机载雷达恒虚警率检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干扰背景下的恒虚警率(CFAR)检测一直是雷达信号处理研究的热点和难点问题,而机载雷达采用的多工作模式及其所处的复杂的地、海杂波环境使其CFAR检测面临的困难尤为突出。本文结合某型机载雷达具体体制,系统地研究了该雷达在地、海杂波背景下的CFAR检测问题。主要工作包括:
     (1)分布参数估计算法研究。准确地获取杂波的分布信息是机载雷达最优或准最优CFAR检测的基础。针对K分布参数最大似然估计求解计算量大的缺点,本文从算法的估计精度和实现复杂度两个方面对现有的七种基于矩方法的K分布参数估计算法进行了比较分析,并证明了几种算法之间的关系,在此基础上提出了一种基于zlog(z)期望的K分布参数估计算法,该算法同时应用了对数变换和分数阶矩,因此获得了更高的估计精度。本文同时给出了适宜机载雷达CFAR检测应用背景的参数估计算法的选择方案。
     (2)分布模型辨识方法研究。在分布参数估计的基础上,本文接着对机载雷达分布模型辨识方法进行了研究。针对常用的Chi-Square检验受样本区间划分影响大和KS检验通用性差的缺点,提出了一种新的杂波分布辨识方法—PDF变换法,该方法利用了正态分布检验精度高,实现简单的优点,同时,该方法在分布模型解析表达式已知的情况下即可进行PDF变换,因此辨识精度和通用性都得到了较大的提高。随后,分析了各类杂波分布模型的偏度和峰度特征及其它们的相似性,为杂波分布模型辨识的精度分析提供了理论依据。
     (3)在分布模型不确定或变化的地杂波环境中,针对基于单一分布模型的CFAR检测器信杂比损失较大的缺点,提出了一种适应于机载雷达多分布类型杂波环境的CFAR检测器—杂波分布检验CFAR(CT-CFAR)检测器,该CFAR检测器较为准确地利用了背景杂波的分布信息,且同时具有较好的虚警控制能力。接着,本文针对Smith等人提出的VI-CFAR检测器在多个干扰目标同时存在于参考窗两侧时检测性能下降的不足,提出了一种基于有序统计的可变性指示CFAR(OSVI-CFAR)检测器,该CFAR检测器结合OS类算法,同时在多目标干扰、杂波边缘和均匀背景下获得了较好的检测能力和虚警控制能力,在实际应用中具有更强的鲁棒性。
     (4)海杂波的强相关性是影响CFAR检测性能的重要因素。本文在对海杂波相关性模型合理假设的基础上,分析了杂波结构分量空间相关长度不同时,CA-CFAR的虚警概率和检测概率在空间上的分布特性,理论分析和仿真实验结果表明,CA-CFAR检测器在逼近最优检测时,其参考窗长度应自适应于杂波空间相关长度的变化。但在实际的CFAR处理中,结构分量的空间相关长度需要估计获得,而现有的幅度域相关系数拟合估计法计算量大,针对这一缺点,本文利用近似的方法对其进行了简化。仿真实验结果表明,用简化前、后的幅度域相关系数拟合法获得的相关系数基本一致,证明了简化方法的有效性。
     (5)本文最后基于机载雷达实测数据对第五章提出的CT-CFAR检测器和OSVI-CFAR检测器的检测性能进行了分析,实验结果验证了第五章提出的CFAR检测理论与仿真分析的正确性和有效性。
The constant false alarm rate (CFAR) detection in the presence of interfering background is always the hotspot and difficulty on the study of radar signal processing. Since the airborne radar adopts the multiple modes and confronts with complicated land and sea clutter, so the CFAR detection for airborne radar is especially difficult. Based on a certain airborne radar system, the theory and technique of CFAR detection for airborne radar in the presence of land and sea clutter environment are investigated in this dissertation. The main works of this dissertation can be summarized as follows:
     First, the distribution parameter estimation algorithm is studied, since it is the foundation of the optimal or quasi-optimal CFAR detection. In view of the deficiency of extremely time consuming of the maximum likelihood (ML) estimation for K-distribution parameter, the existing seven parameter estimation algorithms based on method of moment (MOM) are analyzed by comparing their estimation accuracy and implementation complexity, and the relations of them are proved, then, a new parameter estimation algorithm based on z~rlog(z) expectation for K-distribution is proposed. The proposed algorithm applies both log transformation and fractional order moment, so its estimation precision is improved evidently. At the same time, a scheme of application of parameter estimation algorithms to airborne radar CFAR detection is presented.
