染液中染料组分的浓度分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分光光度法具有灵敏度高、选择性较好、测定快速,仪器价格较低、使用面广等特点,是染色工作者测定染料浓度所用的基本方法,也是目前最具可行性的在线染料浓度检测手段。在线监测染色过程的染料浓度变化应该是染色技术进步的一个重要方向。应用分光光度法对染色过程中的染料浓度进行在线监测,具有方便、快速、成本低等优点。但国际上染液浓度在线监测技术目前还处于起步阶段,在生产中的应用基本上是空白,还有很多技术问题需要解决。其主要问题在于大范围内准确、快速地测得染浴中的染料浓度,尤其是混合染液的各个染料浓度测定。常用的分光光度法测定最大吸收波长相距较大的染料的混合染液浓度,误差较小。当两种染料颜色接近时,吸收光谱重叠严重,或者其中一个染料的浓度相对于其他组分很小的时候,测定误差较大。本课题期望通过分光光度法对染料浓度测试的深入探索,寻找适用于染色时染料浓度的测定方法及设备条件,为染色过程中的染料浓度在线监测技术的发展提供参考。
     课题首先通过染色和色差测定,获得实际生产中可能需要测定的染料浓度范围及拼染时的染料浓度比例范围。在现有的仪器和测定误差要求条件下,通过试差法和插值法得到可以测定的染料浓度范围和混合浓度比例范围。然后通过使用多种分析处理过程比较,探索突破现有装置检测限度的途径。最后,通过对染色实验过程的实际监测,探索有关方法和装置的应用效果。
     实验表明,实际染色需要测定的染料浓度范围约为0.0015-5g/L。常规分光光度计以固定光径的比色皿无法覆盖实际染色需要浓度范围,必须采用不同光径才可能将可测定的浓度范围扩大。
     通过两种染料拼染及采用常用的最大吸收波长-联立方程法测定双组分染液浓度,部分双组份浓度比例范围可以准确测定,但大多数情况下各种染料的实际染色拼混比例范围也远远超出了常规分光光度计可准确测定的范围。分别采用吸收光谱峰面积法、一阶导数法和一阶比值导数法对扩大双组份染液可准确测定的拼混比例范围进行了一定的探索。吸收光谱峰面积法相对最大吸收波长-联立方程法可测定的比例范围有一定扩大,但也无法涵盖实际染色时的所有比例范围。
     对于颜色相近的两种染料的混合染液浓度,采用吸收光谱峰面积法和一阶比值导数法有较小的测定误差。对于三组分染料混合染液的浓度测定,采用最大吸收波长-联立方程法和吸收光谱峰面积法得到的误差较一阶比值导数法小。
     通过活性染料染色的各种添加剂和染色条件对吸光度影响的试验,考察了中性盐、碱剂、温度的影响,并对此类影响作了修正及效果试验,获得了误差较小、适用于实际染色过程中浓度测定的数据修正处理方法。
     采用光纤光谱仪对染色时的染料浓度变化进行了实时测定。实验结果证实,采用光纤光谱仪测定染浴的染料浓度变化是较为理想的在线监测方法。但是采用此类光谱仪也存在着缺陷,即在染色初期,染浴的染料浓度过高,在最小光径下染浴的吸光度偏高,出现光谱数据不稳定的现象,需要更小光径的光谱仪进行测定。
     本课题的研究结果为染色过程中染料浓度的在线监测技术的可行性及发展提供了一定支持。但在现阶段染料浓度的在线监测要实现工业化应用还有不少困难,许多测定条件还有待深入研究,仪器设备性能还有待改良。
With such merits as high sensitivity, good selectivity, rapid determination, a wide range of usage and lower price of the instruments, the spectrophotometry is the basic method for determination of dye concentration, which is also the most feasible means for online detection of dye concentration at present. Online monitoring of dye concentration in the dyeing process should be an important direction of dyeing technological progress. Online monitoring of dye concentration by spectrophotometry has many advantages, such as convenience, high-speed and low cost and so on. But the Online monitoring technique of dye concentration is still in the initial stage around the world, and essentially blank in the dyeing process now. There are many technical problems to be solved. The main problem is how to measure the dyestuff concentration of dye bath in a wide range rapidly and accurately, especially for the solution of mixed dyes.
     Normally,λmax of the dyes more different each other, the errors of determined by spectrophotometry will be smaller. When the dye's color is close to the other, their absorption spectra overlap seriously, or the concentration of one component is relatively lower than others', the measurement errors will be larger. In this paper, through in-depth exploration for the dye concentration determination by spectrophotometry, it is expected to obtain the determination methods of dye concentration and equipment conditions, in order to provide a reference for the development of online monitoring technology of dye concentration in the dyeing process.
