PD雷达信号处理若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲多普勒(PD)雷达是一种先进的全相参体制的雷达。经过近50年的发展,PD雷达技术已经发展的非常成熟。近年来这种雷达体制更多地与其他雷达体制兼容工作,是信号处理技术发展和应用的重要领域之一。本文是结合课题“某型机载PD雷达恒虚警检测性能研究”和“某型舰载三坐标雷达解模糊实现研究”进行的。论文对PD雷达信号处理中的若干关键问题进行了研究,主要内容包括:杂波跟踪技术、基于杂波跟踪的恒虚警(CFAR)检测和雷达目标解模糊处理。
     第一章绪论,回顾了PD雷达技术的历史和发展,分析雷达自动检测和CFAR检测技术、PD雷达解模糊技术的现状。介绍了本文研究工作的目的和主要内容。
     第二章讨论了机载PD雷达杂波模型建立与杂波仿真。介绍了一种机载PD雷达杂波仿真算法;对其提出了改进,增加了对高度线杂波和陆、海交界杂波的有效描述。通过仿真数据与实测数据比较,证明了该算法对机载PD雷达杂波仿真的有效性。
     第三章介绍了用于杂波跟踪通道对杂波数据预处理的非线性滤波器设计。我们研究了相关的非线性滤波器,将K邻域滤波算法用于杂波预处理;并提出了一种改进的塔型形态滤波算法,用于杂波预处理,改善了杂波灰度图峰值信噪比,满足了杂波跟踪通道对杂波数据预处理的要求。
     第四章研究了两种基于图像处理的杂波跟踪技术。模糊C均值(FCM)算法:将FCM算法应用于杂波跟踪,利用杂波在时间和空间的相关性,提出一种确定初始隶属度矩阵的方法,使FCM算法的迭代次数减少,降低了运算的开销;局部熵算法:结合机载PD雷达杂波分布特征和局部熵算法的特点,将局部熵算法用于杂波跟踪,由一次局部熵滤波、二次局部熵滤波与K邻域滤波组合,构成混合型滤波器,提出一种最大局部熵相似性判决准则,与混合型滤波器结合对杂波进行分割。两种跟踪方法在跟踪结果的形式、运算效率有所不同,可分别适用于二维和一维CFAR检测处理。对经过预处理后的仿真杂波数据采用上述两种算法进行分割处理,得到了满意的杂波跟踪结果。
     第五章讨论了基于杂波跟踪的CFAR检测器。我们将杂波跟踪结果作为CFAR处理的背景信息,使杂波边缘估计与CFAR检测分离,提出了基于FCM算法和局部熵算法杂波跟踪的两种CFAR检测方法:杂波属性(clutter feature),CF-CFAR检测器,和杂波结构元素(structuring element),SE-CFAR检测器。并对其在杂波边缘处的检测性能进行了仿真分析和研究。在精确跟踪杂波的条件下,该检测方法在杂波边缘区与传统的CA、GO-CFAR方法比较具有良好的抗杂波边缘特性,接近理想检测性能。两种CFAR检测方法在参考单元结构、运算效率有所不同,可分别适用于二维和一维检测。
     第六章研究了PD雷达解模糊处理。首先对聚类算法进行了研究和改进,在此基
    
     张弓:机载PD雷达信号处理若干关键技术研究
     础上提出了一种滑窗相关器算法,并对其性能进行了分析和仿真;在某型雷达低空对
     海通道的数据处理中,基于并行DSP系统实现了该滑窗相关器算法。另外还介绍了
     我们将实数遗传算法用于解模糊处理的研究工作。结合解模糊原理,设计了相应的适
     应度函数,通过仿真证明:该算法使得解模糊正确率明显提高。
     第七章结束语,对全文工作进行了总结,并指出下一步需要继续研究的问题。
PD radar is a kind of advanced pulse radar which using coherent processing. It provides an active field for development of the signal processing techniques. This dissertation is based on the subject" Research on constant false alarm rate (CFAR) detection for one certain type of airborne PD radar " and " Research on ambiguity resolution in range and velocity for one certain type of shipborne radar". In this dissertation several key problems about signal processing for PD radar have been studied. The main content includes: Clutter tracking technique, CFAR detector based on clutter tracking and ambiguity resolution in range and velocity etc.