     Next, the methods of distribution model identification are studied in this dissertation. Aiming at the deficiencies that the common Chi-Square test is affected badly by sample interval division, and the KS test has poor universality, a new clutter distribution identification method, namely, PDF transform method is proposed. The proposed method has the virtues of high identification accuracy and realization simplification of the normal test, moreover, as long as the analytic expression of the distribution model is known, the PDF transform for the clutter sample could be done, so both the identification accuracy and universality are improved evidently. And then, the similarity of four distributions is analyzed by their Skewness and Kurtosis characteristics, and it offers an important academic gist for the precision analysis of the distribution model identification.
     Thirdly, in the presence of ground clutter environment which the distribution model is uncertain or varying, in view of the deficiency of larger signal-to-noise ratio(SCR) loss with the CFAR detector based on single distribution model, a CFAR detector called CT-CFAR detector which adapt to multi-distribution clutter environment is proposed. The new CFAR detector applies the distribution information of clutter well, so it has better controlling capability of false alarm peak, simultaneity, it achieves certain CFAR gain compared to that for the general rayleigh-based CFAR detector in low SCR. And then, aiming at the deficiencies that the detection performanc of VI-CFAR detector may be seriously degraded when the interfering targets are present in both the halves of the reference window, a new adaptive CFAR detector, i.e. OSVI-CFAR detector is proposed, combining with OS algorithm, this detector achieves better detection performance and false alarm peak controlling capability in multiple interfering targets, clutter edge and homogeneous environment respectively, so it is more robust in practice.
     Fourthly, the strong correlation of sea clutter has an important influence upon the CFAR detection performance. Based on rational hypothesis of the clutter correlation model, the spatial distribution characteristics of the false alarm probability and detection probability of CA-CFAR is analysed in this dissertation when the spatially correlation length of the clutter structure component is varying. Theoretical analysis and simulation results indicate that the reference window length of CA-CFAR detector should adapt to the change of clutter spatially correlation length when it approaches the optimal detection. But in practical CFAR process, the spatially correlation length of the structure component needs to be estimated. In view of extremely time consuming of the correlation coefficient fitting estimation method in amplitude domain, an approximate method is applied to simplify it. Simulation results prove the efficiency of the approximate method.
     Finally, the detection performance of CT-CFAR and OSVI-CFAR which proposed in chapter 5 is analyzed basd on measured data. Experiment results demonstrate the correctness and validity of the CFAR detection theory proposed in chapter 5.
引文
[1]Finn H.M,Johnson R.S.Adaptive detection mode with threshold control as a function of spatially sampled clutter-level estimates.RCA Review,1968,29:414-464.
    [2]Hansen V G.Constant false alarm rare processing in search radars.IEEE international radar conference,london,1973,325-332.
    [3]Trunk G V.Range resolution of targets using automatic detectors.IEEE Trans.on AES,1978,14(5):750-755.
    [4]Barkat M,Varshney P K.A weight cell-averaging CFAR detector for multiple target situation.Proceedings of the 21st annual conference on Information Sciences and Systems,Baltimore,Maryland,1987.118-123.
    [5]Weiss M.Analysis of some modified cell-averaging CFAR processors in multiple-target situations.IEEE Trans.on AES,1982,18(1):102-114.
    [6]Rohling H.Radar CFAR thresholding in clutter and multiple target situations.IEEE Trans.on AES,1983,19(4):608-621.
    [7]Richard J T,Dillard G M.Adaptive detection algorithms for multiple target situations.IEEE Trans.on AES,1977,13(4):338-343.
    [8]Gandhi P P,Kassam S A.Analysis of CFAR processors in nonhomogeneous background.IEEE Trans.on AES,1988,24(4):427-445.
    [9]Ritcey J A,Hines J L.Performance of max-mean-level detector with and without censoring.IEEE Trans.on AES,1989,25(2):213~223.