     At first, through dyeing and color difference measurement, the dye concentration and its ratio range in combination dyeing possibly needed to determine in the practical production was obtained.Under the status quo of the instruments'conditions and measurement error's requirements, the dye concentration and its ratio range of mixed dyes which can be measured by trial and error method and interpolation were also obtained. Then, a variety of analysis and treatment processes were compared to explore the approach to break through the limits of current testing device. Finally, through monitoring of the dyeing experiment process, the relevant methods and application result of the device were explored.
     Results showed that the concentration range of dye need to be measured in practical dyeing is about 0.0015-5g/L.For conventional spectrophotometer, the cuvette with fixed optical pathlength can not reach the practical concentration range of dye, so the application of different optical pathlengths to expand the range of concentration which can be determined is possible.
     Through combination dyeing of two dyes and their concentration determination by the maximum absorption wavelength-simultaneous equations method which is commonly used, parts of the concentration ratio range of two dyes can be accurately measured, but mostly, the concentration ratio range of blending dyes in practical dyeing exceeded what can be accurately measured by conventional spectrophotometer a lot. Absorption spectrum-peak area method, first order derivative and first derivative-ratio spectrophotometric method were applied to expand the ratio range of bi-component dyes which can be measured accurately was explored. Compared to the maximum absorption wavelength-simultaneous equations method, the absorption spectrum-peak area method has a larger ratio range of blending dyes, but it still can not reach all the proportion range in practical dyeing.
     For the mixed concentration of two dyes with similar color, a small measurement error was acquired by absorption spectra-peak area and first derivative-ratio spectrophotometric method. Maximum absorption wavelength-simultaneous equations and absorption spectra-peak area method were more accurate than first derivative-ratio spectrophotometric method for concentration determination of ternary mixture of dyes.
     Through influence test of additives and conditions in the dyeing process of reactive dyes on absorption, the influences of neutral salt, alkali and temperature were investigated, which were modified and which effect tests were carried out, and a data correctional solution with small error and applicability on concentration determination of dye in the dyeing process was acquired.
     The change of dye concentration in dyeing process was real-time determined by fiber optical spectrometer. Experimental results showed that, measuring the dye concentration in the dye bath using fiber optical spectrometry is a relatively ideal method for online monitoring. But its defect exists, that is, the absorption of the dye bath is extremely high even if the optical pathlength is minimum, which is due to high dye concentration in the early stage of dyeing process, thus the spectrometer with a smaller optical pathlength is required for online monitoring.
     The results of the project provide some supports for the feasibility and development of online monitoring technology of dye concentration in dyeing process. However, to achieve the industrial application of online monitoring of dye concentration, there are many difficulties to be solved currently, and many determination conditions remain to be further studied and the equipment performance has yet to be improved.
引文
[1]叶早萍.染浴在线监控的染色工艺[J].印染,2008,34(9):47-49.
    [2]屠天民等.染色过程中染料浓度的在线监测[J].印染,2009(9):19-22.
    [3]王强,范雪荣,曹旭勇.双波长分光光度法测定双组分染液中染料含量[J].印染,2001(9):28-30.
    [4]陈国珍等.紫外—可见光分光光度法(上册)[M].北京:原子能出版社,1983:167-175.
    [5]孙世国.分光光度法测定混合酸性染料溶液中各染料浓度[J].印染助剂,1996,13(2):33-35.
    [6]雷波.分光光度法对混合染料浓度的同时测定[J].染整技术,2003,25(3):35-37.
    [7]李文典.应用光谱峰面积法测定食品微量铁含量[J].食品研究与开发,2008,29(6):111-112.
    [8]徐明.应用峰高、峰面积测尿锰的比较[J].职业与健康,2000,16(1):37-38.
    [9]李文典.基于微量铁测定的峰面积技术方法研究[J].食品安添全加与剂检测,2008,8:216-217.
    [10]张逢源等.三波长分光光度法测定La(Ⅲ). Cd(Ⅱ)混合溶液中痕量Cd(Ⅱ)的浓度[J].石油化工应用,2009,28(2):87-89.
    [11]齐宝坤,贺江南.导数光谱法鉴别羊毛纤维上的染料[J].广东公安科技,1994(3):21-25.
    [12]齐宗韶.导数分光光度法测定纯蓝墨水中染料和防腐剂[J].理化检验-化学分册,2008(44):1112-1113.