    In chapter one, the origin and development of PD radar technique are reviewed. The automatic radar detection and CFAR processing methods, ambiguity resolution for PD radar are summarized. The research contents and objectives of the dissertation are given.
    In chapter two, airborne PD radar clutter models are discussed. A kind of airborne PD radar clutter emulation algorithm is introduced and improved. The expression enables the accurate and efficient simulation of radar sidelobe, main lobe, altitude-line clutter and coastline clutter. Comparing emulated and real data, we proved the validity of this emulation to airborne PD radar clutter.
    In chapter three, we discuss non-linear filter designing used for pre-processing clutter in clutter tracking channel. We apply K-nearest neighborhood (K-nn) algorithm to pre-process clutter and propose a modified scheme based on pyramidal morphology algorithm. The modified algorithm does better than the original algorithm on the Peak Signal-to-noise Ratio (PSNR) of clutter gray image and follows the requirement on pre-processing clutter in clutter tracking channel.
    In Chapter four, the clutter tracking technique based on image processing is proposed. We apply Fuzzy C-means Clustering (FCM) algorithm to the clutter tracking. According to the clutter dependence in the time and space, we propose a method of defining the initial fuzzy membership function. This method is verified to be successful in reducing the computation burden using simulated data. We apply Local Entropy algorithm to the clutter tracking. The hybrid filter, which is composed of K-nn filter and local entropy filter, has been used to detect clutter edge. We propose the judging criteria of similarity to Maximum Local Entropy that is used to segment the simulated clutter data after local entropy filter. The FCM algorithm and Local Entropy algorithm have difference in the form of output, efficiency and suitable CFAR detectors. Those algorithms have been verified to be successful in several typical simulations.
    In Chapter five, we introduce the research on CFAR detection based on the clutter tracking. Regarding the result of clutter tracking as the background information we propose clutter feature (CF) -CFAR detector and structuring element (SE)-CFAR detector. They are based on different results of clutter tracking. They have different reference cell structure and are suitable for one or two-dimensional detection respectively. Their detection performance in clutter edge region are analyzed and simulated by the Monte
    
    
    Carlo method. They have very good behaviors compared with CA, GO-CFAR detectors at clutter edges.
    In Chapter six, the research on ambiguity resolution in range and velocity in PD radar is discussed. First we study and improve cluster algorithm, put forward a sliding window correlator algorithm. This algorithm's performance is analyzed and emulated. Then we introduce the design and realization of this algorithm in one certain type of ship-borne radar by parallel DSP. In the last part, we introduce real-valued genetic algorithm applied to ambiguity resolution. Based on the ambiguity resolution principle, we design the fitness function. A good result in the probability of ambiguity resolution using real-valued genetic algorithm is get.