    [10]Elias A R,De Mercad M G,Davo E R.Analysis of some modified order statistic CFAR:OSGO and OSSO CFAR.IEEE Trans.on AES,1990,26(1):197-202.
    [11]Han D S,Lee H S.Performance of modified order statistics CFAR detector with noncoherent integration in homogeneous situations.Korea advanced institute of science and technology.1992.
    [12]Cho C M,Barkat M.Moving ordered statistics CFAR detection for nonhomogeneous backgrounds.IEE Proc.-F,1993,140(5):284-290.
    [13]Nagle D T,Saniie J.Performance analysis of linearly combined order statistic CFAR detectors.IEEE Trans.on AES,1995,31(2):522-532.
    [14]He You.Performance of some generalized modified order statistics CFAR detectors with automatic cessofing technique in multiple target situations.IEE Proc.-F,1994,141(4):205-212.
    [15]He You,Guan Jian.A new CFAR Detector with greatest of selections.IEEE 1995International Conference on Radar,Alexandria,Virginia,USA,1995.589-591.
    [16]何友,关键,Rohling H.基于最大和最小选择的两种新的恒虚警检测器.系统工程与电子技术,1995,17(7):6-16.
    [17] He You, Guan Jian, Peng Ying-Ning, Lu Da-Jin. A new CFAR Detector Based on Ordered Statistics and Cell Averaging. 1996 CIE International Conference of Radar, Beijing, China, 1996. 106-108.
    [18] Barboy B,Lomes A,Perkalski E. Cell-averaging CFAR for multiple target situations. IEE proc-F, 1986,133(2):176-186.
    [19] Finn H.M. A CFAR design for a window spanning two clutter fields. IEEE Trans.on AES, 1986,22(1):155-169.
    [20] Goldman H. Analysis and application of the Excision CFAR detector. IEE proc-F,1988,135(6):563-575.
    [21] Conte E,Longo M, Lops M. Analysis of the Excision CFAR detector in the presence of fluctuating targets. IEE proc-F, 1989,136(6):290-291.
    [22] Conte E, Longo M. Lops M. Analysis of the Excision CFAR in multiple-targets situation. Proc. of the international symposium on noise and clutter rejection in radars and imaging sensors, 1989. 566-571.
    [23] Goldman H. Performance of Excision CFAR detector in the presence of interfers.IEEproc-F, 1990,137(3):163-171.
    [24] Lei S, Li W. Research of ordered statistic CFAR detector. Proc. of the international symposium on noise and clutter rejection in radars and imaging sensors, 1989. 560-565.
    [25] Ozgunes I,et al. A variably trimmed mean CFAR radar detector. IEEE Trans. on AES, 1992,28(4):1002-1014.
    [26] Smith M E, Varshney P K. VI-CFAR. a novel CFAR algorithm based on data variability. IEEE International Radar conference, Edinburgh,UK, 1997. 263-268.
    [27] Smith M E,Varshney P K. Intelligent CFAR processor based on data variability.IEEE Trans on AES, 2000,36(3):837-847.
    [28] Himonas S.D, Barkat M. Automatic censored CFAR detection for nonhomogeneous enviorments. IEEE Trans. on AES, 1992,28(1):286-304.
    [29] Barkat M, Himonas S D,Varshney P K. CFAR detection for multiple target situations. IEE proc-F, 1989,136(5): 193-209.
    [30] Himonas S D. Adaptive censored greatest-of CFAR detection. IEE proc-F,1992,139(3):247-255.
    [31] Farrouki A, Barkat M. Automatic censoring CFAR detector based on ordered data variability for nonhomogeneous environments. IEE Proc.-Radar Sonar Navig,2005,152(1):43-51.
    [32] Hu Wen-Lin, Wang Yong-Liang,Wang Shou-Yong,Fang Qain-Xue. A Robust CFAR Detector Based on Ordered Statistic. 2006 CIE International Conference of Radar, Beijing, China, October 8-10,2006, 2006.
    [33] Adaptive CFAR Detection for Clutter-Edge Heterogeneity Using Bayesian Inference. IEEE Trans on AES, 2003,39(4):1462-1470.
