1,2-环己二醇脱氢制备邻苯二酚的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Studies on the Dehydrogenization of 1, 2-cyclohexanediol to Synthesize Catechol on Catalysts
  • 作者:王朝进
  • 论文级别:硕士
  • 学科专业名称:化学工艺
  • 学位年度:2003
  • 导师:蒋登高 ; 章亚东
  • 学科代码:081702
  • 学位授予单位:郑州大学
  • 论文提交日期:2003-05-20
摘要
邻苯二酚作为重要的有机中间体,广泛地应用于医药,农药,香料,化学助剂等方面,国内对其需求很大,但主要依赖于进口。因此有必要对邻苯二酚的合成方法进行研究。我们参考了国内外研究进展,同时考虑到自身的原料优势,选用了由1,2—环己二醇催化脱氢制备邻苯二酚的工艺路线。
     本工艺路线的关键步骤是脱氢催化剂的选择,活性较好的脱氢催化剂有Pd、Pt、Ni等,考虑到催化剂的制备成本,选定了Ni作为脱氢催化剂活性组份。
     首先对催化剂的载体进行了考察。通过对比实验,选定了活性碳作为催化剂的载体。以活性炭为载体,用普通浸渍法制成的催化剂效果较好。
     接着探讨了不同助剂对催化剂性能的影响,发现了碱金属Na、K等有助于提高催化剂的选择性;同时还发现金属Pd、Sn、Cu等更能提高催化剂的选择性。最后选定了Na和Sn作为助催化剂,添加量分别为w(Na),2% w(Sn),1%。同时还对干燥过程的影响进行了探讨,采用了分阶段逐步干燥的方式。
     在以上实验讨论的基础上,用均匀设计的方法对催化剂制备的条件进行了优化。分析比较了各因素的影响,选定Ni含量,焙烧温度,焙烧时间,活化温度,活化时间,H_2用量等六个因素作为考察因素。对均匀实验的结果用程序进行了回归分析处理,发现Ni含量和焙烧温度的影响最大。接着采用了单因素实验对这两个因素进行了重点考察。通过有关实验,得到催化剂制备的较优条件为:w(Ni),12% w(Na),2% w(Sn),1%;焙烧温度673k,焙烧时间3h;还原温度643k,还原时间6h,H_2用量30ml/min。
     本文还对邻苯二酚的制备工艺条件进行了优化。利用单因素实验对催化剂的颗粒度、载气流量、反应温度、以及催化剂负荷进行了考察。确定了较佳的工艺条件为:催化剂粒径20~40目,反应温度623k,载气流量20ml/min,进料量0.2ml/min。在该工艺条件下,采用本文制备的催化剂,邻苯二酚的收率可达70%左右。
As an important organic intermediate, catechol is used extensively in many fields, such as medicine, pesticide, spice and chemical assistant. The domestic demand for it is so large that a majority of it need be imported to meet the demand. So, it is necessary for us to study the synthesis technology of catechol. Taking advantage of the abundant crude material of the Shen Ma Group and referencing a lot of contribution home and abroad, we put forwards a new technology route of dehydrogenization of 1,2-cyclohexanediol to catalyze the synthesis of catechol.
    The key to dehydrogenize of 1,2-cyclohexanediol to synthesize catechol is how to produce an appropriate catalyst. Platinum metals, palladium, nickel and so on are found having good performances in the literatures. But the cost of platinum and palladium are too high. Considered this, nickel is selected to be the active component in the catalyst.
    At first, after doing some contrast experiments among different catalyst carriers and preparation methods, we find that catalysts prepared by the method of precipitation on activated carbon which is served as catalyst carrier, the catalyst activity is higher, and selectivity is better.
    Then, we study the influence of different assist catalyst on catalyst activity and selectivity. We find that alkali metal addition can raising selectivity of the catalyst obviously. At the same time, the metals of palladium, copper and tin are found that they can also improve the selectivity. So, natrium and tin are select to be assist catalyst, the ratio of them is as followed: w(Na),2% and w(Sn),l %. At the same time, we discussed the step of drying how to influence the reaction. The grading drying method was determined.
    In the light of the above information, we adopt the method of homogeneous design to optimize the condition of producing catalyst. Several influencing factors are analyzed and compared, which are the addition amount of Ni, temperature of calcinations, time of calcinations, temperature of activation, time of activation, the velocity of H2. According to the coefficients in the equation of regression, the addition of nickel and temperature of calcinations have the greatest effect. As a result, these two factors are studied. Through single element experiment, the factors are determined as followed: w(Ni),12% w(Na),2% w(Sn),1%; temperature of calcinations is 673k, time of calcinations is 3 h; temperature of deoxidation is 643k, time of deoxidation is 6h, quantity of gas in deoxidation is 30ml/min, the result is the best.
    Afterward, the technological conditions using selected catalyst is optimized.. Some aspects are discussed, such as graininess of catalyst, flow of carrier gas, reacting temperature, and load of catalyst, using single element experiment. The optimum conditions are as follows: graininess of catalyst is 20-40 mesh, velocity of
    