    In chapter seven, the research results are concluded. The further developments and the questions needing continuing studying are p
引文
1. Mooney. D. H, and Skillman. W.A.Pulse Doppler Radar, Chapter 17, Radar Handbook, [H] Second Edition,USA McGraw Hill 1990. (http://210.79.226.16:81/cetin2/xw/xxz/2001/04/dzdk-4.htm)
    2.毛士艺,张瑞生,许伟武,李少洪,苗楠,朱谷川.脉冲多普勒雷达.北京:国防工业出版社1990,211-223
    3.中国新型雷达http://chinaha.myrice.com/military/equip/equindex.htm
    4.冯宁林,赵玉洁.机载雷达“四抗”技术研究 电子工程信息 1998 12,1-6
    5.国外雷达技术发展动态http://cdstic.cetin.net.cn/(http://210.79.226.16:81/cotin2/xw/xxz/2001/04/dzdk-4.htm)
    6.机载雷达技术新进展http://cdstic.cetin.net.cn/(http://210.79.226.16:81/cetin2/xw/xxz/2001/04/dzdk-4.htm)
    7. North D O. An Analysis of the Factors which Determine Signal/Noise Distribution in Plused Carrier System.IEEE Proc.,1963:1015-1028
    8. Rice S O. Mathematical Alalysis of Random Noise.Bell System Technical Journal,1994,23:282-332,1945,24:145-156
    9. Marcum J I. A Statistical Theory of Detection by Plused Radar and Mathematical Appendix.IRE Trans.On IT,1960,6:259-267
    10. Swerling P.Probability of Detection for Fluctuating Targets.IRE Trans.On IT, 1960,6:269-308
    11. Finn H M, Johnson R S. Adaptive Detection Mode with Threshold Control as a Function of Spatially Sampled Clutte-Level Estimates.RCA Review,1968,29:414-464
    12. Hansen V G.Constant False Alarm Rate Processing in Search Radars.In:IEEE International RadarConference,London,1973:325-332
    13. Trunk G V. Range Resolution of Targets Using Automatic Detectors. IEEE Trans.On AES, 1978,14(5):750-755
    14. Barkat M, Varshney P K. A Weighted Cell-Averaging CFAR Detector for Multiple Target Situation. In: Proc.Of the 21st Annual Conference on Information Sciences and Systems, Baltimore,Maryland,1987:118-123
    15.何友,关键,孟祥伟,陆大金,彭应宁.雷达自动检测和CFAR处理方法综述.系统上程与电子技术.2001,Vol 23.No.1:9-14
    16.何友,关键,彭应宁,陆大金.雷达自动检测与CFAR处理北京,清华大学出版社,1999.
    17. Rohling H. Radar CFAR Thresholding in Clutter and multiple Target Situations.IEEE Trans.on AES 1983, 19(3):608-621
    18. Rickard J T. Dillard G M. Adaptive Detection Algorithms for Multiple Target Situations.IEEE Trans. on AES 1977, 13(4):338-343
    
    
    19. Gandhi P P, Kassam S A.Analysis of CFAR Processors in Nonhomogeneous Background.Trans.on AES,1988, 24(4):427-445
    20. Kim C J, Han D S, Lee H S.Generalised OS CFAR Detector With Noncoherent Integration.Signal Processing,1993,31(1):43—46
    21. Lops, M.; Willett, P. LI-CFAR:a flexible and robust alternative Aerospace and Electronic Systems, IEEE Transactions on,Volume: 30 Issue:1,Jan. 1994 Page(s):41-54
    22. Nagle D T, Saniie J. Performance Analysis of Linearly Combined Order Statistic CFAR Detectors.IEEETrans.onAES,1995, 31(2):522-532
    23.孟祥伟,何友.基于准最佳加权有序统计的最大选择CFAR检测算法.电子学报,1997,25(12):74-78
    24. Finn H M. A CFAR Design for a Window Spanning two Clutter Fields. IEEE Trans.on AES 1986, 22(1): 155-169
    25. Lei S, Li W. Research of Ordered Statistic CFAR Detector.In: Proc. of the International Symposium on Noise and Clutter Rejection in Radars and Imaging Sensors,1989:560-565.
    26. Ozgunes I, Gandhi P P, Kassam S A.A Variably Trimmed Mean CFAR Radar Detector.IEEE Trans.on AES,1992,28(4):1002-1014
    27. Goldman H. Performance of Excision CFAR Detector in the Presence of Inteffers.IEE Proc-F,1990, 137(3):163—171
    28. Hah, Y.I.; Kim,T. Performance of excision GO-CFAR detectors in nonhomogeneous environments Radar,Sonar and Navigation,IEE Proceedings-,Volume:143 Issue:2,April 1996 Page(s):105-112
    29.吉书龙,皇莆堪,周良柱,一种新的雷达恒虚警(CFAR)处理器国防科技大学学报,1990,12(4):116-121
    30. Ji S L, Huang F K, Sun Z K. The Studies of Radar New CFAR Processor.In: Proc. of ICSP'90,1990:657-658.
    31. Basile M, Di-Vito A, Falessi C.An Adaptive-Length CA—CFAR Device for an ATC Radar In: Proc. of CIE 1991 International Conference on Radar,Beijing,1991: 419—422.