    [34]胡文琳,王首勇,王永良,谢文冲.多分布类型杂波背景下的恒虚警处理.系统工程与电子技术,2007.
    [35]Trunk G.V.Radar properties in non-Rayleigh sea clutter.IEEE Trans.on AES,1972,8(2):196-204.
    [36]Jakeman E,Pusey P N.A model for non-Rayleigh sea echo.IEEE Trans.on Antennas and Propagation,1976,24:806-814.
    [37]Ward K D,Watts S.Radar sea clutter.Microwave Journal,1985:109-114.
    [38]Conte E,Longo M,Lops M.Modeling and simulation of non-Rayleigh radar clutter,IEE proc-F,1991,138(2):121-130.
    [39]Schleher D C.Radar detection in Weibull clutter.IEEE Trans.on AES,1976,12(6):736-743.
    [40]Bucciarelli T.CFAR problems in Weibull clutter.Electronics Letters,1985,21(8):318-319.
    [41]何友,Rohling H.有序统计恒虚警(OS-CFAR)检测器在韦布尔干扰背景中的性能.电子学报,1995,23(1):79-84.
    [42]George S F.The detection of nonfluctuating targets in log-normal clutter,1968.
    [43]Schleher D C.Radar detection in Log-normal clutter.IEEE International Radar Conference,Washington,1975.262-267.
    [44]Trunk G V,George S.Detection of targets in non-gaussian sea clutter.IEEE Trans.On AES,1970,6(5):620-628.
    [45]Qingshan Jiang,Shengrui Wang,Djemel Ziou,Ali E1 Zaart.Automatic detection for ship targets in RADARSAT SAR images from coastal regions.Vision Interface'99,Trois-Tivieres,Canada,1999.131-137.
    [46]Tsakalides P,Trinic F,Nikias C L.Performance assessment of CFAR processors in Pearson-distributed clutter.IEEE Trans.On AES,2000,36(4):1377-1386.
    [47]McKay A T.A Bessel Function Distribution.Biometrica,1932,24:39-44.
    [48]Ward K D.Compound representation of high resolution sea clutter.Electronics letters,1981,17(6):561-563.
    [49]Ward K D,Baker C J,Watts S.Maritime surveillance radar Part 1:Radar scattering from the ocean surface.IEE Proc.-F,1990,137(2):51-62.
    [50]Fogel A.Detection in Rice environment.IEEE Trans.on IT,1983,29(5):761-764.
    [51]Gini F.Suboptimum approach to adaptive coherent radar detection in compound-Gaussian clutter.IEEE Trans.on AES,1999:1095-1104.
    [52]Conte E,Lops M,Ricci G.Asymptotically optimum radar detection in compound-Gaussian clutter.IEEE Trans.on AES,1995,31(2):617-625.
    [53]Conte E,Lops M,Ricci G.Adaptive detection schemes in compound-Gaussian clutter.IEEE Trans.on AES,1998,34(3):1058-1069.
    [54]Greco M,et al.Robust CFAR detection of random signals in compound-Gaussian clutter plus thermal noise. IEE proc-F, 2001,144(1):227-232.
    [55] Anastassopoulos V, Lampropoulos G A. Optimal CFAR detection in Weibull clutter. IEEE Trans. on AES, 1995,31(1):52-64.
    [56] AL-HUSSAINI E K. Performance of an ordered statistic CFAR processor in Log-normal clutter. Electronics letters, 1988,24(7):424-425.
    [57] Weber P,Haykin S. Order statistics CFAR processing for two-parameter distributions with variable skewness. IEEE Trans. on AES, 1985,21(6):819-821.
    [58] Levanon N,Shor M. Order Statistics CFAR for Weibull background. IEE proc-F,1990,137(3):157-162.
    [59] Ravid R, Levanon N. Maximum-likelihood CFAR for Weibull background. IEE proc-F, 1992,139(2):256-264.
    [60] Guida M, Longo M, Lops M. Biparametric linear estimation for CFAR against Weibull clutter. IEEE Trans. on AES, 1992,28(1):138-151.
    [61] Guida M, Longo M, Lops M. Biparametric CFAR procedures for Log-normal clutter. IEEE Trans. on AES, 1993,29(3):798-809.