    [13]王景翰等.UV-VIS及其导数光谱发分析喷墨打印墨水[J].光谱仪器与分析,2003(3):30-33.
    [14]Meral Turabik. Adsorption of basic dyes from single and binary component systems onto bentonite:Simultaneous analysis of Basic Red 46 and Basic Yellow 28 by first order derivative spectrophotometric analysis method[J]. Journal of Hazardous Materials,2008(158):52-64.
    [15]冯素萍等.分光光度法同时测定五种食用合成色素[J].分析化学,1993,21(3):294-298.
    [16]K.A.Idriss, H.Sedaira, S.S.Ahmed. Determination of strontium and simultaneous determination of strontium oxide,magnesium oxide and calcium oxide content of Portland cement by derivative ratio pectrophotometry[J].Talanta,2009(78):81-87.
    [17]徐嘉凉等.吸光度比值-导数光谱新方法及其在两组分同时测定中的应用[J]. 光谱学与光谱分析,1999(19)4:581-584.
    [18]倪永年等.比值-导数法同时测定污水中的苯酚和苯胺[J].光谱学与光谱分析,2004,24(1):118-121.
    [19]Rasha M. Youssef, Hadir M. Maher. A new hybrid double divisor ratio spectra method for the analysis of ternary mixtures[J].Spectrochimica Acta PartA,2008)(70):1152-1166.
    [20]Fawzi A.El-Yazbi, Hassan H.Hammudb, Sulaf A.Assi. Derivative-ratio spectrophotometric method for the determination of ternary mixture of aspirin, paracetamol and salicylic acid[J]. Spectrochimica Acta Part A,2007(68): 275-278.
    [21]J.J.Berzas, J.RodroAguez Flores, M.J.VillasenAor Llerena, N.RodroAguez FarinAas. Spectrophotometric resolution of ternary mixtures of Tartrazine, Patent Blue V and Indigo Carmine in commercial products[J].Analytica Chimica Acta,1999(391):353-364.
    [22]贾燕等.偏最小二乘法—分光光度法同时测定多种食用合成色素[J].重庆医科大学学报,2005,30(2):260-262.
    [23]张国文等.偏最小二乘—导数分光光度法同时测定甲萘威和异丙威[J].南昌大学学报(理科版),200731(4):340-344.
    [24]张国文等.主成分回归分析用于分光光度法同时测定6钟食用添加剂[J].分析试验室,2007,26(7):52-56.
    [25]叶姗等.主成分回归-紫外光度法同时测定甜味剂安赛蜜、阿斯巴甜和糖精[J].南昌大学学报(理科版),2007,31(2):132-134.
    [26]方国桢等.6中化学计量方法同时测定5组分的比较研究及食品分析[J].分析化学,1994,22(3):265-271.
    [27]方国桢等.混合物中多组分不分离分光光度测定方法[J].分析仪器,1994(2):6-12.
    [28]孙小云等.连续波长紫外分光光度的定量分析方法[J].计算机与应用化学,2005,22(9):720-722.
    [29]陈国珍主编.荧光分析法(第二版)[M].北京,科学出版社,1990,10:61-65.
    [30]许金钧,王尊本编.荧光分析法[M].北京,科学出版社,2006:128-141.
    [31]胡益水等.同步荧光法同时测定维生素B1和B6[J].广东食品工业科技,1994(2):57-60.
    [32]张文伟,辛长波等.荧光光度法直接测定环境水中的苯酚和苯胺[J].分析试验室,2000,19(5):37-39.
    [33]尚丽平.水中油浓度的光纤荧光在线测量系统[J].仪器仪表学报,2001,22(3):1 99-201.
    [34]金海龙等.全光纤荧光海水中叶绿素a浓度在线监测系统的研究[J].计量技术,2004(7):30-31.
    [35]王玉田等.一种新型农药浓度荧光测量系统的研究[J].测试技术学报,2005,9(2):128-132.
    [36]王彦吉主编.光谱分析与色谱分析[M].北京,北京大学出版社,1995:94-97.
    [37]李懿睿.液相色谱-质谱法测定纺织品中多种致敏性分散染料的残留量[J].氨基酸和生物资源,2009,31(4):76-78.
    [38]杨军浩.国外活性染料高效液相色谱分析的新进展[J].染料与染色,2009,46(5):56-60.
    [39]于世林主编.高效液相色谱方法及应用(第二版)[M].北京,化学工业出版社,2005,6:75-79.
    [40]向平主编.液相色谱[M].上海,上海科学技术出版社,2009,7.
