcia-Pedrajas MD, Barbara DJ, Anchieta A, de Jonge R, Santhanam P, Maruthachalam K, Atallah Z, Amyotte SG, Paz Z, Inderbitzin P, Hayes RJ, Heiman Dl, Young S, Zeng QD, Engels R, Galagan J, Cuomo CA, Dobinson KF, Ma LJ (2011) Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathog 7(7):e1002137. doi:10.1371/journal.ppat.1002137.
    Koike M, Watanabe M, Nagao H, Ohshima S (1995) Molecular analysis of Japanese isolates of Verticillium-dahliae and V-albo-atrum. Lett Appl Microbiol 21:75-78.
    Laouane H, Lazrek HB, Sedra MH (2011) Synthesis and toxicity evaluation of cinnamyl acetate:a new phytotoxin produced by a strain of Verticillium dahliae pathogenic on olive tree. Inter J Agricul Biol 13(3):444-446.
    Leeuw ED, Li CQ, Zeng PY, Li C, de Buin MD, Lu Wei-Yue, Breukink E, Lu WY (2010) Functional interaction of human neutrophil peptide-1 with the cell wall precursor lipid II. FEBS Letters 584(8):1543-1548.
    LI KN, Rouse DI, German TL (1994) PCR primers that allow intergeneric differentiation of ascomycetes and their application to Verticillium spp. App1 Environ Microb 60(12): 4324-4331.
    Li Q, Lawrence CB, Xing H, Babbitt RA, Bass WT, Maiti IB, Everett NP (2001) Enhanced disease resistance conferred by expression of an antimicrobial magainin analog in transgenic tobacco. Planta 212:635-639.
    Li YZ, Zheng XH, Tang HL, Zhu JW, Yang JM (2003) Increase of beta-1,3-glucanase and chitinase activities in cotton callus cells treated by salicylic acid and toxin of Verticillium dahliae. Acta Botanica Sinica 45:802-808.
    Liang H, Catranis CM, Maynard CA, Powell WA (2002) Enhanced resistance to the poplar fungal pathogen, Septoria musiva, in hybrid poplar clones transformed with genes encoding antimicrobial peptides. Biotechnol Lett 24:383-389.
    Lievens B, Brouwer M, Vanachter AC, Levesque C, Cammue BP, Thomma BP (2003) Design and development of a DNA array for rapid detection and identification of multiple tomato vascular wilt pathogens. Ferns Microbiol Lett 223:113-122.
    Liu LH, Xu KJ, Wang HY, Jeremy TPK, Fan WM, Venkatraman SS, Li LJ, Yang Yi-Yan (2009) Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol 4(7):457-463.
    Liu Q, Ingersoll J. Owens S, Meng R, Hammerschlag F (2001) Response of transgenic Royal Gala apple shoots carrying a modified cecropin MB39 gene, to Erwinia amylovora. Plant Cell Rep 20:306-312.
    Loose C, Jensen K, Rigoutsos I, Stephanopoulos G (2006) A linguistic model for the rational design of antimicrobial peptides. Nature 443:867-869.
    Lopez-Garcia B, Moreno AB, San Segundo B. De Los RV, Manning JM, Gavilanes JG, Martinez-del-Pozo A (2010) Production of the biotechnologically relevant AFP from Aspergillus giganteus in the yeast Pichia pastoris. Protein Expres Purif 70:206-210.
    Mace ME (1983) Elicitation of accumulation of terpenoid aldehyde phytoalexins in Verticillium-dahliae-infected cotton. New Phytol 95:115.
    Marcos JF, Munoz A, Perez-Paya E, Misra S, Lopez-Garcia B (2008) Identification and rational design of novel antimicrobial peptides for plant protection. Annu Rev Phytopathol 46: 273-301.
    Markakis EA, Tjamos SE, Antoniou PP, Paplomatas EJ, Tjamos EC (2009) Symptom development, pathogen isolation and Real-Time QPCR quantification as factors for evaluating the resistance of olive cultivars to Verticillium pathotypes. Eur J Plant Pathol 124:603-611.
    Matsumoto K, Orikasa Y, Ichinohe K, Hashimoto S, Ooi T, Taguchi S (2010) Flow cytometric analysis of the contributing factors for antimicrobial activity enhancement of cell-penetrating type peptides:Case study on engineered apidaecins. Biochem Bioph Res Co 395:7-10.
    Matsuzaki K, Murase O, Fujii N, Miyajima K (1995) Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore. Biochemistry-Us 34:6521-6526.
