城镇燃气钢质管道受轨道交通电磁干扰测试与评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国地铁等轨道交通的蓬勃发展以及城镇燃气的普及使用,由此而凸显的埋地燃气钢质管道干扰电流腐蚀问题愈来愈引起了人们的关注。调查显示,我国90%以上的城镇埋地燃气钢质管道防腐层破损、剥离以及腐蚀穿孔等缺陷均由地铁等轨道交通泄漏到土壤中的动态干扰电流所引发,不仅造成了巨大的国民经济损失,同时也给人民的生命财产安全带来了隐患。
     在我国,燃气管道的建设始于20世纪50年代,地铁轨道交通的发展历史也才仅仅40年。因此,对埋地燃气钢质管道的轨道交通电磁干扰腐蚀问题尚未进行深入研究。同时,由于埋地燃气钢质管道埋设现场环境恶劣且复杂多变,导致现有技术与设备无法较好地应用于城镇埋地燃气钢质管道的电磁干扰检测与评价。因此,为了保障管道的安全运行并及时对受干扰的管道采取防护措施,对城镇埋地燃气钢质管道所受的轨道交通电磁干扰情况进行有效测试与评价势在必行。课题围绕该任务开展了理论与实验研究,取得了以下研究成果:
     通过对现有检测技术的比较分析,并针对轨道交通电磁干扰的动态变化特性,提出了管地电位连续动态监测技术。在实验研究的基础上,根据管地电位波动情况与干扰电流的关系,初步估计了管道受到的动态电磁干扰严重性。
     基于轨道交通动态电磁干扰原理,提出了实验室动态直流电磁干扰与交流电磁干扰腐蚀实验方案。搭建了动态电磁干扰下的金属管道加速腐蚀实验平台,研究了不同物化性质的土壤、不同特性的动态干扰电流对管道腐蚀速率的影响规律,以及干扰电流与管地电位波动范围之间的关系。
     通过数字图像处理技术提取腐蚀形貌图像的腐蚀特征,并应用分形几何理论,计算腐蚀形貌分形维数。研究表明,动态电磁干扰造成的管体腐蚀形貌具有分形特征,分形维数可作为定量描述腐蚀形貌特征的参数。同时,以实验研究为基础,建立了分形维数与腐蚀速率之间的数学关系式。
     采用LabVIEW与Microsoft SQL数据库、MATLAB、Visual C++结合的方法开发了埋地燃气钢质管道电磁干扰测试与评价软件。软件实现了数据实时显示、信号频域测量、数据统计计算、.txt文件存储与回放、数据库存储与条件查询、删除、干扰严重性判断等功能,并通过提取腐蚀形貌和计算腐蚀表面分形维数,估计了管道破损点处的干扰电流大小,并预测了管道的剩余寿命。
As the flourishing development of the subway traffic and the common usage of urban gas, the electromagnetic interference and corrosion to buried gas pipe-lines attract more and more attention now. Investigation shows that, more than 90% urban buried gas pipe-lines’defects and leakage are caused by rail traffic disturbing current, which results great loss to national economy and damages the pipe-lines’safe operation seriously.
     In our country, the gas pipe-lines are developed in the 1950s, and the establishment of subway traffic has its only 40 years’history, so thorough research on dynamic current interference and corrosion has not been performed until now. Due to the complexity and variability of the field environment, current detection techniques and instruments can not be applied in the detection of the dynamic disturbing current on buried gas pipe-lines and the evaluation of the severity of the interference. So to find a dependable detection and evaluation method is the guarantee of the safety operation of buried gas pipe-lines. This subject carries out the theoretical and experimental research centering on this task and completes the main work as following.
     By the contrast with current detection techniques and according to the dynamic characteristics of subway electromagnetic interference, the pipe-to-soil potential sequential dynamical monitoring technology is put forward. On the base of lab experimental research and according to the fluctuation conditions of the pipe-to-soil potential, the severity of the electromagnetic interference is estimated initially.
     Subway electromagnetic interference and corrosion experimental model is built based on the principle of subway electromagnetic interference. The experimental platforms of DC and AC electromagnetic interference to pipes are established in the lab, and the inference rules of different soils and disturbing currents are researched, and the relationship between pipe-to-soil potential and disturbing current is explored here.
     Images of surface corrosion morphologys are acquired, and then corrosion characteristics through the technology of digital image processing are obtained. Based on the fractal theory, surface corrosion morphologys have characteristics with fractal and the fractal dimension can be considered as a parameter for describing complexity quantitatively.
     The software is developed for pipe-to-soil potential dynamic monitoring and corrosion evaluation using LabVIEW, Microsoft SQL database and C++. It can realize the real-time monitoring for pipe-to-soil potential. Meanwhile, it can realize format documents saving and calling back, database saving and conditional inquiry, then the severity of interference is judged and the remaining life of the pipe is predicted at last. The residual service life of the pipe and the magnitude of the disturbing current density can be estimated by extracting the corrosion morphologys and calculating the fractal dimension.