    [41]任慧娟.上染过程中纤维与染料、助剂及介质的相关性[J].长春工程学院学报(自然科学版),2002,3(4):8-10.
    [42]J.D.Hamlin, D.A.S.Phillips, A.Whiting.UV/Visible spectroscopic studies of the effects of common salt and urea upon reactive dye solutions[J].Dyes and Pigments1999(41):137-142.
    [43]常州宏大科技集团.产品介绍[EB/OL].http://www.czhongda.com.cn/chanpin/in dexl. asp?tid=2,2008-12-18.
    [44]胡立设等.光纤分光光度在线分析仪[J].分析仪器,1997,4:37-40.
    [45]黎国梁等.光纤光谱仪在颜色在线测量中的应用[J].2008年中国光电产业高层论坛,60-67.
    [46]DyeTex Engineering公司DyeMax-L system介绍.网址:http://dyetex.en.ec21. com/DyeMax_L_system--257629_257633.html,2009-12-07.
    [47]朱昱.多波长线性回归分光光度法同时测定红色墨水中的酸性大红3R和弱酸性红A[J].光谱仪器与分析2003(3):41-42.
    [48]赵涛主编.染整工艺学教程(第二分册)[M].北京:中国纺织出版,2005,4:111-112.
    [1]李昌厚等.略论UV-VISS光度准确度的测试[J].光学仪器,1994,5-6:41.
    [2]Robert J etc.Selecting a spectyophotometer (how to evaluate a spectrophotometer), technical information beckman instruments[J].Inc.Fullerton, CA92634,1989.
    [3]李昌厚等.略论光谱仪器杂散光测试中的几个有关问题[J].光学与光谱技术,1985,4:42.
    [4]李昌厚等.光栅单色仪杂散光的测试及有关问题的探讨[J].光学与光谱技术,1984,2:34.
    [5]Scott R P W.Liquid chromatography detectors [J].NewYork,1977,5.
    [6]李昌厚.再论UV-VISS的主要技术指标[J].现代科学仪器,1997,4:12.
    [7]李昌厚.略论UV-VISS的可靠性[J].分析测试技术与仪器,1999,5(4):246-248.
    [8]赵桦萍等主编.分光光度分析[M].哈尔滨:哈尔滨工业大学出版社,2007,5.
    [9]普析通用公司产品介绍.网址:http://www.pgeneral.com/contents/11/40.html,201 0-06-09.
    [10]C Technologies, Inc.网址:http://www.solovpe.com/docs/The%20Power%20of %20Slope%20Spectroscopy.pdf,2010-06-20.
    [11]叶早萍译,何叶丽校.染浴在线监控的染色工艺[J].印染,2008,34(9):47-49.
    [1]雷波.分光光度法对混合染料浓度的同时测定[J].染整技术,2003,25(3):35-37.
    [2]胡奇志.反相高效液相色潜法测定偶氮分散染料混合物的研究[J].分析化学,1994,22(4):429.
    [3]王彦吉主编.光谱分析与色谱分析[M].北京,北京大学出版社,1995:75-82.
    [4]许金钧,王尊本编.荧光分析法[M].北京,科学出版社,2006:302-307.
    [5]李文典.应用光谱峰面积法测定食品微量铁含量[J].食品研究与开发,2008,29(6):111-112.
    [6]陈国珍等.紫外—可见光分光光度法(上册)[M].北京:原子能出版社,1983.
    [7]齐宗韶.导数分光光度法测定纯蓝墨水中染料和防腐剂[J].理化检验-化学分册,2008(44):1112-1113.
    [8]Meral Turabik. Adsorption of basic dyes from single and binary component systems onto bentonite:Simultaneous analysis of Basic Red 46 and Basic Yellow 28 by first order derivative spectrophotometric analysis method[J]. Journal of Hazardous Materials,2008(158):52-64.
    [9]K.A.Idriss, H.Sedaira, S.S.Ahmed. Determination of strontium and simultaneous determination of strontium oxide,magnesium oxide and calcium oxide content of Portland cement by derivative ratio pectrophotometry[J].Talanta,2009(78):81-87.
    [10]徐嘉凉等.吸光度比值-导数光谱新方法及其在两组分同时测定中的应用[J].光谱学与光谱分析,1999(19)4:581-584.
    [11]李昌厚.略论UV-VISS的可靠性[J].分析测试技术与仪器,1999,5(4):246-248.
    [12]李昌厚等.略论UV-VISS光度准确度的测试[J].光学仪器,1994,5-6:41.
    [1]王强,范雪荣,曹旭勇.双波长分光光度法测定双组分染液中染料含量[J].印染,2001(9):28-30.