    Matsuzaki K, Murase O. Miyajima K (1995) Kinetics of pore formation by an antimicrobial peptide, magainin 2. in phospholipid bilayers. Biochemistry-Us 34:12553-12559.
    Mattice WL, Riser JM, Clark DS (1976) Conformational properties of the complexes formed by proteins and sodium dodecyl sulfate. Biochemistry 15:4264-4272.
    Melo MN, Ferre R, Castanho M (2009) Antimicrobial peptides:linking partition, activity and high membrane-bound concentrations. Nat Rev Microbiol 7:245-250.
    Mentag R, Luckevich M, Morency MJ. Seguin A (2003) Bacterial disease resistance of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1. Tree Physiol 23:405-411.
    Mercado-Blanco J, Rodriguez-Jurado D, Parrilla-Araujo S. Jimenez-Diaz RM (2003) Simultaneous detection of the defoliating and nondefoliating Verticillium dahliae pathotypes in infected olive plants by duplex, nested polymerase chain reaction. Plant Dis 87(12): 1487-1494.
    Mesnage R, Clair E, Gress S (2011) Cytotoxicity on human cells of Cry1Ab and Cry1Ac Bt insecticidal toxins alone or with a glyphosate-based herbicide. J Appl Toxicol DOI 10.1002/jat.2712.
    Messner R, Schweigkofler W, Ibl M, Berg G, Prillinger H (1996) Molecular characterization of the plant pathogen Verticillium dahliae Kleb using RAPD-PCR and sequencing of the 18S rRNA-gene. J Phytopathol 144:347-354.
    Mobius N, Hertweck C (2009) Fungal phytotoxins as mediators of virulence. Curr Opin Plant Biol 12:390-398.
    Munoz A, Lopez-Garcia B, Marcos JF (2006) Studies on the mode of action of the antifungal hexapeptide PAF26. Antimicrob Agents Chemother 50:3847-3855.
    Munoz A, Marcos JF (2006) Activity and mode of action against fungal phytopathogens of bovine lactoferricin-derived peptides. JAppl Microbiol 101:1199-1207.
    Murray F, Llewellyn D, McFadden H, Last D, Dennis ES, Peacock WJ (1999) Expression of the Talaromyces flavs glucose oxidase gene in cotton and tobacco reduces fungal infection, but is also phytotoxic. Mol Breeding 5:219-232.
    Nachmias A, Orenstein J, Tal M, Goren M (1990) Reactions to a Verticillium-dahliae phytotoxin in tissue-cultures derived from susceptible and tolerant potato. Plant Sci 68:123-130.
    Nazar RN (1991) Potential use of PCR-amplified ribosomal intergenic sequences in the detection and differentiation of Verticillium wilt pathogens. Physiol Mol Plant P 39:1-11.
    Neuzil P, Novak L, Pipper J, Lee S, Ng LFP, Zhang C (2010) Rapid detection of viral RNA by a pocket-size real-time PCR system. Lab Chip 10:2632-2634.
    Oh JE, Hong SY, Lee K.H (1999) Structure-activity relationship study:short antimicrobial peptides. JPept Res 53:41-46.
    Oktay E, Volkan S, Nedim O,Taner B, Ilkay Y, Aydin U (2006) The effects of Verticillium wilt (Verticillium dahliae kleb.) on cotton yield and fiber quality. Asian J Plant Sci 5(5):867-870.
    Osusky M, Zhou G, Osuska L, Hancock RE, Kay WW, Misra S (2000) Transgenic plants expressing cationic peptide chimeras exhibit broad-spectrum resistance to phytopathogens. Nat Biotechnol 18:1162-1166.
    Parkhi V, Kumar V, Campbell L, Bell A, Shah J, Rathore K (2010) Resistance against various fungal pathogens and reniform nematode in transgenic cotton plants expressing Arabidopsis NPR1. Transgenic Res 19:959-975.
    Paplomatas, EJ, Tzalavaras S, DeVay JE (2000) Use of Verticillium tricorpus as a biocontrol agent of Rhizoctonia solani on cotton seedlings. Advances in Verticillium research and disease management. Amer Phytopathological Society.
    Pegg GFAB (2002) Verticillium Wilts. CABI Publishing:Wallingford, UK.
    Perez-Aites E, Garcia-Pedrajas MD, Bejarano-Alcazar J, Jimenez-Diaz RM (2000) Differentiation of cotton-defoliating and nondefoliating pathotypes of Verticillium dahliae by RAPD and specific PCR analyses. Eur J Plant Pathol 106:507-517.