    [62] Gandhi P P.et al. CFAR signal detection in nonhomogeneous Weibull clutter and interference. IEEE International Radar Conference, Virginia, 1995. 583-588.
    [63] Goldstein G B. False alarm regulation in Log-normal and Weibull clutter. IEEE Trans. on AES, 1973,9(1):84-92.
    [64] Maurizio D B, Carmela G. CFAR Detection of Extended Objects in High-Resolution SAR Images. IEEE Trans on GEOSCIENCE AND REMOTE SENSING, 2005,43(4):833-843.
    [65] Watts S ,Baker C J,Ward K D. Martime surveillance radar. Part 2: Detection performance in sea clutter. IEE Proc.-F, 1990,137(2):63-72.
    [66] Armstrong B C,Griffiths H D. CFAR detection of fluctuating targets in spatially correlated k-distributed clutter. IEE Proc.-F, 1991,138(2):139-152.
    [67] Conte E, Lops M, Ricci G. Radar detection in K-distributed clutter. IEE proc-F,1994,141(2):116-118.
    [68] Bucciarelli T, Lombardo P,Trmburrini S. Optimum CFAR detection against compound Gaussian clutter with partially correlated texture. Proc-F,1996,143(2):95-104.
    [69] Watts S. Cell-averaging CFAR gain in spatially correlated k-distributed clutter.IEE proc-F, 1996,143(5):321-327.
    [70] Bucciarelli T,Fedele G, Lombardo P,Mattei T. Rank detectors in correlated k-distributed clutter. CIE International Conference of Radar, 1996. 225-229.
    [71] Barkat M, Soltani F. Cell-averaging CFAR detection in compound clutter with spatially correlated texture and speckle. IEE proc-F, 1999,146(6):279-284.
    [72] Sciotti M, Lombardo P. Performance evaluation of radar detection schemes based on CA-CFAR against k-distributed clutter. CIE International Conference of Radar, 2001.345-349.
    [73]Guan Jian,He You,Peng Yingning.CFAR detection in K-distributed clutter.Proc.ofICSP,1998.1513-1516.
    [74]Gini F.Optimum and mismatched detection against K-distributed plus Gaussian clutter.IEEE Trans.on AES,1998,34(3):860-875.
    [75]Gini F.Sub-optimum coherent radar detection in a mixture of K-distributed and Gaussian clutter.IEE proc-F,1997,144(1):39-48.
    [76]Farina A,Studer F A.A review of CFAR detection techniques in radar systems.Microwave Journal,1986:115-128.
    [77]方有培.海杂波特性研究.上海航天,2002(5):31-35.
    [78]Valenzuela G,Laing M.On the Statistics of Sea Clutter:Naval Research Laboratory,1971.
    [79]Zhang Q Y.A CFAR processor for the detection of unknown random signals in nonstationary correlated noise.Signal Processing,1996,48(1):17-26.
    [80]Himonas S D,Barkat M.Adaptive CFAR detection in partially correlated clutter.IEE Proc.F,1990,137(5):387-394.
    [81]Farina A,Russo A.Radar detection of correlated targets in clutters.IEEE Trans.on AES,1986,22(5):513-532.
    [82]Cheikh K,FAOZ1 S.Application of Neural Networks to Radar Signal Detection in K-distributed Clutter.IEEE international radar conference,2004:295-298.
    [83]Himonas S D,Baker M.On CFAR detection of correlated radar signals,the 28th conference on decision and control,1773-1778.
    [84]Himonas S D,Baker M.A distributed CFAR processor with data fusion for correlated targets in nonhomogeneous clutter.EEE international radar conference,1990.501-505.
    [85]Barkat M,Dib S.CFAR detection for two correlated targets.Signal Processing,1997,61(3):289-295.
    [86]朱兆达,丘振明.机载脉冲多普勒雷达恒虚警处理研究,1983.
    [87]Ye Zhenru,Zhu Zhaoda,Huang Xinping.CFAR analysis for medium PRF airborne pulse doppler radars.Proceedings of IEEE National Aerospace and Electronics Conference,1988.259-263.
    [88]朱兆达,叶蔡如,黄新平.机载PD雷达频域CFAR处理性能分析,1987.76-79.