引文
1梁钢华.广东规划2015年建成覆盖全省的天然气供气网络[OL]. 2009[2009-04-28]. http://oil.nengyuan.net/2008/1225/15376.html
    2任丽娜.山西天然气管网建设工程一期规划建设任务顺利完成[OL]. 2008[2008-11-28]. http://www.sx.chinanews.com.cn/2008-11-28/1/74074.html
    3殷丽娟.北京成为全国最大天然气城市[OL]. 2008[2008-09-25]. http://www.jrj.com
    4陈玉华.阴极保护在广州埋地燃气管道的应用[J].化工之友, 2006, 4(10): 14~15
    5姜长洪,于婉丽,吴星刚等.输油管道腐蚀与杂散电流测量[J].管道技术与设备, 2004, 5 (1): 10~13
    6王子恢.城市管道燃气烽火连天[J].商界名家, 2004, 3(8): 83~85
    7李威,王禹桥,王爱兵.地铁杂散电流监测系统的研制[J].电气化铁道, 2004, 15(5): 40~42
    8李永刚,李锦屏.地铁杂散电流检测的模拟实时监测系统[J].控制工程, 2004, 14(11): 32~35
    9缪云青.基于开关电源的地铁杂散电流自动检测和动态补偿装置[D].首都师范大学, 2006: 1~2
    10高敬宇,易凡.地铁及轻轨杂散电流腐蚀的防护措施[J].天津理工学院学报, 1996(12): 32~36
    11陈明.济南1995年“1.3”和平路爆炸案[OL]. 1995[2008-07-28]. http://www.gasshow.com/
    12 Uhig H. H. & Revie R. W. Corrosion & Corrosion Control[J]. A Wiley-Interscience Publication. JOHN WELWY & SONS, 1985, 23(3): 261~268
    13 Levin S. I. Kharionovsky V. V. Causes and Frequency of Failures on Gas Mains in the USSR PIPE [J]. Pipelines International, 1993, 26(4): 7~8
    14 Gas Pipeline Incidents: A Report of The European Gas Pipeline Incident Data Group[R]. P & PI, July-Aug, 1998: 4~11
    15 Gas Pipeline Incidents: 1970~1992 a Report of the European Gas Pipeline Incident Data Group[R]. 1995: 7~8
    16王玉梅,郭书平.国外天然气管道事故分析[J].油气储运, 2000, 7 (4): 5~10
    17 SY/T0029-98.埋地钢质检查片腐蚀速率测试方法[S], 1998
    18 B Martin. Stray Current Corrosion-Real Corrosion[J]. Corrosion, 2001, 3 (2): 6~8
    19 Joel Beggs. Stray Current Testing on Gas Distribution Pipeline Following Start-up of a New Light Rail Transit Line[J]. Corrosion, 2005, 248 (5): 4~11
    20 SY/T 0017-96.埋地钢质管道直流排流保护技术标准[S], 1996
    21 EN 50162: Protection against Corrosion by Stray Current from Direct Current Systems[S], 2004
    22 K. Zakowski & W. Sokolski. 24-hour Characteristic of Interaction on Pipelines of Stray Currents Leaking from Tram Tractions[J]. Corrosion Science, 1999, 41 (11): 2103~2108
    23 Stray Current Mapper-User Manual[M]. Radiodetection, Ltd. December, 2002
    24何仁洋,孙敬清.埋地燃气管道综合检验检测技术研究[J].控制与测量, 2003, 5(4): 31~39
    25 Luca Ardizzon, Paolo Pinato & Dario Zaninelli. Electric Traction and Electrolytic Corrosion: a Software Tool for Stray Current Calculation[C]. 2003 IEEE PES Transmission and Distribution Conference and Exposition, Dallas, TX, USA, 2003: 550~551
    26李秀娥.轨道交通供电系统综述[J].电气传动自动化, 2007, 29(1): 5~7
    27 E. S. Ibrahim. Corrosion Control in Electric Power Systems[J]. Electric Power Systems Research, 1999, 52 (4): 9-17
    28 Luca Ardizzon, Paolo Pinato & Dario Zaninelli. Electric Traction and Electrolytic Corrosion:a Software Tool for Stray Current Calculation[J]. Senior Member IEEE: 550~551
    29 Ian Cotton, Pete Aylott & Petra Ernst. Stray Current Control in DC Mass Transit Systems[J]. IEEE Rransaction on Vehicular Technology, March, 2005, 54 (2 ): 722
    30 SY/T0019-97.埋地钢质管道牺牲阳极阴极保护设计规范[S].中国石油天然气总公司, 1997
    31胡士信.阴极保护工程手册[M].北京:化学工业出版社, 2000
    32 SYJ4020-88.埋地钢质管道石油沥青防腐层施工及验收规范[S].石油工业部管理局第三管道工程公司, 1988