    Powell WA. Catranis CM, Maynard CA (1995) Synthetic antimicrobial peptide design. Mol Plant Microbe Interact 8:792-794.
    Power J B. Cocking EC (1970) Isolation of leaf protoplasts:macromolecule uptake and growth substance response. J Exp Bot 21(66):64-70.
    Pramateftaki PV, Antoniou PP, Typas MA (2000) The complete DNA sequence of the nuclear ribosomal RNA gene complex of Verticillium dahliae:intraspecific heterogeneity within the intergenic space region. Fungal Genet Biol 29:127-134.
    Rajasekaran K, Cary J, Cleveland T (2006) Prevention of preharvest aflatoxin contamination through genetic engineering of crops. Mycotoxin Research 22:118-124.
    Rajasekaran K. Cary JW, Chen Z, Brown RL, Cleveland TE (2008) Antifungal traits of a 14 kda maize kernel trypsin inhibitor protein in transgenic cotton. J Crop lmprovemen 22:1-16.
    Rajasekaran K, Cary JW, Cotty PJ, Cleveland TE (2008) Development of a GFP-expressing Aspergillus flavus strain to study fungal invasion, colonization, and resistance in cottonseed. Mycopathologia 165:89-97.
    Rajasekaran K, Cary JW, Jaynes JM, Cleveland TE (2005) Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants. Plant Biotechnol J 3:545-554.
    Rajasekaran K, Stromberg KD, Cary JW. Cleveland TE (2001) Broad-spectrum antimicrobial activity in vitro of the synthetic peptide D4E1. J Agr Food Chem 49:2799-2803.
    Ramsay JR, Multani DS. Lyon BR (1996) RAPD-PCR identification of Verticillium dahliae isolates with differential pathogenicity on cotton. Aust J Agr Res 47:681-693.
    Rao AG (1999) Conformation and antimicrobial activity of linear derivatives of tachyplesin lacking disulfide bonds. Arch Biochem Biophys 361:127-134.
    Rao KS, Prakash AH (1995) A simple method for the isolation of plant protoplasts. J Biosci 20(5):645-655.
    Rasmussen U, Bojsen K, Collinge DB (1992) Cloning and characterization of a pathogen-induced chitinase in Brassica napus. Plant Mol Biol 20:277-287.
    Rathinakumar R, Walkenhorst WF, Wimley WC (2009) Broad-Spectrum antimicrobial peptides by rational combinatorial design and high-throughput screening:the importance of interfacial activity. J Am Chem Soc 131(22):7609-7617.
    Ringstad L (2009) Interaction Between Antimicrobial Peptides and Phospholipid Membranes. Uppsala university.
    Rozek A, Friedrich CL, Hancock RE (2000) Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry-US 39(51):15765-15774.
    Schagger H (2006) Tricine-SDS-PAGE. Nat Protoc 1(1):16-22.
    Schnathorst WC (1969) A severe form of Verticillium albo-atvum in Gossypium barbadense in Peru. Plant Dis Rep 53:149-150.
    Schnathorst WC (1973) Additional strains of Verticillium dahliae from cotton in California. In: Conf National Cotton Council of America, Proc Beltwide Cotton Prod Res (pp 22-23) Memphis, TN.
    Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, Jansen A, Nielsen AK, Mygind PH, Raventos DS, Neve S, Ravn B, Bonvin AMJJ, De Maria L, Andersen AS, Gammelgaard LK, Sah1 H, Kristensen H (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid Ⅱ. Science 328:1168-1172.
    Selsted ME, Ouellette AJ (2005) Mammalian defensins in the antimicrobial immune response. Nat Immunol 6(6):551-557.
    Sharma A, Sharma R, Imamura M, Yamakawa M, Machii H (2000) Transgenic expression of cecropin B. an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice. Febs Lett 484:7-11.
    Smit F, Dubery IA (1997) Cell wall reinforcement in cotton hypocotyls in response to a Verticillium dahliae elicitor. Phytochemistry 44(5):811-815.
    Stotz HU. Spence B, Wang YJ (2009) A defensin from tomato with dual function in defense and development. Plant Mol Biol 71:131-143.
    Sun YD, Fu LD, Jia YP. Du XJ, Wang Q, Wang YH, Zhao XF, Yu XQ, Wang JX (2008) A hepatopancreas-specific C-type lectin from the Chinese shrimp Fenneropenaeus chinensis exhibits antimicrobial activity. Mol Immunol 45:348-361.