    [89]Lawrence N R,Moore J D.Typical performance characteristics of a two dimensional CFAR.Proc.of ICASSP,1978.232-235.
    [90]Trunk G V,Gordon W B,Cantrell H.False alarm control using doppler estimation.IEEE Trans.on AES,1990,26(1):146-152.
    [91]Maggi M,Pistoia D.False alarm probability for a doppler detector with a threshold adaptive to the spectral characteristics of the signal.Proceedings of CIE International Conference on Radar,1991.427-430.
    [92]Hansen V G.Detection performance of some nonparametric rank tests and an application to radar.IEEE Trans.on IT,1970,16(2):309-318.
    [93]Carlyle J W,Thomas J B.On nonparametric signal detectors.IEEE Trans.on IT,1964,10(2):146-152.
    [94]Dillard G M.A practical distributed-free detection procedure for multiple range bin radars.IEEE Trans.on AES,1970,6(5):629-635.
    [95]Hansen V G,Olson B A.Nonparametric radar extraction using a generalized sign test.IEEE Trans.on AES,1971,7(5):942-950.
    [96]何友,关键,彭应宁,陆大金著.雷达自动检测与恒虚警处理.北京:清华大学出版社,1999.
    [97]Vogel L E.An examination of radar signal processing via non-parametric techniques.Proceedings of IEEE International Conference on Radar,1975.533-537.
    [98]朱兆达.秩二进积累非参量检测器的渐近性能.电子学报,1980,8(3):89-98.
    [99]Zeoli G W,Fong T S.Performance of a two-sample Mann-Whitney nonparametric detector in a radar application.IEEE Trans.on AES,1971,7(5):951-959.
    [100]Hansen V G.Detection performance of the narrow-band Wilcoxon detector against Gaussian noise.IEEE Trans.on IT,1972,18(3):664-667.
    [101]Kassam S A,Thomas J B.Generalization of sign detector based on conditional tests.IEEE Trans.on COM,1976,24(4):481-487.
    [102]Kassam S A.A conditional rank test for nonparametric detection.IEEE Trans.on IT,1977,23(2):315-320.
    [103]Tantartana S.Two-stage CFAR detection for multiple-range-bin radars.IEEE Trans.on AES,1983,19(5):688-703.
    [104]Tantaratana S,Nasipuri A.Two-stage wilcoxon detectors using conditional tests.IEEE Trans.on IT,1992,38(3):1080-1090.
    [105]关键.多传感器分布式恒虚警率(CFAR)检测算法研究.清华大学博士学位论文;2006.
    [106]Barkat M,Varshney P K.Decentralized CFAR signal detection.IEEE Trans.on AES,1989,25(2):141-149.
    [107]Barkat M,Varshney P K.Adaptive cell-averaging CFAR detection in distributed sensor network.IEEE Trans.on AES,1991,27(3):424-429.
    [108]Blum R S,Qiao J F.Threshold optimization for distributed order-statistic CFAR signal detection.IEEE Trans.on AES,1996,32(1):368-377.
    [109]Longo M,Lops M.OS-CFAR thresholding in decentralised radar systems.IEEE Trans.on AES,1996,32(4):1257-1267.
    [110]Uner M K,Varshney P K.Distributed CFAR detection in homogeneous and nonhomogeneous backgrounds.IEEE Trans.on AES,1996,32(1):84-97.
    [111]Gini F,et al.Robust nonoparametric multiradar CFAR detection against non-Gaussian spiky clutter.IEEE Proc.F,1997,144(3):131-140.
    [112]张良,保铮,廖桂生.基于空时自适应处理的恒虚警检测算法研究.西安电子科技大学学报(自然科学版),2000,27(3):265-269.
    [113]Kelly E J.An adaptive detection algorithm.IEEE Trans.on AES,1986,22(1):115-127.
    [114]Robey F C,Fuhrmann D R,Kelly E J,Nitzberg R.A CFAR Adaptive Matched Filter Detector.IEEE Trans.on AES,1992,28(1):208-216.
    [115]Cai Lujing,Wang Hong.Further results on adaptive filtering with embedded CFAR.IEEE Trans.on AES,1994,30(4):1009-1020.