    32. Barboy B, Lomes A, Perkalski E. Cell-Averaging CFAR for Multiple Target Situations.IEE Proc-F,1986, 133(2):176—186
    33. Himonas S D,Barkat M. Automatic Censored CFAR Detection for Nonhomogeneous Environments.IEEE Trans.on AES,1992, 28(1):286-304
    34. Himonas S D.Adaptive Censored Greatest-of CFAR Detection.IEE Proc.-F,1992,139(3) 247-255
    35. Cole L G, Chen P W. Constant False Alarm Rate Detector for a Pulse Radar in a Maritime Environment.IEEETrans.on AES,1978,14(6):1110-1113
    36. Lops M, Orsini M. Scan-by-scan Averaging CFAR.IEE Proc.-F,1989,139(3):7-10.
    
    
    37.沈福民,刘峥.杂波图CFAR平面检测技术.系统工程与电子技术,1996,18(7):9-14
    38.何友,刘永,孟样伟.杂波图面技术在均匀背景中的性能.电子学报,1999,12(3):119-120
    39. Farina A, Russo A. Radar Detection of Correlated Targets.IEEE Trans.on AES 1986,22(5):513-532
    40. Goldstein G B.False Alarm Regulation in Log—Normal and Weibull Clutter.IEEE Trans.on AES 1973, 9(1): 84-92
    41. Hansen V G. Constant False Alarm Rate Processing in Search Radars.IEE Conference Publish Number 105,1973:325-332.
    42. Levanon N, Shor M. Order Statistics CFAR for Weibull Background. IEE Proc.F,1990,137(3):157-162.
    43.何友,Rohling H.有序统计恒虚警检测器在韦布尔干扰背景中的性能分析电子学报,1995,23(1):79-84
    44.唐劲松.高分辨率雷达目标检测与识别:[博士学位论文]南京航空航天大学,1996.
    45. Guan Jian, He You, Peng Yingning.CFAR Detection in K-Distributed Clutter. Proc.Of ICSP,1998:1513-1516.
    46. Fogel A. Detection in a Rice Environment.IEEE Trans.on IT,1983, 29(5):761-764.
    47. Zhu Z D. Likelihood Ratio Detection of Swerling Ⅱ Targets in Rician Clutter.Journal of Electronic (China),1986, 3(2):155-159.
    48.张昆辉,朱兆达.非相干Rice杂波中的恒虚警检测 航空学报,1989,10(2):93-97.
    49. Thomas J B.Nonparametric Detection.IEEE Proceedings,1970, 58(5): 623-631.
    50. Hansen V G. Detection Performance of Some Nonparametric Rank Tests and an Application to Radar.IEEE Trans.on IT, 1970, 16(2):309-318.
    51. Hansen V G, Oison B A. Nonparametric Radar Extraction Using a Generalized Sign Test.IEEE Trans.on AES, 1971, 7(5):942-950.
    52.朱兆达.秩二进积累非参量检测器的渐近性能 电子学报,1980,8(1):89-98.
    53. Hansen V G, Detection Performance of the Narrow-Band Wilcoxon Detector against Gaussian Noise. IEEE Trans.on IT, 1972, 18(3):664-667.
    54. Ye Zhenru, Zhu Zhaoda, Huang Xinping. CFAR Analyse for Medium PRF Airborne Pluse Doppler Radars.IEEE National Aerospace and Electronics Conference,1988:259-263.
    55.朱兆达,丘振明.机载脉冲多卜勒雷达恒警处理研究 中国航空科技文献,HJB 830136,1983.
    56. Ringel M B, Mooney D H, Long W H. F-16 Pulse Doppler Radar (AN/APG-66) Performance.IEEE Trans. on AES, 1983, 19(1): 147-157.
    57. Maggi M, Pistoia D. False Alarm Probability for a Doppler Detector with a Threshold Adaptive to the Spectral Characteristics of the Signal.Proc. of CIE 1991 International Conference on Radar,1991: 427-430.
    58. Trunk G V, Gordon G B, Cantrell H. False Alarm Control Using Doppler.IEEE Trans.on AES,
    
    1990, 26(1): 146-152.