    [2]雷波.分光光度法对混合染料浓度的同时测定[J].染整技术,2003,25(3):35-37.
    [3]朱昱.多波长线性回归分光光度法同时测定红色墨水中的酸性大红3R和弱酸性红A[J].光谱仪器与分析,2003(3):41-42.
    [4]秦建侯.导数分光光度法[J].分析仪器,1983(2):46-52.
    [5]李建军等.导数分光光度法中重叠普带相互干扰的理论分析及其应用[J].高等学校化学学报,1988,9(4):337-341.
    [6]齐宗韶.导数分光光度法测定华特曼(Waterman)红墨水的染料[J].中国制笔,2009(1):16-18.
    [7]倪永年等.比值-导数法同时测定污水中的苯酚和苯胺[J].光谱学与光谱分析,2004,24(1):118-121.
    [8]金咸穰.染整工艺实验[M].北京:纺织工业出版社.1987:113-116.
    [9]孙世国.分光光度法测定混合酸性染料溶液中各染料浓度[J].印染助剂,1996,13(2):32-35.
    [10]罗庆尧.分光光度分析[M].北京:科学出版社.1985:237-244.
    [11]姜键飞,胡良剑,唐俭编.数值分析及其MATLAB实验[M].北京:科学出版社,2004:9-11.
    [12]朱昱,史晓凡.比值光谱-导数分光光度法同时测定纤维上的二组分混合染料[J].分析试验室,1997,16(6):67-70.
    [13]郑雪琴等.荧光法同时测定环境水中的As(Il1)和As(Ⅴ) [J].2005,14(1):2098-2100.
    [14]Digambara Patra,A.K.Mishra. Concentration dependent red shift:qualitative and quantitative investigation of motor oils by synchronous fluorescence sc an[J].Talanta,2001(53):783-790.
    [15]Catherine L.Muller.Analysis of rainwater dissolved organic carbon compou nds using fluorescence spectrophotometry[J].AtmosphericEnvironment,2008 (42):8036-8045.
    [16]柳先平.不同水体中有色可溶性有机物质荧光光谱定量分析研究[J].光谱学与光谱分析,2007,27(10):2083-2087.
    [17]张文伟,辛长波等.荧光光度法直接测定环境水中的苯酚和苯胺[J].分析试验室,2000,19(5):37-39.
    [1]董振礼主编.测色与计算机配色(第二版)[M].北京:中国纺织出版社,2007,9:53-56.
    [2]雷波.分光光度法对混合染料浓度的同时测定[J].染整技术,2003,25(3):35-37.
    [3]冯素萍,王淑仁,陈荣礼等.分光光度法同时测定五种食用合成色素[J].分析化学,1993,21(3):294-298.
    [1]黑木宣彦著,陈水林译.染色理论化学(上册)[M].北京:纺织工业出版社,1981:56-62.
    [2]格·叶·克里切夫斯基著,高敬踪译.染色和印花过程的吸附和扩散[M].北京:纺织工业出版社,1985:38-64
    [3]冯柏成等.超分子化学在染料及染色中的应用[J].染料与染色.2006,43(1):9-14.
    [4]廖霞.中性盐、碱和水溶性高聚物对活性染料聚集的影响[D].苏州大学,2007.
    [5]赵涛主编.染整工艺学教程(第二分册)[M].北京:中国纺织出版社,2005,4:106-107.
    [6]宋心远主编.活性染料染色[M].北京:中国纺织出版,2009,10:209-215.
    [7]廖霞,唐人成.活性染料在中性盐中的聚集[J].染料与染色.2007,44(1):21-24.
    [8]J.D.Hamlin.UV/Visible spectroscopic studies of the e.ects of common salt and urea upon reactive dye solutions[J]. Dyes and Pigments,1999,41:137-142.
    [9]袁冬琴.不同温度下铵梯油炸药中TNT的准确测定[J].火炸药学报,2003,26(2):73-75.
    [10]吴文铭.紫外可见分光光度计及其应用[J].生命科学仪器,2009,7:61-63.
    [11]W.J.Epolito.Characterization of the textile anthraquinone dye Reactive Blue 4[J].Dyes and Pigments,2005,67:35-46.
    [12]何瑾馨主编.染料化学[M].北京:中国纺织出版,2007,1:134-139.
    [13]屠天民等.染色过程中染料浓度的在线监测[J].印染,2009(9):19-22.
    [14]叶早萍译,何叶丽校.染浴在线监控的染色工艺[J].印染,2008,34(9):47-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700