    Svabova L. Lebeda A (2005) In vitro selection for improved plant resistance to toxin-producing pathogens. J Phytopathol 153:52-64.
    Tailor RH, Acland DP, Attenborough S. Cammue BP, Evans IJ, Osborn RW, Ray JA, Rees SB, Broekaert WF (1997) A novel family of small cysteine-rich antimicrobial peptides from seed of Impatiens balsamina is derived from a single precursor protein. J Biol Chem 272: 24480-24487.
    Talboys PW (1958) Association of tylosis and hyperplasia of the xylem with vascular invasion of the hop by Verticillium albo-atrum. Transactions of the British Mycological Society 41:249-260.
    Tavares LS, de O. Santos M, Viccini LF, Moreira JS. Miller RNG, Franco OL (2008) Biotechnological potential of antimicrobial peptides from flowers. Peptides 29(10): 1842-1851.
    Thorstholm L, Craik DJ (2011) Discovery and applications of naturally occurring cyclic peptides. Drug Discovery Today:Technologies DOI:10.1016/j.ddtec.2011.07.005.
    Tohidfar M, Mohammadi M, Ghareyazie B (2005) Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a heterologous bean chitinase gene. Plant Cell Tiss Org 83:83-96.
    Tsai CW, Hsu NY, Wang CH, Lu CY. Chang Y, Tsai HH. Ruaan RC (2009) Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. J Mol Biol 392(3):837-854.
    Vance CP, Kirk TK. Sherwood RT (1980) Lignification as a mechanism of disease resistance. Annu Rev Phytopathol 18:259-288.
    Verdon J, Falge M, Maier E, Bruhn H, Steinert M, Faber C, Benz R, Hechard Y (2009) Detergent-like activity and alpha-helical structure of warnericin RK, an anti-Legionella peptide. Biophys J 97:1933-1940.
    Wang YQ, Chen DJ, Wang DM, Huang QS, Yao ZP, Liu FJ, Wei XW, Li RJ, Zhang ZN, Sun YR (2004) Over-expression of Gastrodia anti-fungal protein enhances Verticillium wilt resistance in coloured cotton. Plant Breeding 123(5):454-459.
    Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531-6535.
    Yevtushenko DP, Misra S (2007) Comparison of pathogen-induced expression and efficacy of two amphibian antimicrobial peptides, MsrA2 and temporin A, for engineering wide-spectrum disease resistance in tobacco. Plant Biotechnol J 5:720-734.
    Yevtushenko DP, Romero R, Forward BS, Hancock RE, Kay WW, Misra S (2005) Pathogen-induced expression of a cecropin A-melittin antimicrobial peptide gene confers antifungal resistance in transgenic tobacco. J Exp Bot 56:1685-1695.
    Ye XY, Ng TB, Rao PF (2002) Cicerin and arietin, novel chickpea peptides with different antifungal potencies. Peptides 23(5):817-822.
    Yi JY, Seo HW, Yang MS, Robb EJ, Nazar RN, Lee SW (2004) Plant defense gene promoter enhances the reliability of shiva-1 gene-induced resistance to soft rot disease in potato. Planta 220:165-171.
    Yuan HY, Yao LL, Jia ZQ, Li Y, Li YZ (2006) Verticillium dahliae toxin induced alterations of cytoskeletons and nucleoli in Arabidopsis thaliana suspension cells. Protoplasma 229:75-82.
    Zaki Al, Keen NT, Sims JJ, Erwin DC (1972) Vergosin and hemigossypol, antifungal compounds produced in cotton plants inoculated with Verticillium-albo-atrum. Phytopathology 62:1398-1401.
    Zhang HP, Wang XD. Shao MY, Yuan SN, Ni M (2010) Expression of alfalfa antifungal peptide gene and enhance of resistance to Verticillium dahliae in upland cotton. Acta Agr Scand B-S P 60(1):95-100.
    Zhang J, Wu X, Zhang SQ (2008) Antifungal mechanism of antibacterial peptide, ABP-CM4, from Bombyx mori against Aspergillns niger. Biotechnol Lett 30:2157-2163.
    Zhen XH, Li YZ (2004) Ultrastructural changes and location of beta-1,3-glucanase in resistant and susceptible cotton callus cells in response to treatment with toxin of Verticillium dahliae and salicylic acid. J Plant Physiol 161:1367-1377.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700