    59. Tenny R R, Sandell N R. Detection with Distributed Sensors.IEEE Trans.on AES, 1981,17(4):501-510.
    60. Anastassopoulos V, Lampropoulos G A. New and Robust CFAR Detection Algorithm.IEEE Trans.on AES, 1992, 28(2): 420-427.
    61. Moore J D,Lawrence N B.Comparison of Two CFAR Methods Used with Square Law Detection of Swerling I Targets.IEEE International Radar Conference,1980:403—409.
    62. Himonas S D. CFAR Integration Processors in Randomly Arriving Impulse Interference.IEEE Trans.on AES, 1994, 30(3):809-817
    63.张贤达.现代信号处理技术.北京:清华大学出版社,1995.
    64. Michael C. Wicks, William J.Baldygo,Jr; Brown, Russell D. Expert system constant false alarm rate (CFAR) processor United States Patent.PN:5499030. May 1996.
    65. Hovanessian S. A. Radar System Design and Analysis. USA, Artech House, Norwood, MA 1984.
    66.[美]G.V.莫里斯等 机载脉冲多普勒雷达 航空工业出版社1990.
    67. G. Trunk and S. Brockett, "Range And Velocity Ambiguity Resolution",Rec.1993 IEEE National Radar Conference,April 1993.146-149.
    68. Thomas A G, Berg M C. Medium PRF set selection: An approach through combinatories.IEE Proc- Radar,Sonar Navigation,1994,141 (6):307-311.
    69. Hovanessian S A. An algorithm for calculation of range in a multiple PRF radar.IEEE Trans, 1982, AES-18,(3):288-296.
    70.龙腾,曾涛.一种脉冲多普勒雷达解模糊新算法.电子学报2000,Vol.28,No.12,99-101.
    71. Gerrit P B. Range ambiguity resolution for high PRF pulse- Doppler radar.The Proceeding of 1985.IEEE International Radar Conference,1985:113-118.
    72.戴文琪,赵问道.具有纠错能力的解距离模糊的模糊数法.电子学报,1991,19(2):127-129
    73.雷文,龙腾,曾涛.一种脉冲多普勒雷达解距离模糊的新算法[J].北京理工大学学报,1999,19(3):357-360.
    74. Morchin Rader Engineer's Source Book Artech House Norword MA 1992
    75. J.L. Farrell and R. L.Taylor, Doppler Radar Clutter. IEEE Trans.On Aerospace and Navigational Electronics.ANE-11, pp. 162-172, September 1964.
    76.[美]R.L米切尔 雷达系统模拟 北京 科学出版社1982
    77. Jen King Jao and Willliam B.Gogginst Efficient,closed-form computation of airborne pluse-Doppler radar clutter.IEEE International Radar Conference 1985.pp 17-22,1985
    78. C.D. Hawkes, and S. Haykin Modeling of clutter for coherent pulsed radar.IEEE Trans.Inf.Theory.1975. IT-21(6), 703.
    79.宋焕生,梁德群,刘春阳,中值类滤波器综述 无线电工程Vol.26 No.1 1996 28-34.
    80. A.Nieminen, P. Heinonen,and Y. Neuvo, A New Class of Detail-Preserving Filters for Image
    
    Processing,IEEE Transactions on Pattern Analysis and Machine Intelligence,Vol.9,No.1,pp74-90,January 1987.
    81. J.W. Turkey, Nonlinear Methods for Smoothing Data,conference Record,1974 EASCON,P.673(abstract only)
    82. G.& Arce, Medians Filter: theory for One-and Two-Dimensional Filters.Advances in Computer Vision and Image Processing.PP90-166 Vol.2 1986.
    83.赵春晖,张铁岩.适于图象平滑的多刻度广义形态滤波器 哈尔滨工程大学学报 Vol.18 No.4 1997.8 pp.84-90.