    [116]Reed I S,et al.CFAR detection and estimation for STAP radar.IEEE Trans.on AES,1998,34(3):722-734.
    [117]Goldstein J S,Reed I S.Multistage partially adaptive STAP CFAR detection algorithm.IEEE Trans.on AES,1999,35(2):645-661.
    [118]Gau Y L,Reed I S.An improved reduced-rank CFAR space-time adaptive radar detection algorithm.IEEE Trans.on SP,1998,46(8):2139-2146.
    [119]Watts S.The Searchwater Family Of airborne radar.Radar97.
    [120]Kramer D A,Aronoff E.Recent developments in airborne MTI radars.Wescon,1974:1-16.
    [121]Ringel M B,Mooney D H,Long W H.F-16 Pulse Doppler Radar(AN/APG-16)performance.IEEE Trans.on AES,1983,19(1):147-157.
    [122]王永良,彭应宁.空时自适应信号处理.北京:清华大学出版社,2000.
    [123]Minkler G,Minkler J.The principles of automatic radar detection in clutter CFAR:Magellan Book Company,1990.233-318.
    [124]Denny W M.K-ditributed sea clutter:performance predictions made easy.Proc.of the IEEE International Radar Coference,Washintong,1997.209-213.
    [125]Swerling P.Probability of detection for fluctuating targets.IEEE Trans.On information theory,1960,6((2)):269-308.
    [126]Laroussi T,Barkat M.Performance analysis of ML-CFAR detection for partially correlated chi-square targets in Rayleigh correlated clutter and multiple-target situations.IEE Proc.-Radar Sonar Navig,2006,153(1):44-52.
    [127]Swerling P.Radar probability of detection for some additional fluctuating target cases.IEEE Trans.on AES,1997,33(2):698-709.
    [128]Kanter I.Exact detection probability for partially correlated Rayleigh targets.IEEE Trans.on AES,1986,22(2):184-196.
    [129]Weiner M A.Detection probability for partially correlated Chi-square targets.IEEE Trans.on AES,1988,24(4):411-416.
    [130]Dong-Seog Han.Detection performance of CFAR detectors based on order statistics for partially correlated chi-square targets.IEEE Trans.on AES,2000,36(4):1423-1429.
    [131]Laroussi T,Barkat M.Performance analysis of ML-CFAR detection for partially correlated chi-square targets in Rayleigh correlated clutter and multiple-target situations.IEE Proc.-Radar Sonar Navig,2006,153(1):44-52.
    [132]Heidbreder G R.Detection probabilities for Log-normally distributed signals.IEEE Trans.on AES,1967,3((1)).
    [133]张澄波.综合孔径雷达:原理、系统分析与应用.北京:科学出版社,1989.395-396.
    [134]Raghavan R S.A method for estimating parameters of K-distributed clutter.IEEE Trans on AES,1991,27(2):238-246.
    [135]Blacknell D.Comparison of parameter estimators for K-distribution.lEE Proc.-F,1994,141(1):45-52.
    [136]Roberts W J J,Furui S.Maximum likelihood estimation of K-Distribution parameters via the expectation-maximization algorithm.IEEE Transactions on Signal Processing,2000,48(12):3303-3306.
    [137]Oliver C J.Optimum texture estimators for SAR clutter.J.Phys.D:Phys,1994,26(1):1824-1835.
    [138]Lombardo P,Oliver C J.Estimation of texture parameters in K-distributed clutter.IEE Proc.-F,1994,141(4):196-204.
    [139]Iskander D R,Zoubir A M.Estimating the parameters of the K-distribution using the ML/MOM approach.IEEE TENCON,1996,1:769-774.
    [140]Iskander D R,Zoubir A M.Estimation of the parameters of the K-distribution using higher order and fractional moments.IEEE Trans on AES,1999,35(4):1453-1457.
    [141]Blacknell D,Tough R J A.Parameter estimation for the k-distribution based on [zlog(z)].lEE Proc.-F,2001,148(6):309-312.
    [142]Cohen A C.Maximum likelihood estimation in the Weibull distribution based on complete and on censored samples.Technometrics,1965,7(4).