    33秦国治,丁良棉,田志明.管道防腐蚀技术[M].北京:化学工业出版社, 2004
    34 K. Darowicki, S. Krakowiak & P. Slepski. Evaluation of Pitting Corrosion by Means of Dynamic Electrochemical Impedance Spectroscopy[J]. Electrochimica, 2004, 49(5): 2909~2918
    35 GB/T19285-2003.埋地钢质管道腐蚀防护工程检验[S].质量监督检验检疫总局锅炉压力容器检测研究中心, 2003
    36何晓群,刘文卿.应用回归分析[M].北京:中国人民大学出版社, 2001
    37夏良正.数字图像处理[M].南京:东南大学出版社, 1999
    38刘榴娣,刘明奇,党长民.实用数字图像处理[M].北京:北京理工大学出版社, 1998
    39董连科.分形理论及其应用[M].沈阳:辽宁科学技术出版社, 1990
    40屈朝霞,张汉谦.材料科学中的分形理论应用进展[J].宇航材料工艺, 1999, 29(5): 5~9
    41林鸿溢,李映雪.分形论——奇异性探索[M].北京:北京理工大学出版社, 1992
    42 M. Aoyama & Y. Shibata. Evaluation of Corrosion on Cast Iron Surfaces by Fractal Dimension Analysi[J]. International Journal of Materials and Product Technologys. 2001, 42(1): 403~408
    43 Meakino. Fractal Scaling and Growth far from Equilibrium[M]. Canbridge: Cambridge University Press, 1998
    44 B. B. Manderbrot, D. E. Passoja & A. J. Paullay. Fractal Character of Fracture Surfaces of Metals[J]. Nature, 1984, 308(5): 721~722
    45 Z. K. Mu & C. W. Lung. Studies on the Fractal Dimension and Fractal Toughness of Steels[J]. Journal of Physics, 1988, 21(3): 848~850
    46 H. Su, Y. Zhang & Z. Yan. Fractal Analysis of Microstructure and Properties in Ferrite–marten Site Steels[J]. Scripta Metall Material, 1991, 25(5): 651~654
    47 V. E. Saonma & C. Barton. Fractal Fracture and Size of Effects in Concretes[J]. Journal of Engineering Mechanics, 1994, 120(4): 835~854
    48 Z. G. Wang, D. L. Chen & X. X. Jiang. Relationship Between Fractal Dimension and Fatigue Threshold Value in Dual-phase Steels[J]. Scripta Metall Material, 1988, 22(7): 827~832
    49 G. M. Lin & K. L. Lai. Fractal Characterization of Fracture Surface in a Resin-based Composite[J]. Journal of Material Science Letter, 1993, 12(3): 470~472
    50 Hiroyuki Nagahama. A Fractal Criterion for Ductile and Brittle Fractures[J]. Journal of Applied Physics, 1994, 75(11): 3220~3222
    51章冠人.韧性和脆性断裂的分形维数[J].爆炸与冲击, 1996, 16(5): 17~22
    52连石柱.曲线分形维数的数值分析方法及应用[J].计算机工程与设计, 1998, 19(1): 35~41
    53谢和平,薛秀谦.分形应用中的数学基础与方法[M].北京:科学出版社, 1997
    54陈建安.分形维数的定义及测定方法[J],电子科技, 1999, 1(4): 44~46
    55腐食防食协会编,陈家福,周卫,翁端译.装置材料的寿命预测入门——极值统计在腐蚀中的应用[M].大连:大连理工大学出版社, 1991
    56 Masashi Kurose. Fractal Characteristics of Stress Corrosion Cracking in SNCM 439 SteelHaving Different Prior-Austenite Grain Sizes[J]. Engineering Fracture Mechanics, 1996, 53(2): 12~15
    57王守琰.金属材料自然环境腐蚀的图像识别[D].天津大学, 2003: 37~41
    58 Niruparm Sarkar& B. B. Chaudhuri. Multifractal and Generalized Dimensions of Gray-tone Digital Images[J]. Signal Processing, 1995, 42(5): 181
    59宋吟蔚.基于分形理论的埋地钢质管道杂散电流腐蚀检测技术研究[D].北京工业大学, 2008: 41~43
    60朱瑛,姚英学,周亮.纳米压痕技术及其试验研究[J].工具技术, 2004, 6 (8): 14~15
    61赵松涛. SQL Server 2005系统管理实录[M].北京:电子工业出版社, 2006
    62葛哲学,陈仲生. Matlab时域分析技术及其应用[M].北京:人民邮电出版社, 2006
    63秘晓元,张彦斌等. LabVIEW中利用LabSQL对数据库访问技术的探讨[J].自动化与仪器仪表, 2004, 11(6): 54~56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700