    84. Maragos,P.; Schafer, R.W. Morphological systems for multidimensional signal processing-Proceedings of the IEEE On page(s): 690-710 April 1990
    85. Soille,P.; Talbot, H. Directional morphological filtering Pattern Analysis and Machine Intelligence,IEEE Transactions on,Volume:23 Issue:11,Nov.2001 Page(s):1313-1329
    86. Zhang Ping; Chen Lihui; Alex, K.C. Text document filters using morphological and geometrical features of characters Signal Processing Proceedings,2000. WCCC-ICSP 2000. 5th International Conference on,Volume:1,2000 Page(s):472-475 vol.1
    87. Jinsung Oh; Chaparro, L.F. Ranked directional morphological filtering of impulse noise in images Acoustics,Speech, and Signal Processing, 2000.ICASSP '00.Proceedings.2000 IEEE International Conference on,Volume:4,2000 Page(s): 2167-2170 vol.4
    88. Meng Mingjie; Liu Xianfeng; Yang Ruliang Speckle reduction for SAR images based on soft-morphological filter with omni-directional multiple structuring elements Radar,2001 CIE Intemational Conference on,Proceedings,2001 Page(s):928-932
    89. Maragos, P.; Schafer, R.W. Morphological Filters-Part Ⅰ: Their Set-Theoretic Analysis and Relations to Linear Shift-lnvariant Filters.IEEE Trans.On ASSP.1987,35(8):1153-1169
    90. Maragos, P.; Schafer, R.W. Morphological Filters-Part Ⅱ: Their Relations to Median,Order-Statistic,and Stack Filters.IEEE Trans.On ASSR.1987, 35(8):1170-1184
    91.赵春晖.一种全方位多尺度形态滤波方法 模式识别与人工智能 1998,11(1).-101-106
    92.赵春晖,乔景渌。一类多结构元自适应广义形态滤波器 中国图像图形学报 1997,2(11).-806-810
    93.赵春晖,王伟.全方位多结构元形态滤波器 中国图像图形学报 1997,2(7).-500-503
    94.宋伟,王欣.双结构元形态滤波器 山东工业大学学报,1998,28(5),pp.419-422
    95. Jinsung Oh; Chaparro, L.F. Adaptive fuzzy morphological filtering of images Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on,Volume:5,1998 Page(s): 2901-2904 vol.5
    96. Yu Nong; Li Yushu; Xu Qifu Genetic training algorithm for morphological filters Signal Processing Proceedings,2000.WCCC-ICSP 2000.5th International Conference on,Volume:I,2000 Page(s):476-479 vol.1
    
    
    97.余农,李予蜀等,自动检测图像目标的形态滤波遗传算法,计算机学报 2001,24(4).-337-346
    98.柏子游,张勇,虞烈.基于模糊数学和神经网络的数学形态学方法西安交通大学学报第33卷第4期 1999.4 pp.104-105
    99. T.A. Nodes, and N.C. Gallagher. Jr. Median filters: Some Modifications and Their Properties,IEEE Transactions on Acoustics,Speech and Signal Processing.Vol.30,No.5 1982.10, 739-746.
    100. Liao. G.Y, T.A. Nodes, N.C. Gallagher.Jr. Output Distributions of Two-Dimensional Median Filters,IEEE Transactions on ASSR Vol,ASSP-33, No.5, Oct.1985.
    101.赵春晖.一种复合顺序形态滤波百分位值优化方法 通信学报 1998,19(2).-32-37
    102.赵春晖,孙圣和.基于百分位值的自适应顺序形态滤波方法 哈尔滨工业大学学报 Vol.28,No.3,1996.6 64-68.
    103. Prashant P Gandhi, Saleem A Kassam. Design and performance of combination filter for signal restoration.IEEE Trans On SP, 1991, 39(7):1524-1540.
    104.蔡靖,杨普生,丁润涛.分类均值-加权中值混合滤波器 天津大学学报Vol.32,No.5,Sep.1999.551-554.
    105.宋焕生,梁德群,刘春刚.用于图像处理的自适应多级中值滤波器.西安交通大学学报 Vol.32,No.1 Jan.1998.25-28.