    [143]胡文琳,王永良,王首勇.基于zrlog(z)期望的K分布参数估计.电子与信息学报.
    [144]马晓岩,方学立,向家彬.两种相关杂波的识别方法及其实验比较.电子学报,2003,31(6):851-854.
    [145]Jakubiak A.Signal detection in non-Gaussian clutter.IEEE Trans on AES,1991,27(5):758-760.
    [146]Pearson K.On a criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen in random sampling.Phil.Mag,1900,50(5):157-175.
    [147]Gonzalez T,Salmi S,Franta W R.An efficient algorithm for the Kolinogorov-Smimov and Lilliefors Tests.ASSOC.Comput.Mach.Traps.Math.Software,1977,3:60-64.
    [148]Haykin S,Stehwien W,Deng C,et al.Classification of radar clutter in an air traffic control environment.Proc.ofthe IEEE,1991,79(6):742-772.
    [149]Jakubiak Aet al.Radar clutter classification using Kohonen neural network.IEEE international radar conference,1997.185-188.
    [150]Jouny I.Classification of clutter using the bispectrum.IEEE Signal Processing Workshop,1993:245-249.
    [151]黄祥.合成孔径雷达图像目标检测技术的研究.武汉大学硕士学位论文;2004.
    [152]Chemoff H,Lehmann E L.The Use of Maximum likelihood estimates in chi2 test for goodness of fit.Ann.Math.Statist,1954,25:579-586.
    [153]茆诗松主编.统计手册.北京:科学出版社,2003.172-173.
    [154]Wang Shou-Yong,Hu Wen-Lin,Wang Yong-Liang,Liu Jun-Kai.Method for radar clutter distribution test based on distribution transform.2006 CIE International Conference of Radar,Beijing,China,October 8-10,2006.
    [155]M.费史著,王福保译.概率论与数理统计.上海:上海科学技术出版社,1962.133-134.
    [156]盛骤 谢式千等编.概率论与数理统计(第二版):高等教育出版社,1989.
    [157]Mohammad Ali Khalighi,Mohammad Hasan Bastani.Adaptive CFAR Processor For Nonhomogeneous Environments.IEEE Trans on AES,2000,36(3):889-897.
    [158]胡文琳,王永良,王首勇.一种基于有序统计的鲁棒恒虚警检测器.电子学报.
    [159]Vito A D,Galati G,Mura R.Analysis and comparison of two order statistics CFAR systems.IEE.Proc.-F,1994,141(2):109-115.
    [160]Watts S,Ward K D.Spatial Correlation in K-Distributed Sea Clutter.IEE Proc.-F,1987,134(6):526-532.
    [161]茅于海编.频率捷变雷达.北京:国防工业出版社.
    [162]Lombardo P,Oliver C J.Estimating the correlation properties of K-distributed SAR clutter.IEE proc,-F,1995,142(4):167-177.
    [163]Watts S,Wicks D C.Empirical models for detection prediction in K-distribution radar sea clutter.IEEE international radar conference,1990.189-194.
    [164]Lombardo P Oliver C J,Tough R J A.The effect of noise on order parameter estimation for K-distributed clutter.IEE Proc.-F,1995,142(1):33-40.
    [165]Marier L J.Correlated K-Distributed Clutter Generation for Radar Detection and Track.IEEE Trans.on AES,1993,31(2):568-580.
    [166]Lee F W,Staudaher F.The NRL adaptive array flight test database.IEEE Long Island Section Adaptive Antenna Systems Symposium, 1992. 101-104.
    [167] Titi G W. An overview of the ARPA mountaintop program. IEEE Long Island Section Adaptive Antenna Systems Symposium, 1994. 53-59.
    [168] Fenner D K, Hoover W F. Test results of a space-time adaptive processing system for airborne early warning radar. IEEE 1996 National Radar Conf, 1996. 88-93.
    [169] Kapoor R, Baneilee A. UWB radar detection of targets in foliage using alpha-stable clutter models. IEEE Trans. on AES, 1999,35(3):819-834.
    [170]Xinyu Ma. Robust Signal Processing in Impulsive Noise with Stable Distributions:Estimation, Identification and Equalization. USA:A Bell & Howell Information Company, University of Southern California, 1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700