    
    
    carrier gas is 20 ml/min, velocity of reacting liquid is 0.2 ml/min, reacting temperature is 623k. Under the condition, the yield can exceed 70%.
引文
[1] 王景明.邻苯二酚的应用及合成方法探析[J].河北化工,1997,4:46-48.
    [2] 化工产品总集[M].上海,科学技术出版社,300.
    [3] 魏文得.有机化工原料大全[M](第二版,下).北京,化学工业出版社,1989:310—317.
    [4]马文展,刚典臣,胡建.邻苯二酚合成研究进展[J].湖北化工,1997,4:1-3.
    [5]于剑峰,吴通好.邻苯二酚与对苯二酚的生产与研究现状[J].精细石油化工,1997,11(6):28-36.
    [6] 汪宝和,刘邦孚.邻苯二酚的合成及研究进展[J].化工进展,1999,1:23—25.
    [7] 于秀霞,杨建春.邻苯二酚的合成[J].江苏化工,1999,4:24-25.
    [8] 刘春涛,任桂兰,马荣华.杂多酸(盐)在苯酚羟基化反应中的催化活性[J].齐齐哈尔大学学报,2000,12(4):54-56.
    [9] 宋健,王军波,鹿明等.钛硅分子筛应用于苯二酚合成的研究[J].化学工业与工程,2002,4(2):159—162.
    [10] 徐成华,吕绍洁,邱发礼.气固相法合成Ti-ZSM-5催化苯酚羟基化的研究[J].石油与天然气化工,2000,6:200-204.
    [11] 邓国才,徐莉,李梦青等.苯酚在Ln-ZrO_2催化剂上直接氧化制取邻苯二酚[J].中国稀土学报,1997,3:77-79.
    [12] 李莉,邓国才,陈荣悌.环己二醇脱氢制邻苯二酚研究进展[J].精细石油化工.1999,3(2):47-51.
    [13] MatsucKa, KazuyuKi.Manufacture of catechol and its derivatives. JP 03227946(1991-227946).
    [14] Sarylova M.E, MishchenKoA.P, Gryaznov V.M.IANSSSRSeriya KhimichesKaya, 1997, 430-431.
    [15] Mitsubishi Chemical Industries Co., Ltd.Catechol. JP 1983-55439.
    [16] Mitsubishi Chemical Industries Co., Ltd.Catechol. JP 1983-67636.
    [17] MatsuoKa, KazuyuKi;Tagawa,Kunio.Preparation of dihydroxybenzenes. JP 0426641.
    [18] Bassus.J,Lamartine.R,Lanteri.P .etc.Aromatization of trans-cyclohexane- 1,2-diol to pyrocatechol. New J.Chem. 1993,17(6):413-420(Fr).
    [19] 熊前政,刘智凌,陈明等.1,2—环己二醇气相催化脱氢制备邻苯二酚的研究[J].精细化工,2001,6:319—320.
    [20] 刘智凌,杨华,陈明.合成邻苯二酚的催化剂的制备及应用方法.CN1249962A(2000,4).
    [21] D'yaKonov.A.Yu; StytsenKo.V.D;Nizova.S.A.KinetKatal.etc.Dehydrogenation of trans-cyclohexane- 1,2-diol to pycatechol on metal-containing catalysts..selection of catalytic composition. D'yaKonov. A.Yu; StytsenKo.V.D; Nizova.S.A.etc. Kinet. Katal.1984,25(2):489-492(Russ).
    [22] RozovsKKi.A. Ya; StytsenKo.V.D; Nizova. S.A.etc. Pyrocatechol.DD 160149.
    [23] Korytnyi E.F,Vartapetov M.A,Nizova S.A.Phase composition and aromatizing activity of a nicKel catalyst in dehydrogenation of 1,2-cyclohexanediol .NeftiKhimiya, 1988, 29(2):203-206.
    [24] Anisimov.V.V;Vartapetov.M.A;Nizova.S.A.etc.Phase-energy heterogeneity of the
    
    surface of a nicKel catalyst for dehydrogenation of 1,2-cyclohexanediol to catechol.Zh.PriKI.Khim. 1989, 62(4), 808-813(Russ).
    [25] 孙志强.邻苯二酚的生产方法.CN 1160703A(1997,10).
    [26] 崔小明.邻苯二酚市场空间大[J].中国石油化工,2000,9.
    [27] 丘星初,陈华香,丘山.钯—镍镀液中的钯的光度测定[J].电镀与精饰1999,21(6):29-30.
    [28] 朱洪法.催化剂载体[M].北京,化学工业出版社1994:129-415
    [29] 炭素材料学会编[日].活性碳基础与应用[M].高尚愚 陈维译.北京,中国林业出版社 1984:24-66
    [30] M.M.Dubinin, Quart. Rev. 1995, 9:101
    [31] M.M.Dubinin, Chemistry and Physics of Carbon. 1966, 2:51
    [32] 伊元根.多相催化剂的研究方法[M].北京,化学工业出版社,1988:223-229
    [33] 尾崎萃,田丸谦三,田不浩三等[日].催化剂手册翻译小组译.催化剂手册[M].北京,化学工业出版社1982:600-604
    [34] 赵九生 时其昌 马福善等.催化剂生产原理[M].北京,科学出版社 118-180
    [35] B.德尔蒙[比].催化剂的制备[Ⅱ].北京,化学工业出版社 241-254
    [36] 邓存.助剂对负载型镍催化剂重整活性和抗积炭性能的影响[J].燃料化学学报.2000,28(2):124-128
    [37] B.德尔蒙[比].催化剂的制备[Ⅰ],上册[M].北京,化学工业出版社230-231
    [38] 方开泰.均匀设计与均匀设计表[M].北京,科学出版社,1994:11-16
    [39] 陈久宇 林见.观测数据的处理方法[M].上海,上海交通大学出版社,1987:246-338
    [40] 吴指南.基本有机化工工艺学[M].北京,化学工业出版社,1979:168
    [41] 周游.化学反应器分析[M].北京,烃加工出版社,1986:302

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700