    106. Wendt E D, Coyle E. J, Gallagher C. Stack filters.IEEE Trans. 1986.8, ASSP-34, (4):898-911.
    107. Akopian D, Vainio O, Agaian S, Astola.Processors for generalized stack filters.IEEE Trans.1995.6,SP-43(6):1541-1546.
    108.王伟,赵春晖.层叠加权中值滤波器.中国图象图形学报 Vol.2 No.7,Jul.1997 504-508.
    109. Palmieri, E, Boncelet, C.G,Jr.A class of nonlinear adaptive filters Acoustics,Speech,and Signal Processing,1988. ICASSP-88.1988 International Conference on,1988 Page(s): 1483-1486 vol.3.
    110. J.B. Bednar,T.L. Watt, Alpha-trimmed means and their relationship to median filters IEEE Transactions on Acoustics, Speech and Signal Processing.Vol.32, No.11,PP145-153,Feb 1984.
    111. L.S. Davis and A. Rosenfeld.Noise cleaning by iterated cleaning. IEEE Trans.Syst.Man Cybernet. Vol. SMC-8, 1978, pp. 705-710.
    112. H.B. Mitchell and Nachum Mashkit, Noise smoothing by a fast K-nearst neighbour algorithm,Signal Processing:Image Communication,Vol.4, No.3, June 1992, pp.227-232.
    113. Gevorkian, D.; Egiazarian, K.; Astola, J. Modified K-nearest neighbour filters for simple implementation Circuits and Systems,2000. Proceedings.ISCAS 2000 Geneva.The 2000 IEEE International Symposium on,Volume:4,2000 Page(s): 565-568 vol.4
    114.刘志敏,杨杰,基于数学形态学的图像形态滤波,红外与激光工程,1999,8.pp.11-15.
    115.张兆礼,赵春晖,梅晓丹,现代图像处理技术及Matlab实现,人民邮电出版社.2001年
    116.唐常青,吕宏伯,黄铮,张方.数学形态学方法及其应用.科学出版社1990年
    117.吴敏金,图象形态学.上海科学技术出版社1991年
    
    
    118.欧阳明,陈刚,余帆,周成,杨显志,塔型模糊C-均值聚类图像分割方法.云南大学学报 Vol.22 2000.105~108.
    119. Acton,S.T.A pyramidal algorithm for area morphology Image Processing,2000. Proceedings.2000 International Conference on,Volume:2, 2000 Page(s):954-957 vol.2
    120. Meng Mingjie; Liu Xianfeng; Yang Ruliang Speckle reduction for SAR images based on soft-morphological filter with omni-directional multiple structuring elements Radar,2001 CIE International Conference on,Proceedings,2001 Page(s):928—932
    121. Fu K S,Mui JK. A survey on image segmentation.Pattern Recognition,1981,14(1):3_16
    122. Tamura S, Higuchi S, Tanaka K. Pattern classification based on fuzzy relations. IEEE Trans Syst,Man Cybern,1971,1:64-66
    123. Ruspini E H. A new approach to clustering,Inf Control,1969,15:22-32
    124. Dunn J C. A graph theoretic analysis of pattern classification via Tamura's fuzzy relation.IEEE Trans Syst,Man Cybem,1974, 4:310-313
    125. Bezdek J C. Cluster validity with fuzzy sets.J Cybern,1974,3:58-73
    126. Gath T, Geva A B. Unsupervised optimal fuzzy clustering.IEEE Trans Pattern Analysis Machine Intel.,1989,PA-MI-1 1(7):773-781
    127. ZHANG Gong, ZHU Zhao-da Application of Fuzzy C-mean Cluster Algorithm on Clutter Tracking Chinese Journal of Aeronautics,Vol. 15,No. 1, February 2002.P:44-48.
    128. Vincent T, Tonaso A P. On edge detection.IEEE Trans Patt Anal Machine Intell,1986,Vol PAMI-8: 147-163
    129. Pal, N.R.; Pal, S.K. Object-background segmentation using new definitions of entropy Computers and Digital Techniques,IEE Proceedings E [see also Computers and Digital Techniques,IEE Proceedings-],Volume:136 Issue: 4, July 1989 Page(s): 284-295
    130. Hojjatoleslami,S.A.; Kittler, J. Region growing: a new approach Image Processing,IEEE Transactions on, Volume: 7 Issue: 7, July 1998 Page(s): 1079-1084
    131. Pal, N.R.; Pal, S.K.A review on image segmentation techniques. Pattern Recognit, 1993, 26(9):1277-1299
    132.王广君,田金文,柳键,吴国平.基于局部最大熵的多目标图像分割方法华中理工大学学报 Vol.28 N0.12 2000.12 4-5.
    133. F.Y. Chin and I. N. Chen, Efficient parallel algorithms for some graph problems. (J) Comm.ACM2 5(9)(1982) 659-665
    134. Z. Fang and L. M. Ni, On the communication complexity of generalized 2-D cnvolution on array processors.(J) IEEE Trans.Comput.3 8(2)(1989)184-193
    135. L.J. Siegel et al. Parallel Processing Approaches to Image Correlation.(J) IEEE Trans.Comput.c-31(3)(1982)208-217
    136.李俊山,沈绪榜.局部熵差图象匹配并行算法小型微型计算机系统 Vol.21 No.12
    
    2000. 12 1234-1236.
    137. Zhang Gong, Zhu zhaoda, Lu Bo. Algorithm for Ambiguity Resolution in Range and Velocity.Transactions of Nanjing university of aeronautics & astronautics.Vol.18 N0.2 2001 219-223.
    138.张弓,朱兆达,吕波.多重滑窗算法在DSP上的并行实现 数据采集与处理Vol.17,No.2 2002.6.209-212.
    139.张弓,张景涛.HPI主机接口在多处理器系统中的应用电子技术应用Vol.28,No.7 2002.73-75.
    140.张弓,朱兆达,一种简捷的机载PD雷达杂波仿真算法研究.雷达与对抗2002,(3).17-22.
    141.张雄伟,曹铁勇.DSP芯片的原理与开发应用.北京:电子工业出版社,117-135
    142.陈国良,王熙法,庄镇泉,遗传算法及其应用,北京:人民邮电出版社,1996.
    143. Michalewicz Z.,Janikow C.Z. and Krawczyk J.B. A modified genetic algorithm for optimal control problems.Computer Math Appli,1992, 23(12):83-94.
    144. Schaffer J. and Esheiman L.,On Crossover as an Evolutionary Viable Strategy.Fourth International conference on Genetic Algorithm,1991,61~68.
    145. Pham, D. T. and Jin, G, Genetic Algorithm Using Gradient-Link Reproduction Operator.Electronics Letters,1995, 31 (18): 1558~1559.
    146. Anderson K. S. and YuHung Hsu, Genetic Crossover Strategy using an Approximation Concept.in Proc.of 1999 Congress on Evolutionary computation 1999,527~533.
    147.陈小平.进化计算及其应用研究.南京航空航天大学博士论文,2000.11,32-37.
    148.刘文波,陈小平,石玉,一种快速寻优的遗传交叉策略,南京大学学报(自然科学版),2000,36(计算机专刊):20-24.
    149. Greenstein L.J., A. E. Brindley, and R. D. Carlson; A comprehensive Ground Clutter Model For airborne Radars, IIT Research Institute (Chicago, Illinois) Report to Overl and Radar Technology Program,Set,1969.
    150. Ringel M.B, An advanced computer calculation for ground clutter in an Airborn pluse Doppler radar, Radar Volume 7: CW and Doppler radar, ARTECH HOUSE INC,1978. 375-384.
    151. Helgostam L. F, Ronnerstam B. ground clutter calculation for an airborn Doppler redar [J].IEEE Trans on ME, 1965, 9(2):294-296.
    152.武听伟,朱兆达,机载PD雷达海杂波的计算机模拟.第16届南京地区研究生通信年会.2002.1,827-831.
    153. Ehrhardt R. Morphological filter design with genetic algorithms. SPIE, 1994, 2300:2-12.
    154. Huttunen H, Kuosmanen P. Optimization of soft morphological filters by genetic algorithms.SPIE, 1994, 2300:13-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700